The present teachings are generally directed to dermal patch systems (herein also referred to as dermal patches) that can be employed to deliver a pharmaceutical to a subject.
Typically, administration of pharmaceuticals (e.g., vaccines) is carried out via a standard vial and a syringe. In large majority, the delivery is intramuscular. This mode of administration requires the expertise of a medical professional, which can limit the availability of life-saving pharmaceuticals to certain patient populations. For example, in many developing areas of the world where access to medical professionals may be limited, such conventional modes of parenteral administration may deprive large segments of the population from access to needed pharmaceuticals.
Aspects of the present disclosure address the above-referenced problems and/or others.
In one aspect, a dermal patch system for administering a pharmaceutical includes a vial that stores a pharmaceutical, and a cartridge coupled to the vial. The dermal patch includes a pull mechanism, a pump, and a plurality of microneedles in communication with the vial. In some embodiments, after a user properly positions the dermal patch system on the skin of a subject, a user can pull the pull mechanism which causes the dermal patch system to prime the microneedles with the pharmaceutical stored in the vial and move the microneedles from an undeployed position to a deployed position and causes the pump to pump the pharmaceutical from the vial. That is, the microneedles are configured to move between an undeployed position to a deployed position, and when pulled, the pull mechanism is configured to cause the pump to pump the pharmaceutical from the vial and to the microneedles and to cause the microneedles to move to the deployed position. In some embodiments, the pump is configured to prime the microneedles with an amount of pharmaceutical before the microneedles are moved to the deployed position for puncturing the subject's skin. In certain embodiments, the cartridge further includes a tube configured to carry the pharmaceutical from the vial to the plurality of microneedles.
In some embodiments, the pump can be a positive rotatable positive displacement pump and pulling the pull mechanism can cause the pump to rotate which causes the pump to force the pharmaceutical through the tube via positive displacement. In certain embodiments, the tube is a first tube, and the cartridge includes a second tube connected to the vial, and wherein rotation of the pump further causes the pump to force air into the vial through the second tube via positive displacement. In some embodiments, the cartridge also includes a latch that allows the pump to rotate in a first direction and prevents the pump from rotating in an opposite second direction. In certain embodiments, the pull mechanism is configured to move when then the cartridge has a first orientation and is prevented from moving when the cartridge has a different second orientation. In some embodiments the cartridge further includes a trigger that is configured to move from a first position to a second position when the pull mechanism is pulled. In the first position the trigger retains the microneedles in the undeployed position and in the second position, the trigger is configured to release the microneedles to a deployed position.
In certain embodiments, the pump is configured to move the trigger from the first position to the second position when the pull mechanism is pulled. In some embodiments the cartridge further includes an injection spring that is in a compressed state when the trigger is in the first position and is in an extended state when the trigger is in the second position. The injection spring is configured to move the microneedles to the deployed position when in the extended position. In certain embodiments, the cartridge further includes a retraction button configured to move the microneedles from the deployed position to the undeployed position. In some embodiments, the cartridge further includes a latch that prevents a user from removing the vial from the cartridge. In some embodiments, the pharmaceutical is a vaccine (e.g., Monkeypox vaccine, Flu vaccine, COVID-19 vaccine, Yellow Fever vaccine, Malaria vaccine, Dengue vaccine, etc.). In certain embodiments, the vial includes a fractional dose of the vaccine. In certain embodiments, the cartridge includes a quick response code that is associated with an electronic medical record.
In a related aspect a method for administering a pharmaceutical to a subject includes inserting a vial containing a pharmaceutical into a cartridge and attaching the cartridge to the subject's skin. The cartridge includes a pump and a plurality of microneedles. The method further includes pulling the pull mechanism to cause the microneedles to move from an undeployed position to a deployed position such that the microneedles puncture the skin of the subject when in the deployed position. Furthermore, pulling the pull mechanism causes the pump to pump the pharmaceutical to the microneedles thereby delivering the pharmaceutical to the subject. In some embodiments, the pharmaceutical is a vaccine. In certain embodiments, a fractional dose of the vaccine is delivered to the subject. In some embodiments, the method includes priming the microneedles by delivering a portion of the pharmaceutical to the microneedles before moving the microneedles to a deployed position. In certain embodiments, the cartridge further includes a tube that carries the pharmaceutical from the vial to the microneedles. In some embodiments, the pump pumps the pharmaceutical from the vial to the microneedles via positive displacement.
Aspects of the present disclosure may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for illustration purpose of preferred embodiments of the present disclosure and are not to be considered as limiting.
Features of embodiments of the present disclosure will be more readily understood from the following detailed description take in conjunction with the accompanying drawings in which:
The present disclosure generally relates to a dermal patch that may be utilized to deliver a pharmaceutical to a subject.
In some embodiments, a dermal patch may be used to deliver a pharmaceutical via a vial that can be attached to the dermal patch. Dermal patches disclosed herein may allow for the delivery of a pharmaceutical in a variety of environments (e.g., in the home, in the field, in a medical facility, etc.).
The term “about,” as used herein, denotes a deviation of at most 10% relative to a numerical value. For example, about 100 μm means in the range of 90 μm-110 μm.
The term “substantially,” as used herein, refers to a deviation, if any, of at most 10% from a complete state and/or condition.
The term “subject” as used herein refers to a human subject or an animal subject (i.e., chicken, pig, cattle, dog, cat, etc.).
The term “pharmaceutical” as used herein refers to a substance that is used in diagnosis, treatment, or prevention of a disease or a substance that restores, corrects, or modifies a biological function.
The term “fractional dose” as used herein refers to a dose of a pharmaceutical, particularly a vaccine, that is a fraction of a standard dose of that pharmaceutical (e.g., one-fifth, two-thirds, three-fourths, etc.) administered by a same or an alternative route (e.g., intradermally rather than subcutaneously or intramuscular, etc.). For example, if a standard dose of a vaccine includes a 100 μg dose, a fractional dose of that vaccine may include a 20 μg dose, a 25 μg dose, a 50 μg dose, a 75 μg dose, etc. With respect to a fractional dose of a vaccine, fractional dose vaccination may reduce a number of infections within a population while administering only a fraction of the dose of the vaccine to a number of subjects which in turn may allow more individuals to become vaccinated.
The term “transparent,” as used herein, indicates that light can substantially pass through an object (e.g., a window) to allow visualization of a material disposed behind the object. For example, in some embodiments, a transparent object allows the passage of at least 70%, or at least 80%, or at least 90% of visible light therethrough.
The term “needle” as used herein, refers to a component with a pointed tip that is configured to pierce an outer surface of an element (e.g., skin of a subject) to provide a passageway through the skin. A needle can be hollow to allow a fluid (e.g., a pharmaceutical) to pass therethrough.
The term “microneedle” as used herein, refers to micron scaled needles used to administer a pharmaceutical. A microneedle can have length between about 1 mm and about 3 mm. Furthermore, the microneedles can administer a pharmaceutical to a subject at a rate of about 250 μl/min per microneedle. A microneedle can have a diameter between about 50 and about 350 microns wide or can have a gauge between 28 and 36 and can have a tip thickness between about 1 and about 25 microns.
The term “tube” as used herein, refers to hollow cylinder that provides a fluidic channel for transporting liquids or gases.
The present disclosure generally relates to a device, which is herein also referred to as a dermal patch or a dermal patch system, for delivering a pharmaceutical to a subject. In some embodiments discussed below, such a dermal patch system can include a cartridge that can be affixed to a subject's skin (e.g., via an adhesive layer), a separate vial containing a pharmaceutical can be attached to the cartridge and an at least one microneedles and more typically an array of microneedles disposed within the cartridge can be deployed to puncture the subject's skin and deliver the pharmaceutical to the subject. In some embodiments, the microneedles deliver the pharmaceutical intradermally. In some such embodiments, the dermal patch system is configured to deliver a single fractional dose of the pharmaceutical stored within the vial. As discussed in more detail below, the cartridge includes a pull mechanism that deploys the microneedle array and causes the cartridge to pump a dose of the pharmaceutical into the subject via the deployed microneedles. The cartridge can also include a push button mechanism. After a user administers the pharmaceutical, the user can push the push button mechanism into the cartridge which causes the microneedle array to retract into the cartridge which in turn allows the user to remove the cartridge from the subject. In this manner, the dermal patch system remains safe before it is engaged and after delivery of the pharmaceutical as in both cases the microneedle array is retained within the cartridge.
In some embodiments, the pull mechanism cannot be pulled unless the dermal patch system has a proper orientation on a subject's skin (e.g., a substantially vertical position). As such, the dermal patch system may administer the pharmaceutical only when the dermal patch has a given orientation. Providing a dermal patch system that administers a pharmaceutical when in a specific orientation may ensure that the subject receives all or substantially all of the pharmaceutical from a vial as the dermal patch may be aided by gravity when administering the pharmaceutical.
Referring now to
The cartridge 12 includes a cover 100 and a base 200 that can couple to the cover 100. For example, the cover 100 and the base 200 can be formed as two separate components that are removably coupled to one another (e.g., via a snap fitting). In other embodiments, the cover 100 and the base 200 form an integral unitary cartridge 12. In some of these embodiments, the cover 100 can be coupled to the base 200 via an adhesive, laser welding, etc.
The cartridge 12 may be formed using a variety of suitable materials including, but not limited to, polymeric materials (e.g., polyolefins, polyethylene terephthalate (PET), polyurethanes, polynorbornenes, polyethers, polyacrylates, polyamides (Polyether block amide also referred to as Pebax®), polysiloxanes, polyether amides, polyether esters, trans-polyisoprenes, polymethyl methacrylates (PMMA), cross-linked trans-polyoctylenes, cross-linked polyethylenes, cross-linked polyisoprenes, cross-linked polycyclooctenes, inorganic-organic hybrid polymers, co-polymer blends with polyethylene and Kraton®, styrene-butadiene co-polymers, urethane-butadiene co-polymers, polycaprolactone or oligo caprolactone co-polymers, polylactic acid (PLLA) or polylactide (PL/DLA) co-polymers, PLLA-polyglycolic acid (PGA) co-polymers, photocross linkable polymers, etc.). In some embodiments, some of the cover 100 may be formed of poly(dimethylsiloxane) (PDMS) to allow visibility of components disposed within the cartridge 12.
The cartridge 12 also includes a pull mechanism 300, a pump assembly 400 coupled to the pull mechanism 300, a microneedle array assembly 500, a retraction button 600, and a trigger 700. As will be discussed in further detail herein, when pulled, the pull mechanism 300 causes the trigger 700 to release the microneedle array assembly 500 thereby allowing microneedle array assembly 500 to move to a deployed position to puncture the skin of a subject. Furthermore, when pulled and after causing the microneedle array assembly 500 to deploy, the pull mechanism 300 causes the pump assembly 400 to pump the pharmaceutical from the vial 14 (when the vial 14 is coupled to the cartridge 12) through the microneedle array assembly 500 into the subject. After the pharmaceutical has been administered to the subject, a user can push the retraction button 600, which causes the microneedle array assembly 500 to retract into the cartridge 12 which allows the dermal patch system 10 to be removed from the subject. Providing dermal patch system 10 which places the microneedle array assembly 500 in a stored position before and after use keeps the dermal patch system 10 in a safe state. In other words, the microneedle array assembly 500 is securely retained within the cartridge 12 when the cartridge is not in use.
With particular reference to
In this embodiment, the cover 100 includes a top wall 102 and a side wall 104. The side wall 104 extends vertically from and perpendicular to the top wall 102. The top wall 102 extends longitudinally from and perpendicular to the side wall 104. The top wall 102 includes an outer surface 102a and an opposed inner surface 102b. The side wall 104 includes an outer surface 104a and an opposed inner surface 104b.
The cover 100 includes a first vial guide 106 which includes an outer wall 108 and an inner end wall 110. The outer wall 108 includes an outer surface 108a and an opposed inner surface 108b. The end wall 110 includes an outer surface 110a and opposed inner surface 110b. The outer wall 108 extends longitudinally from and perpendicular to the outer surface 104a of the side wall 104 and the outer surface 110a of the end wall 110. At least a portion of the inner surface 108b of outer wall 108 of the vial guide 106 has a similar shape and dimension as the outer surface of the vial 14 such that a portion of the outer surface of the vial 14 contacts the inner surface 108b. The end wall 110 defines a U-shaped opening 112.
The cover 100 further includes a first handle retention element 114 which includes an outer surface 114a and an inner surface 114b. The outer surface 114a of the first handle retention element 114 extends from and perpendicular to the outer surface 104a of the side wall 104. The inner surface 114b of the first handle retention element 114 includes a first groove 116, a second groove 118, and a third groove 120. Furthermore, the first handle retention element 114 extends vertically from and perpendicular to the inner surface 102b of the top wall 102. The first handle retention element 114 also includes protrusions 122. As will be discussed in further detail herein, the protrusions 122 aid in coupling the cover 100 to the base 200.
The cover 100 also includes a retraction button opening 124 and retraction button guides 126. The retraction button opening 124 extends through the side wall 104. That is, the retraction button opening 124 extends between the outer surface 104a and the inner surface 104b of the side wall 104. The retraction button guides 126 extend longitudinally from and perpendicular to the inner surface 104b of the side wall 104 and extend vertically from and perpendicular to the inner surface 102b of the top wall 102. The retraction button guides 126 are aligned with the retraction button opening 124 within the cover 100.
The cover 100 further includes a plurality of locking members 128 that extend longitudinally from and perpendicular to the inner surface 104b of the side wall 104. As will be discussed in further detail herein, the locking members 128 couple the cover 100 to the base 200. The cover 100 also includes a circular retention member 130 and a latch guide 132. The circular retention member 130 and the latch guide 132 extend vertically from and perpendicular to the inner surface 102b of the top wall 102.
Referring now to
The base 200 includes a bottom wall 202 with a top surface 202a and an opposed bottom surface 202b. The bottom wall 202 and the side wall 104 have the same perimeter shape such that when the cover 100 is coupled to the base 200, the cover 100 is flush with the base 200. Furthermore, when the cover 100 is coupled to the base 200 the side wall 104 of the cover 100 contacts the top surface 202a of the bottom wall 202. The base 200 further includes a plurality of extensions 206 that extend vertically from and perpendicular to the top surface 202a of the bottom wall 202. The extensions 206 and the bottom wall 202 define gaps 208. These gaps, and therefore the extensions 206, are shaped and dimensioned to accept a locking member 128 of the cover 100 such that an extension 206 couples to a locking member 128 via a snap fitting. The gaps 208 extend through the bottom wall 202 which provides access to an inner volume of the cartridge 12.
The base 200 further includes a second vial guide 210. The second vial guide 210 includes an outer wall 212 and an inner end wall 214. The outer wall 212 includes an outer surface 212a and an opposed inner surface 212b. The end wall 214 includes an outer surface 214a and an opposed inner surface 214b. At least a portion of the inner surface 212b of the outer wall 212 has a similar shape and dimension to the outer surface of the vial 14 such that a portion of the outer surface of the vial 14 contacts the inner surface 212b of the outer wall 212. The end wall 214 defines a U-shaped opening 216.
The second vial guide 210 also includes a latch 218, a gap 220, and a protrusion 222. The latch 218 extends longitudinally from the outer wall 212 towards a center of the second vial guide 210. The gap 220 is defined by the outer wall 212. The latch 218 extends at least partially across the gap 220. The protrusion 222 extends vertically from the inner surface 212b of the outer wall 212 and extends longitudinally from the outer surface 214a of the end wall 214.
The first vial guide 106 and the second vial guide 210 have a similar shape and dimension and align with one another when the cover 100 is coupled to the base 200. Together, the first vial guide 106 and the second vial guide 210 are referred to as a vial receptacle. Similarly, the end walls 110 and 214 have a similar shape and dimension such that when the cover 100 is coupled to the base 200 the end walls 110 and 214 align and the openings 112 and 216 together define an aperture that provides access to the inner volume of the cartridge 12. Furthermore, the outer surface 108a of the wall 108 of the first vial guide 106 and the outer surface 212a of the outer wall 212 of the second vial guide 210 have a similar shape and dimension such that when the cover 100 is coupled to the base 200, the outer walls 108 and 212 form a uniform cylinder that extends outwardly from the cartridge 12. The inner surface 108b of the outer wall 108 and the inner surface 212b of the outer wall 212 also have a similar shape and dimension such that the inner surfaces 108b and 212b align when the cover 100 is coupled to the base 200. Together, the inner surfaces 108b and 212b with the outer surfaces 110a and 214a define an inner chamber of the vial receptacle.
With particular reference to
In some embodiments, the cartridge 12 includes a first hollow needle 18 and a second hollow needle 20 that extend through the stop 16. When the vial 14 is inserted into the vial receptacle defined by the walls 108 and 212, the needles 18 and 20 pierce a cap of the vial 14 to provide access to a pharmaceutical stored therein. Furthermore, while the vial 14 is being inserted into the vial receptacle, the latch 218 is compressed into the gap 220m which allows the vial 14 to extend into the vial receptacle until the end of the vial 14 contacts the stop 16. When the vial 14 is completely inserted, the latch 218 returns to its original position. In this position, when the vial 14 is pulled, the cap of the vial 14 contacts the latch 218 which prevents the vial 14 from being removed from the cartridge 12.
With continued reference to
The first handle retention element 114 and the second handle retention element 224 have a similar shape and dimension and align with one another when the cover 100 is coupled to the base 200. Together, the first handle retention element 114 and the second handle retention element 224 are referred to as a handle receptacle. Furthermore, when the cover 100 is coupled to the base 200, the first handle retention element 114 and the second handle retention element 224 align such that the handle receptacle has an outer opening and inner opening which allows at least a portion of the pull mechanism to extend through the handle receptacle. The outer surface 114a of the first handle retention element 114 and the outer surface 224a of the second handle retention element 224 have a similar shape and dimension such that when the cover 100 is coupled to the base 200, the outer surfaces 114a and 224a form a uniform cylinder that extends outwardly from the cartridge 12. The inner surface 114b and the inner surface 224b also have a similar shape and dimension such that the inner surfaces 114b and 224b align when the cover 100 is coupled to the base 200. Together, the inner surfaces 114b and 224b define an inner chamber of the handle receptacle.
Furthermore, the first grooves 116 and 226 have a similar shape and dimension, the second grooves 118 and 228 have a similar shape and dimension, and the third grooves 120 and 230 have a similar shape and dimension. When the cover 100 is coupled to the base 200, the first grooves 116 and 226 align, the second grooves 118 and 228 align and the third grooves 120 and 230 align. Together, the first grooves 116 and 226 are referred to as a first handle retention groove, the second grooves 118 and 228 are referred to as a ball retention groove, and the third grooves 120 and 230 are referred to as a second handle retention groove.
The base 200 further includes a first tube guide 234 and a second tube guide 236 that extend vertically from and the top surface 202a of the bottom wall 202. In some embodiments, as depicted in
With continued reference to
The base 200 also includes a latch 240 that extends vertically from and perpendicular to a portion of the first tube guide 234. As will be discussed in further detail herein, the latch 240 allows the pump to pump the pharmaceutical from the vial and to the microneedle assembly 400. The latch 240 allows the pump assembly 400 to rotate in a clockwise direction and prevents the pump assembly 400 from rotating in a counterclockwise direction. Rotating in the counterclockwise direction would result in the pump assembly 400 failing to pump the pharmaceutical.
The base 200 further includes a microneedle array aperture 242 and a microneedle array housing 244. The microneedle array aperture 242 extends through the bottom wall 202. That is, the microneedle array aperture 242 extends between the top surface 202a and the bottom surface 202b of the bottom wall 202. The microneedle array aperture 242 is shaped and dimensioned to allow a portion of the microneedle array assembly 500 to extend through the bottom wall 202.
The microneedle array housing 244 is generally cylindrical in shape and is shaped and dimensioned to house the microneedle array assembly 500. While the microneedle array housing 244 and the microneedle array assembly 500 are depicted as being cylindrical, it is understood that the microneedle array housing 244 and the microneedle array assembly 500 may have a different shape. The microneedle array housing 244 extends vertically from and perpendicular to the top surface 202a of the bottom wall 202. The microneedle array housing 244 includes a side wall 246 and a top wall 248. The side wall 246 extends vertically between and perpendicular to the top surface 202a of the bottom wall 202 and the top wall 248. The top wall 248 extends longitudinally between the side wall 246. The side wall 246 includes an outer surface 246a and an opposed inner surface 246b. The top wall 248 includes an outer surface 248a and an opposed inner surface 248b.
The microneedle array housing 244 and the bottom wall 202 include a first extension opening 250 and a second extension opening 252 that are positioned on opposite sides of the microneedle array housing 244. The extension openings 250 and 252 extend through the walls 246 and 248. That is, the extension openings 250 and 252 extend between the outer surface 246a and the inner surface 246b of the side wall 246, extend between the surfaces 248a and 248b of the top wall 248, and extend between the top surface 202a and the bottom surface 202b of the bottom wall 202. The microneedle array housing 244 further includes an opening 254 that is positioned between the extension openings 250 and 252. The opening 254 extends through the side wall 246 and the top wall 248. That is, the opening 254 extends between the surfaces 246a and 246b of the side wall 246 and extends between the surfaces 248a and 248b of the top wall 248.
The microneedle array housing 244 also includes a first tensioner opening 256 and a second tensioner opening 258 that are aligned with one another. A portion of the first tensioner opening 256 extends through the side wall 246 and another portion of the first tensioner opening 256 extends through the bottom wall 202. That is, the first tensioner opening 256 extends between the outer surface 246a and the inner surface 246b of the side wall 246 and extends between the top surface 202a and the bottom surface 202b of the bottom wall 202. The second tensioner opening 258 extends through the top wall 248 of the microneedle array housing 244. That is, the second tensioner opening 258 extends between the outer surface 248a and the inner surface 248b of the top wall 248.
The top wall 248 of the microneedle array housing 244 also includes a microneedle array assembly aperture 260 that extends through the top wall 248 of the microneedle array housing 244. That is, the microneedle array assembly aperture 260 extends between the outer surface 246a and the inner surface 246b of the wall 246. The top wall 248 of the microneedle array housing 244 also includes a first and second trigger guide 262. The trigger guides 262 extend vertically from and perpendicular to the outer surface 248a of the top wall 248. The trigger guides 262 are positioned on opposite sides of the microneedle array assembly aperture 260.
The microneedle array housing 244 further includes a first partially circular projection 264 and a second partially circular projection 266 that extend vertically from and perpendicular to the inner surface 248b of the top wall 248.
Referring again to
Referring now to
The handle 302 includes a grip 306, a ball retention feature 308, and an anchor portion 310. The grip 306 defines a distal end of the handle 302 and the ball retention feature 308 defines a proximal end of the handle 302.
The ball retention feature 308 includes a rounded inner surface 312, a cylinder 314 and an angled surface 316. As will be discussed in further detail herein, the rounded inner surface 312, the cylinder 314, and the angled surface 316 are shaped and dimensioned to retain a ball 21 of the cartridge 12 when the cartridge 12 is in a given orientation and is shaped and dimensioned to release the ball 21 when the cartridge 12 is in any other orientation. The ball retention feature 308 includes a first outer surface 318 and a second outer surface 320. The outer surfaces 318 and 320 have a similar shape and dimensioned as the first handle retention grove and the second handle retention grove which allows the handle retention features 114 and 224 to retain the handle 302 of the pull mechanism 300.
The anchor portion 310 includes an aperture 322 that extends through the anchor portion 310. The cord 304 extends through the aperture 322 which allows securing the cord 304 to the anchor portion 310.
Referring now to
The trigger portion 402 includes a base 408 with a top surface 408a and an opposed bottom surface 408b. The base 408 includes an aperture 410 that extends through the base 408. That is, the aperture 410 extends between the top surface 408a and the bottom surface 408b. The trigger portion 402 further includes a latch 412 which extends vertically from and perpendicular to the top surface 408a of the base 408. The latch 412 includes a circular portion 414 and an extension 416. The circular portion extends circumferentially around the aperture 410 and the extension 416 extends longitudinally from and perpendicular to the circular portion 414. The bottom surface 408b of the base 408 defines a spiral groove 418. The spial groove 418 is shaped and dimensioned to retain the ball 406 therein.
With reference to
The top portion 420 includes a base 428 with a top surface 428a and an opposed bottom surface 428b. The top portion 420 further includes a top cylinder 430 that extends vertically from and perpendicular to the top surface 428a of the base 428. When the trigger portion 402 is coupled to the pump portion 404, the top cylinder 430 extends through the aperture 410 and beyond the circular portion 414 of the latch 412. Furthermore, when the pump assembly 400 is disposed within the cartridge 12, the top cylinder 430 extends into the circular retention member 130 of the cover 100 which aids in coupling the pump assembly 400 to the cover 100. As will be discussed in further detail herein, the circular retention member 130 maintains the pump assembly 400 in a given position while allowing the pump assembly 400 to rotate.
The top surface 428a of the base 428 defines a spiral groove 432 that is shaped and dimensioned to retain the ball 406 therein. The base 408 of the trigger portion 402 has a similar shape and dimension as the base 428. Furthermore, the spiral groove 418 of the base 408 and the spiral groove 432 of the base 428 have a similar shape and dimension and when the trigger portion 402 is coupled to the pump portion 404, the spiral grooves 418 and 432 align with one another and retain the ball 406 therebetween. Together, the spiral groove 418 and the spiral groove 432 are referred to as a spiral ball retention groove.
The middle support portion 422 includes an aperture 434 that extends longitudinally through the middle support portion 422. The aperture 434 is shaped and dimensioned to accept the cord 304 of the pull mechanism 300 which allows the cord 304 to detachably couple to the pump assembly 400. As depicted in
The ratchet 424 includes a top surface 424a and an opposed bottom surface 424b. Furthermore, the middle support portion 422 extends vertically between the bottom surface 428b of the base 428 and the top surface 424a of the ratchet 424. The ratchet 424 also includes a plurality of teeth 436 that extend circumferentially around the ratchet 424 and extends vertically between the top surface 424a and the bottom surface 424b. Each tooth 436 includes a vertical surface 438 and an angled surface 440. As depicted in
The cog 426 extends vertically from and perpendicular to the bottom surface 424b of the ratchet 424. The cog 426 includes a bottom surface 426a and the pump portion 404 includes a bottom cylinder 442 that extends vertically from and perpendicular to the surface 426a of the cog 426. When the pump assembly 400 is disposed within the cartridge 12, the bottom cylinder 442 extends into the retention aperture 238 of the base 200 which aids in coupling the pump assembly 400 to the base 200 and maintains the pump assembly 400 in a given position while allowing the pump assembly 400 to rotate. The cog 426 includes a plurality protrusions 444. As will be discussed in further detail herein, when the pump assembly 400 rotates, the cog 426 acts as a peristaltic pump as the protrusions force a pharmaceutical through the first tube 22 via positive displacement.
Referring now to
As depicted in
The extensions 510 include a vertical portion 524 and a horizontal portion 526. The vertical portion 524 extends longitudinally from and perpendicular to the side surface 508c of the base 508 and extends vertically from and perpendicular to the top surface 508a of the base 508. The horizontal portion 526 extends longitudinally from and perpendicular to the vertical portion 524.
The hollow cylinder 512 extends vertically from and perpendicular to the top surface 508a of the base 508. Furthermore, the hollow cylinder 512 extends circumferentially around the circular aperture 522 such that an opening extends through the hollow cylinder 512 and through the base 508.
The circular projection 514 extends vertically from and perpendicular to the top surface 508a of the base 508 and surrounds the T-shaped column 516. As depicted in
Referring now to
Referring now to
The base 534 of the microneedle array platform 506 includes a top surface 534a and an opposed bottom surface 534b. The plurality of microneedles 536 extend vertically from and perpendicular to the bottom surface 534b. The microneedles 536 are hollow such that the microneedles 536 include a lumen that extends through the base 534 such that an end of a microneedle 536 is in open communication with the top surface 534a of the base 534.
The top surface 534a of the base 534 defines an open fluidic channel 538 (e.g., a microfluidic channel) that includes a first portion 538a, a second portion 538b, a third portion 538c and a similar fourth portion 538d. The first portion 538a is generally linear, the second portion 538b extends in a T-junction from the first portion 538a and the third portion 538c and the fourth portion 538d extend from the second portion 538b. The third portion 538c and the fourth portion 538d extend around the circumference of the base 534. The openings of the lumens of the microneedles 536 extend to the third portion 538c and the fourth portion 538d of the open fluidic channel 538. As such, the lumens of the microneedles 536 are in open communication with the first portion 538a of the fluidic channel 538 via the second portion 538b, third portion 538c, and the fourth portion 538d.
The base 534 further includes a first extension 540 and a second extension 542 that extend vertically from and perpendicular to the top surface 534a of the base 534. When the top surface 534a of the base 534 is attached to the adhesive film 504, the first extension 540 extends through the first opening 528 and the second extension 542 extends through the second opening 530 of the adhesive film 504. Furthermore, when the microneedle array platform 506 is coupled to the microneedle array holder 502 via the adhesive film 504 the first extension 540 extends through the first circular opening 518 and the second circular opening 520 of the base 534 of the microneedle array platform 506 respectively. In another embodiment, the adhesive film 504 may be omitted and, in such an embodiment, the microneedle array holder 502 may be coupled to the microneedle array platform 506 via ultrasonic welding.
As depicted in
As will be discussed in further detail herein, the dermal patch system 10 delivers the pharmaceutical to a subject via the microneedles 536. As depicted in
While the dermal patch system 10 is depicted as including twelve microneedles 536, in other embodiments, the dermal patch system may include more or less microneedles 536 each in communication with the fluidic channel 538. Furthermore, the microneedles 536 may have the same or varied length. For example, the length of the microneedles may be in a range of about 1 mm-about 3 mm. The length of the microneedles 536 determines a depth into the dermis of the subject that the pharmaceutical is delivered. Furthermore, subjects may have varying depths of dermal layers. For example, the epidermis of one subject may be thicker or thinner compared to the epidermis of another subject. Providing a dermal patch system 10 with microneedles 536 of varying lengths may ensure that a pharmaceutical is delivered to the dermis of a subject as at least one of the microneedles 536 may extend through the epidermis of the subject. In some embodiments, the lengths of the microneedles 536 may be varied by a factor in a range of at least 10% to about 20%. In one embodiment, wherein the pharmaceutical is administered intradermally, the microneedles 536 may have a length between about 1 mm and about 2 mm. In another embodiment, wherein the pharmaceutical is administered subcutaneously, the microneedles 536 may have a length between about 2 mm and about 3 mm.
Referring now to
The retraction button 600 further includes a gap 616 that extends through the U-shaped base 602 and the vertical button portion 604. The gap 616 is shaped and dimensioned to extend over the third button guide 274.
As depicted in
When the trigger 700 is inserted into the cartridge 12, a portion of the bottom surface of the trigger 700 rests upon the outer surface 248a of the microneedle array housing 244 and another portion of the bottom surface of the trigger 700 rests upon the top surface 408a of the trigger portion 402 of the pump assembly 400. Furthermore, the first outer wall 708 and the second outer wall 710 are disposed between the first and second trigger guides 262.
The cartridge 12 is moveable between an undeployed position (
In the undeployed position, the handle 302 of the pull mechanism 300 is disposed within the handle receptacle of the cartridge 12 and the cord 304 of the pump assembly 400 extends through the aperture 434 and wraps around the middle support portion 422 of the pump assembly 400. As depicted in
As further depicted in
Furthermore, in the undeployed position, the T-shaped column 516 of the microneedle array holder 502 extends through the aperture 260 of the microneedle array housing 244. In this position, the T-shaped column 516 also extends through the T-shaped opening 716 and rests upon the first bottom wall 712 which prevents microneedle array assembly 500 from moving through the microneedle array aperture 242 of the base 200. As such, the microneedles 536 are retained within the cartridge 12 when the microneedle array assembly 500 is in the undeployed position. Also, as depicted in
As depicted in
In order to move the cartridge to the deployed position, the cartridge 12 must be placed in a substantially vertical position. As depicted in
Pulling the pull mechanism 300 causes the cartridge 12 to move from the undeployed position to the deployed position. More particularly, pull mechanism 300 causes the pump portion 404 to rotate in a clockwise direction. As the pump portion 404 rotates, the latch 240 engages with various teeth 436 of the pump portion 404. This engagement may slow a rotation of the pump portion 404 as the engagement must be overcome to cause the pump portion 404 to rotate. In addition, the engagement provides a tactile feel to the user and stabilizes a rate of pull for the user. When the pump portion 404 rotates, the protrusions 444 of the cog 426 compress the first tube 22 and the second tube 24 at various locations as the cog 426 rotates. When the vial 14 is inserted into the cartridge 12 this compression causes the cog 426 to act as a peristaltic pump by causing an amount of a pharmaceutical to travel through the first tube 22 and pumps air into the vial 14 via the second tube 24 which aids in expelling pharmaceutical from the vial 14.
Furthermore, when the pump portion 404 rotates, the ball 406 travels within the spiral ball retention groove until the ball 406 reaches an inner end of the spiral ball retention groove. While the ball 406 is traveling, the trigger portion 402 remains stationary. When the ball 406 reaches the end of the spiral ball retention groove, the ball engages the end of the spiral groove 418 of the trigger portion 402 and engages with the end of the spiral groove 432 of the pump portion 404 which causes the trigger portion 402 to rotate with the pump portion 404. As will be discussed in further detail herein, the rotation of the trigger portion 402 causes the microneedle array assembly 500 to move to the deployed position for administering the pharmaceutical. As such, the pump portion 404 rotates (and as such pumps an amount of pharmaceutical through first tube 22) while the trigger position 402 remains stationary thereby priming an amount of pharmaceutical at the microneedles 536 before the microneedles 536 are deployed to puncture the subject's skin.
The amount the pump portion 404 rotates while the trigger portion 402 is stationary determines and can be proportional in various embodiments to an amount of pharmaceutical primed for administration. By way of example, in some embodiments, the amount of the pharmaceutical that is released from the vial for priming the microneedles can be proportional to a degree of rotation of the pump portion 404. That is, the more or less the pump portion 404 rotates while the trigger portion 402 is stationary, the more or less pharmaceutical is primed. As such, the amount the pump portion rotates before the ball 406 engages with the ends of the spiral grooves 418 and 432 may be increased or decreased by increasing or decreasing a distance covered by the grooves 418 and 432. In the embodiments disclosed herein, the pump portion 404 rotates three times before the ball 406 causes the trigger portion 402 to rotate with the pump portion 404. It is understood that this number of rotations may be increased or decreased by increasing or decreasing the length of the grooves 418 and 432 as needed.
When the ball 406 engages the ends of the grooves 418 and 432, the pump portion rotates in a clockwise direction such that the extension 416 rotates into the second surface 706 of the notch 702 of the trigger 700. This rotation pushes the trigger 700 from a first position away from the pump assembly 400 in the direction of arrow A to a second position. This movement causes the first bottom wall to move away from and disengage from the first bottom wall 712 of the trigger 700. When disengaged, the injection spring 26 is allowed to decompress and move the microneedle array assembly 500 to the deployed position. In this position, the microneedles 536 extend through the microneedle array assembly aperture 260 and can puncture the subject's skin when the cartridge 12 is affixed to the skin of the subject.
The pump assembly 400 continues to rotate until the end of the cord 304 releases from the pump assembly 400. That is, the pump assembly 400 continues to rotate until the end of the cord 304 passes through the aperture 434. As such, an amount of pharmaceutical pumped out of the vial 14 is proportional to the length of the cord 304 as a longer cord 304 allows for more rotation of the pump assembly 400 and a shorter cord 304 results in less rotation of the pump assembly 400 pump assembly 400.
The microneedle array assembly 500 is moveable from the deployed position (
When the microneedle assembly 500 is in the deployed position, the blocking feature 614 of the retraction button 600 no longer contacts the base 508 which allows a user to push the retraction button in the direction of arrow C and into the cartridge 12. When pushed, the first button guide 270, the second button guide 272 and the third button guide 274 direct the retraction button 600 towards the microneedle array housing 244. As the first arm 606 and the second arm 608 move, the angled surfaces 610 and 612 contact the extensions 510 which causes the microneedle array assembly 500 to move upward in the direction of arrow D and out of the subject's skin thereby compressing the injection spring 26.
Referring now to
In this embodiment, the cover 100 is modified to include a button aperture 134 that extends to the top wall 102. The base 200 includes a button 276. When the cover 100 is connected to the base 200 the button 276 extends through the button aperture 134. The button 276 is connected to the trigger 700 and when pushed, moves the trigger 700 from the first position to the second position to release the microneedle array assembly 500 as previously discussed herein. Furthermore, pushing the button 276 activates the piezoelectric pump 802 via a switch to pump the pharmaceutical from the vial 14 to the microneedles 536. After the pharmaceutical is administered, a user can push the retraction button 600 to retract the microneedles 536 into the
Referring now to
In these embodiments, a user of a computer system 32 may scan the QR code 30 to view and/or update an EMR 34 that is associated with the QR code 30. The EMR 34 can be stored within an EMR database 36 that is in communication with the computer system 32. Furthermore, the QR code 30 may be employed to preserve the chain of custody of the dermal patch system 10.
The computer system 32 may include an application that provides access to the EMR database 36 via a network connection and allows a user to photograph or scan the QR code 30. As shown in
Referring now to
As shown in
The bus 906 may be one or more of any type of bus structure capable of transmitting data between components of the computer system 900 (e.g., a memory bus, a memory controller, a peripheral bus, an accelerated graphics port, etc.).
The computer system 900 may further include a communication adapter 912 which allows the computer system 900 to communicate with one or more other computer systems/devices via one or more communication protocols (e.g., Wi-Fi, BTLE, etc.) and in some embodiments may allow the computer system 900 to communicate with one or more other computer systems/devices over one or more networks (e.g., a local area network (LAN), a wide area network (WAN), a public network (the Internet), etc.).
In some embodiments, the computer system 900 may be connected to one or more external devices 914 and a display 916. As used herein, an external device includes any device that allows a user to interact with a computer system (e.g., mouse, keyboard, touch screen, etc.). An external device 914 and the display 916 may be in communication with the processor 902 and the system memory 904 via an Input/Output (I/O) interface 918.
The display 916 may display a graphical user interface (GUI) that may include a plurality of selectable icons and/or editable fields. A user may use an external device 914 (e.g., a mouse) to select one or more icons and/or edit one or more editable fields. Selecting an icon and/or editing a field may cause the processor 902 to execute computer readable program instructions stored in the computer readable storage medium 908. In one example, a user may use an external device 914 to interact with the computer system 900 and cause the processor 902 to execute computer readable program instructions relating to at least a portion of the steps of the methods disclosed herein.
Referring now to
In one embodiment, a node 1004 includes computer readable program instructions for carrying out various steps of various methods disclosed herein. In these embodiments, a user of a user computer system 1002 that is connected to the cloud computing environment may cause a node 1004 to execute the computer readable program instructions to carry out various steps of various methods disclosed herein.
Referring now to
At 1102, as user inserts the vial 14 into the cartridge 12 as previously discussed herein.
At 1104, the user attaches the dermal patch system 10 to the skin of the subject via an adhesive film on a bottom surface of the dermal patch system 10 as previously discussed herein.
At 1106, the user of the dermal patch system 10 pulls the handle 302 of the pull mechanism 300 to deliver a pharmaceutical stored in the vial 14 to the subject as previously discussed herein. In some embodiments, the user can pull the handle 302 after placing the dermal patch system 10 in a proper orientation (e.g., by moving an arm of the subject to which the dermal patch system 10 is attached) as previously discussed herein.
At 1108, the user of the dermal patch system 10 pushes the retraction button 600 to remove the microneedles 536 from the skin of the subject and removes the dermal patch from the subject as previously discussed herein.
At 1110, the user of the dermal patch system 10 uses the computer system 32 to scan a QR code 30 of the dermal patch system 10 and associate the QR code 30 with an EMR 34 as previously discussed herein.
At 1112, the computer system 32 updates the EMR 34 to indicate that the subject was administered the pharmaceutical automatically or based on a user input as previously discussed herein.
As previously discussed, the above may be implemented by way of computer readable instructions, encoded or embedded on computer readable storage medium (which excludes transitory medium), which, when executed by a processor(s), cause the processor(s) to carry out the methods of the present disclosure.
While various embodiments have been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; embodiments of the present disclosure are not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing embodiments of the present disclosure, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other processing unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.
The present application is a continuation-in-part of U.S. patent application Ser. No. 17/903,802 (entitled Dual Lever Dermal Patch System and filed on Sep. 6, 2022), Ser. No. 17/500,873 (entitled Mono Dose Dermal Patch for Pharmaceutical Delivery and filed on Oct. 13, 2021), Ser. No. 17/994,454 (entitled Dermal Patch for Collecting a Physiological Sample and filed on Nov. 28, 2022), Ser. No. 17/971,142 (entitled Dermal Patch for Collecting a Physiological Sample and filed on Oct. 21, 2022), and Ser. No. 17/991,284 (entitled Dermal Patch for Collecting a Physiological Sample with Removable Vial and filed on Nov. 21, 2022). Each of these applications is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5015228 | Columbus et al. | May 1991 | A |
5338308 | Wilk | Aug 1994 | A |
5441490 | Svedman | Aug 1995 | A |
5527288 | Gross et al. | Jun 1996 | A |
5602037 | Ostgaard et al. | Feb 1997 | A |
5636640 | Staehlin | Jun 1997 | A |
5680872 | Sesekura et al. | Oct 1997 | A |
5848991 | Gross et al. | Dec 1998 | A |
5997501 | Gross et al. | Dec 1999 | A |
6234980 | Bell | May 2001 | B1 |
6315985 | Wu et al. | Nov 2001 | B1 |
6454140 | Jinks | Sep 2002 | B1 |
6500150 | Gross et al. | Dec 2002 | B1 |
6506168 | Fathallah et al. | Jan 2003 | B1 |
6524284 | Marshall | Feb 2003 | B1 |
6610273 | Wu et al. | Aug 2003 | B2 |
6623457 | Rosenberg | Sep 2003 | B1 |
6644517 | Thiel et al. | Nov 2003 | B2 |
6689118 | Alchas et al. | Feb 2004 | B2 |
6776776 | Alchas et al. | Aug 2004 | B2 |
6780171 | Gabel et al. | Aug 2004 | B2 |
6796429 | Cameron et al. | Sep 2004 | B2 |
6808506 | Lastovich et al. | Oct 2004 | B2 |
6893655 | Flanigan et al. | May 2005 | B2 |
6932082 | Stein | Aug 2005 | B2 |
6960193 | Rosenberg | Nov 2005 | B2 |
6994691 | Ejlersen | Feb 2006 | B2 |
7004928 | Aceti et al. | Feb 2006 | B2 |
7083592 | Lastovich et al. | Aug 2006 | B2 |
7101534 | Schultz et al. | Sep 2006 | B1 |
7156838 | Gabel et al. | Jan 2007 | B2 |
7175642 | Briggs et al. | Feb 2007 | B2 |
7182955 | Hart et al. | Feb 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7252651 | Haider et al. | Aug 2007 | B2 |
7282058 | Levin et al. | Oct 2007 | B2 |
7308893 | Boot | Dec 2007 | B2 |
7435415 | Gelber | Oct 2008 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7651475 | Angel et al. | Jan 2010 | B2 |
7678079 | Shermer et al. | Mar 2010 | B2 |
7846488 | Johnson et al. | Dec 2010 | B2 |
7905866 | Haider et al. | Mar 2011 | B2 |
8048019 | Nisato et al. | Nov 2011 | B2 |
8057842 | Choi et al. | Nov 2011 | B2 |
8066680 | Alchas et al. | Nov 2011 | B2 |
8079960 | Briggs et al. | Dec 2011 | B2 |
8104469 | Dams | Jan 2012 | B2 |
8108023 | Mir et al. | Jan 2012 | B2 |
8157768 | Haider et al. | Apr 2012 | B2 |
8206336 | Shantha | Jun 2012 | B2 |
8246582 | Angel et al. | Aug 2012 | B2 |
8246893 | Ferguson et al. | Aug 2012 | B2 |
8252268 | Slowey et al. | Aug 2012 | B2 |
8267889 | Cantor et al. | Sep 2012 | B2 |
8303518 | Aceti et al. | Nov 2012 | B2 |
D681195 | Skulley et al. | Apr 2013 | S |
8409140 | Ejlersen et al. | Apr 2013 | B2 |
8414503 | Briggs et al. | Apr 2013 | B2 |
8414959 | Hye-Ok et al. | Apr 2013 | B2 |
8430097 | Jinks et al. | Apr 2013 | B2 |
8459253 | Howgill | Jun 2013 | B2 |
8491500 | Briggs et al. | Jul 2013 | B2 |
8496601 | Briggs et al. | Jul 2013 | B2 |
D687550 | Moeckly et al. | Aug 2013 | S |
D687551 | Moeckly et al. | Aug 2013 | S |
D687945 | Brewer et al. | Aug 2013 | S |
D687946 | Brewer et al. | Aug 2013 | S |
D687947 | Brewer et al. | Aug 2013 | S |
8512244 | Jennewine | Aug 2013 | B2 |
8517019 | Brewer et al. | Aug 2013 | B2 |
8554317 | Duan | Oct 2013 | B2 |
8556861 | Tsals | Oct 2013 | B2 |
8561795 | Schott | Oct 2013 | B2 |
D693921 | Burton et al. | Nov 2013 | S |
8602271 | Winker et al. | Dec 2013 | B2 |
8603040 | Haider et al. | Dec 2013 | B2 |
8608889 | Sever et al. | Dec 2013 | B2 |
8622963 | Iwase et al. | Jan 2014 | B2 |
8696619 | Schnall | Apr 2014 | B2 |
8696637 | Ross | Apr 2014 | B2 |
D705422 | Burton et al. | May 2014 | S |
8715232 | Yodfat et al. | May 2014 | B2 |
8740014 | Purkins et al. | Jun 2014 | B2 |
8741377 | Choi et al. | Jun 2014 | B2 |
8784363 | Frederickson et al. | Jul 2014 | B2 |
8808202 | Brancazio | Aug 2014 | B2 |
8808786 | Jinks et al. | Aug 2014 | B2 |
8814009 | Hodson et al. | Aug 2014 | B2 |
8814035 | Stuart | Aug 2014 | B2 |
8821412 | Gonzalez-Zugasti et al. | Sep 2014 | B2 |
8821446 | Trautman et al. | Sep 2014 | B2 |
8821779 | Ferguson et al. | Sep 2014 | B2 |
8827971 | Gonzalez-Zugasti et al. | Sep 2014 | B2 |
8870821 | Laufer | Oct 2014 | B2 |
8900180 | Wolter et al. | Dec 2014 | B2 |
8900194 | Clarke et al. | Dec 2014 | B2 |
8945071 | Christensen | Feb 2015 | B2 |
8961431 | Roe et al. | Feb 2015 | B2 |
9022973 | Sexton et al. | May 2015 | B2 |
9033898 | Chickering, III et al. | May 2015 | B2 |
9041541 | Levinson et al. | May 2015 | B2 |
D733290 | Burton et al. | Jun 2015 | S |
9067031 | Jinks et al. | Jun 2015 | B2 |
9072664 | Stein et al. | Jul 2015 | B2 |
9089661 | Stuart et al. | Jul 2015 | B2 |
9089677 | Soo et al. | Jul 2015 | B2 |
9113836 | Bernstein et al. | Aug 2015 | B2 |
9119578 | Haghgooie et al. | Sep 2015 | B2 |
9119945 | Simons et al. | Sep 2015 | B2 |
9133024 | Phan et al. | Sep 2015 | B2 |
9144651 | Stuart | Sep 2015 | B2 |
9144671 | Cantor et al. | Sep 2015 | B2 |
9173994 | Ziaie et al. | Nov 2015 | B2 |
9174035 | Ringsred et al. | Nov 2015 | B2 |
9186097 | Frey et al. | Nov 2015 | B2 |
9227021 | Buss | Jan 2016 | B2 |
9289763 | Berthier et al. | Mar 2016 | B2 |
9289925 | Ferguson et al. | Mar 2016 | B2 |
9289968 | Sever et al. | Mar 2016 | B2 |
9295417 | Haghgooie et al. | Mar 2016 | B2 |
9295987 | Kelly et al. | Mar 2016 | B2 |
9339956 | Rendon | May 2016 | B2 |
9380972 | Fletcher et al. | Jul 2016 | B2 |
9380973 | Fletcher et al. | Jul 2016 | B2 |
9468404 | Hayden | Oct 2016 | B2 |
9480428 | Colin et al. | Nov 2016 | B2 |
9504813 | Buss | Nov 2016 | B2 |
9522225 | Chong et al. | Dec 2016 | B2 |
9549700 | Fletcher et al. | Jan 2017 | B2 |
9555187 | Sonderegger et al. | Jan 2017 | B2 |
9566393 | Iwase et al. | Feb 2017 | B2 |
9579461 | Sonderegger et al. | Feb 2017 | B2 |
9623087 | Zhang et al. | Apr 2017 | B2 |
9642895 | Dai et al. | May 2017 | B2 |
9643229 | Wilson et al. | May 2017 | B2 |
9675675 | Zhang et al. | Jun 2017 | B2 |
9675752 | Christensen | Jun 2017 | B2 |
9682222 | Burton et al. | Jun 2017 | B2 |
9693950 | Determan et al. | Jul 2017 | B2 |
9694149 | Jinks et al. | Jul 2017 | B2 |
9717850 | Sonderegger | Aug 2017 | B2 |
9724462 | Rotem | Aug 2017 | B2 |
9730624 | Gonzalez-Zugasti et al. | Aug 2017 | B2 |
9770578 | Chowdhury | Sep 2017 | B2 |
9775551 | Bernstein et al. | Oct 2017 | B2 |
9782574 | Simmers | Oct 2017 | B2 |
9789249 | Frederickson et al. | Oct 2017 | B2 |
9789299 | Simmers | Oct 2017 | B2 |
9844631 | Bureau | Dec 2017 | B2 |
9849270 | Stockholm | Dec 2017 | B2 |
D808515 | Atkin et al. | Jan 2018 | S |
9861580 | Mueting et al. | Jan 2018 | B2 |
9861801 | Baker et al. | Jan 2018 | B2 |
9872975 | Burton et al. | Jan 2018 | B2 |
9884151 | Sullivan et al. | Feb 2018 | B2 |
9895520 | Burton et al. | Feb 2018 | B2 |
9956170 | Cantor et al. | May 2018 | B2 |
9968767 | Hasan et al. | May 2018 | B1 |
9987629 | Berthier et al. | Jun 2018 | B2 |
9993189 | Phan et al. | Jun 2018 | B2 |
10004887 | Gross et al. | Jun 2018 | B2 |
10010676 | Bureau | Jul 2018 | B2 |
10010706 | Gonzalez et al. | Jul 2018 | B2 |
10010707 | Colburn et al. | Jul 2018 | B2 |
10016315 | Letourneau et al. | Jul 2018 | B2 |
10029845 | Jinks | Jul 2018 | B2 |
10035008 | Brandwein et al. | Jul 2018 | B2 |
10076649 | Gilbert et al. | Sep 2018 | B2 |
10080843 | Bureau | Sep 2018 | B2 |
10080846 | Sonderegger et al. | Sep 2018 | B2 |
10099043 | Berry et al. | Oct 2018 | B2 |
10105524 | Meyer et al. | Oct 2018 | B2 |
10111807 | Baker et al. | Oct 2018 | B2 |
D834704 | Atkin et al. | Nov 2018 | S |
10154957 | Zhang et al. | Dec 2018 | B2 |
10155334 | Rendon | Dec 2018 | B2 |
10183156 | Ross et al. | Jan 2019 | B2 |
10188335 | Haghgooie et al. | Jan 2019 | B2 |
D840020 | Howgill | Feb 2019 | S |
10201691 | Berry et al. | Feb 2019 | B2 |
10232157 | Berry et al. | Mar 2019 | B2 |
10232160 | Baker et al. | Mar 2019 | B2 |
10248765 | Holmes et al. | Apr 2019 | B1 |
10265484 | Stuart et al. | Apr 2019 | B2 |
10272214 | Child et al. | Apr 2019 | B2 |
10300260 | Wirtanen et al. | May 2019 | B2 |
10307578 | Frederickson et al. | Jun 2019 | B2 |
10315021 | Frederickson et al. | Jun 2019 | B2 |
10327990 | Egeland et al. | Jun 2019 | B2 |
10328248 | Baker et al. | Jun 2019 | B2 |
10335560 | Stein et al. | Jul 2019 | B2 |
10335562 | Jinks et al. | Jul 2019 | B2 |
10335563 | Brewer et al. | Jul 2019 | B2 |
10357610 | Sonderegger | Jul 2019 | B2 |
10384047 | Simmers | Aug 2019 | B2 |
10391290 | Burton et al. | Aug 2019 | B2 |
10398885 | Frits et al. | Sep 2019 | B2 |
10406339 | Simmers | Sep 2019 | B2 |
10410838 | Hanson et al. | Sep 2019 | B2 |
10426390 | Berthier et al. | Oct 2019 | B2 |
10426739 | Knutson | Oct 2019 | B2 |
10478346 | Knutson | Nov 2019 | B2 |
10492716 | Berthier et al. | Dec 2019 | B2 |
10507286 | Egeland et al. | Dec 2019 | B2 |
10518071 | Kulkarni | Dec 2019 | B2 |
D872853 | Stuart et al. | Jan 2020 | S |
10525463 | Kelly et al. | Jan 2020 | B2 |
10542922 | Sia et al. | Jan 2020 | B2 |
10543310 | Bernstein et al. | Jan 2020 | B2 |
10549079 | Burton et al. | Feb 2020 | B2 |
10568937 | Hattersley et al. | Feb 2020 | B2 |
D878544 | Stuart et al. | Mar 2020 | S |
10576257 | Berry et al. | Mar 2020 | B2 |
10596333 | Howgill | Mar 2020 | B2 |
10598583 | Peeters et al. | Mar 2020 | B1 |
10638963 | Beyerlein et al. | May 2020 | B2 |
10646703 | Chowdhury | May 2020 | B2 |
10653349 | Delamarche et al. | May 2020 | B2 |
10695289 | Brown et al. | Jun 2020 | B2 |
10695547 | Burton et al. | Jun 2020 | B2 |
10716926 | Burton et al. | Jul 2020 | B2 |
10729842 | Hooven et al. | Aug 2020 | B2 |
10772550 | Aceti et al. | Sep 2020 | B2 |
10779757 | Berthier et al. | Sep 2020 | B2 |
10799166 | Gonzalez-Zugasti et al. | Oct 2020 | B2 |
10835163 | Haghgooie et al. | Nov 2020 | B2 |
10881342 | Kelly et al. | Jan 2021 | B2 |
10888259 | Jordan et al. | Jan 2021 | B2 |
10926030 | Lanigan et al. | Feb 2021 | B2 |
10932710 | Jordan et al. | Mar 2021 | B2 |
10939860 | Levinson et al. | Mar 2021 | B2 |
10940085 | Baker et al. | Mar 2021 | B2 |
10953211 | Ross et al. | Mar 2021 | B2 |
11020548 | Stuart et al. | Jun 2021 | B2 |
11033212 | Berthier et al. | Jun 2021 | B2 |
11040183 | Baker et al. | Jun 2021 | B2 |
11103685 | Gonzalez et al. | Aug 2021 | B2 |
11110234 | Richardson et al. | Sep 2021 | B2 |
11116953 | Kobayashi et al. | Sep 2021 | B2 |
11147955 | Gross et al. | Oct 2021 | B2 |
11177029 | Levinson et al. | Nov 2021 | B2 |
11197625 | Schleicher et al. | Dec 2021 | B1 |
11202895 | Davis et al. | Dec 2021 | B2 |
11207477 | Hodson | Dec 2021 | B2 |
11247033 | Baker et al. | Feb 2022 | B2 |
11253179 | Bernstein et al. | Feb 2022 | B2 |
11266337 | Jackson et al. | Mar 2022 | B2 |
11273272 | Stuart et al. | Mar 2022 | B2 |
11291989 | Morrison | Apr 2022 | B2 |
11298060 | Jordan et al. | Apr 2022 | B2 |
11298478 | Stuart et al. | Apr 2022 | B2 |
11304632 | Mou et al. | Apr 2022 | B2 |
11344684 | Richardson et al. | May 2022 | B2 |
11395614 | Berthier et al. | Jul 2022 | B2 |
11452474 | Nawana et al. | Sep 2022 | B1 |
11458289 | Moeckly et al. | Oct 2022 | B2 |
11497712 | Stein et al. | Nov 2022 | B2 |
11497866 | Howgill | Nov 2022 | B2 |
11510602 | Nawana et al. | Nov 2022 | B1 |
20020077584 | Lin et al. | Jun 2002 | A1 |
20020193740 | Alchas et al. | Dec 2002 | A1 |
20040002121 | Regan et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040059256 | Perez | Mar 2004 | A1 |
20040059366 | Sato et al. | Mar 2004 | A1 |
20040106904 | Gonnelli et al. | Jun 2004 | A1 |
20040162467 | Cook | Aug 2004 | A1 |
20050106713 | Phan et al. | May 2005 | A1 |
20050118388 | Kingsford | Jun 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20060047243 | Rosenberg | Mar 2006 | A1 |
20060068490 | Tang et al. | Mar 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060271084 | Schraga | Nov 2006 | A1 |
20070004989 | Dhillon | Jan 2007 | A1 |
20070191696 | Mischler et al. | Aug 2007 | A1 |
20080003274 | Kaiser | Jan 2008 | A1 |
20080287864 | Rosenberg | Nov 2008 | A1 |
20090012472 | Ahm et al. | Jan 2009 | A1 |
20090036826 | Sage, Jr. et al. | Feb 2009 | A1 |
20090099427 | Jina et al. | Apr 2009 | A1 |
20090105614 | Momose et al. | Apr 2009 | A1 |
20090112125 | Tamir | Apr 2009 | A1 |
20090198215 | Chong | Aug 2009 | A1 |
20090259176 | Yairi | Oct 2009 | A1 |
20100121271 | Perriere | May 2010 | A1 |
20100198107 | Groll et al. | Aug 2010 | A1 |
20100249560 | Levinson et al. | Sep 2010 | A1 |
20100256524 | Levinson et al. | Oct 2010 | A1 |
20100269837 | Levinson et al. | Oct 2010 | A1 |
20100272652 | Levinson | Oct 2010 | A1 |
20110009847 | Levinson et al. | Jan 2011 | A1 |
20110060280 | Caffey et al. | Mar 2011 | A1 |
20110105872 | Chickering et al. | May 2011 | A1 |
20110105951 | Bernstein et al. | May 2011 | A1 |
20110105952 | Bernstein et al. | May 2011 | A1 |
20110125058 | Levinson et al. | May 2011 | A1 |
20110144463 | Pesach et al. | Jun 2011 | A1 |
20110172508 | Chickering, III et al. | Jul 2011 | A1 |
20110172510 | Chickering, III et al. | Jul 2011 | A1 |
20110198221 | Angelescu | Aug 2011 | A1 |
20110213335 | Burton et al. | Sep 2011 | A1 |
20110245635 | Fujiwara et al. | Oct 2011 | A1 |
20110257497 | Tamada et al. | Oct 2011 | A1 |
20110288389 | Levinson et al. | Nov 2011 | A9 |
20120016308 | Schott | Jan 2012 | A1 |
20120041338 | Chickering et al. | Feb 2012 | A1 |
20120046203 | Walsh et al. | Feb 2012 | A1 |
20120078224 | Lerner et al. | Mar 2012 | A1 |
20120109066 | Chase et al. | May 2012 | A1 |
20120123297 | Brancazio | May 2012 | A1 |
20120259599 | Deck et al. | Oct 2012 | A1 |
20120271123 | Castle et al. | Oct 2012 | A1 |
20120271125 | Bernstein et al. | Oct 2012 | A1 |
20120275955 | Haghgooie et al. | Nov 2012 | A1 |
20120277629 | Bernstein et al. | Nov 2012 | A1 |
20120277696 | Gonzalez-Zugasti et al. | Nov 2012 | A1 |
20120277697 | Haghgooie et al. | Nov 2012 | A1 |
20130018279 | Plante et al. | Jan 2013 | A1 |
20130158468 | Bernstein et al. | Jun 2013 | A1 |
20130158482 | Davis et al. | Jun 2013 | A1 |
20130211289 | Moga et al. | Aug 2013 | A1 |
20130253446 | Duan et al. | Sep 2013 | A1 |
20130269423 | Angelescu | Oct 2013 | A1 |
20140066843 | Zhang et al. | Mar 2014 | A1 |
20140109900 | Jinks | Apr 2014 | A1 |
20140194854 | Tsals | Jul 2014 | A1 |
20140305823 | Gelfand et al. | Oct 2014 | A1 |
20140309555 | Gelfand et al. | Oct 2014 | A1 |
20140309557 | Fletcher et al. | Oct 2014 | A1 |
20140336616 | Edwards | Nov 2014 | A1 |
20150057510 | Levinson et al. | Feb 2015 | A1 |
20150057901 | Sundholm et al. | Feb 2015 | A1 |
20150073385 | Lyon et al. | Mar 2015 | A1 |
20150087944 | Levinson et al. | Mar 2015 | A1 |
20150136122 | Stuart et al. | May 2015 | A1 |
20150250959 | Stuart et al. | Sep 2015 | A1 |
20150258272 | Sullivan et al. | Sep 2015 | A1 |
20150278476 | Levinson et al. | Oct 2015 | A1 |
20150352295 | Burton et al. | Dec 2015 | A1 |
20160038068 | Chickering, III et al. | Feb 2016 | A1 |
20160051981 | Berthier et al. | Feb 2016 | A1 |
20160067468 | Chowdhury | Mar 2016 | A1 |
20160136365 | Stuart et al. | May 2016 | A1 |
20160144100 | Gharib et al. | May 2016 | A1 |
20160199581 | Cachemaille et al. | Jul 2016 | A1 |
20160213295 | Matsunami et al. | Jul 2016 | A1 |
20160256095 | Krasnow et al. | Sep 2016 | A1 |
20160262676 | Haghgooie et al. | Sep 2016 | A1 |
20160315123 | Kim et al. | Oct 2016 | A1 |
20160324506 | Tariyal et al. | Nov 2016 | A1 |
20160354589 | Kobayashi et al. | Dec 2016 | A1 |
20160361006 | Bullington et al. | Dec 2016 | A1 |
20170001192 | Kelly et al. | Jan 2017 | A1 |
20170014822 | Ker | Jan 2017 | A1 |
20170021067 | Todd et al. | Jan 2017 | A1 |
20170021117 | Howgill | Jan 2017 | A1 |
20170035337 | Wilkinson et al. | Feb 2017 | A1 |
20170035975 | Myung et al. | Feb 2017 | A1 |
20170043103 | Wotton et al. | Feb 2017 | A1 |
20170059304 | Ma et al. | Mar 2017 | A1 |
20170120022 | Chickering, III et al. | May 2017 | A1 |
20170122846 | Holmes et al. | May 2017 | A1 |
20170127991 | Bernstein et al. | May 2017 | A1 |
20170173288 | Stam et al. | Jun 2017 | A1 |
20170197029 | Cindrich et al. | Jul 2017 | A1 |
20170224912 | Yodfat et al. | Aug 2017 | A1 |
20170231543 | Cunningham et al. | Aug 2017 | A1 |
20170290977 | Schauderna et al. | Oct 2017 | A1 |
20180001029 | Egeland et al. | Jan 2018 | A1 |
20180008183 | Chickering, III et al. | Jan 2018 | A1 |
20180008703 | Johnson | Jan 2018 | A1 |
20180008808 | Chowdhury et al. | Jan 2018 | A1 |
20180021559 | Xu | Jan 2018 | A1 |
20180078241 | Moga et al. | Mar 2018 | A1 |
20180103884 | Delamarche et al. | Apr 2018 | A1 |
20180126058 | Nakka David et al. | May 2018 | A1 |
20180132515 | Lawrence et al. | May 2018 | A1 |
20180132774 | Gonzalez-Zugasti et al. | May 2018 | A1 |
20180242890 | Chickering, III et al. | Aug 2018 | A1 |
20180243543 | Baek et al. | Aug 2018 | A1 |
20180296148 | Gelfand et al. | Oct 2018 | A1 |
20180304063 | Gonzalez et al. | Oct 2018 | A1 |
20180344631 | Zhang et al. | Dec 2018 | A1 |
20180369512 | Blatchford et al. | Dec 2018 | A1 |
20190000365 | Beyerlein et al. | Jan 2019 | A1 |
20190001076 | Solomon et al. | Jan 2019 | A1 |
20190001081 | Guion et al. | Jan 2019 | A1 |
20190001085 | Cottenden et al. | Jan 2019 | A1 |
20190015584 | Meehan et al. | Jan 2019 | A1 |
20190015827 | Berthier et al. | Jan 2019 | A1 |
20190022339 | Richardson et al. | Jan 2019 | A1 |
20190023473 | Schott | Jan 2019 | A1 |
20190030260 | Wotton et al. | Jan 2019 | A1 |
20190053740 | Bernstein et al. | Feb 2019 | A1 |
20190054010 | Slowey et al. | Feb 2019 | A1 |
20190142318 | Diebold et al. | May 2019 | A1 |
20190159709 | Barone et al. | May 2019 | A1 |
20190209820 | Chickering, III et al. | Jul 2019 | A1 |
20190240470 | Frederickson et al. | Aug 2019 | A1 |
20190298943 | Stuart et al. | Oct 2019 | A1 |
20190336058 | Haghgooie et al. | Nov 2019 | A1 |
20190366067 | Ginggen et al. | Dec 2019 | A1 |
20200009364 | Amir | Jan 2020 | A1 |
20200010219 | Felippone et al. | Jan 2020 | A1 |
20200011860 | Nawana et al. | Jan 2020 | A1 |
20200033008 | Baker | Jan 2020 | A1 |
20200069897 | Hodson et al. | Mar 2020 | A1 |
20200085414 | Berthier et al. | Mar 2020 | A1 |
20200101219 | Wang et al. | Apr 2020 | A1 |
20200147209 | Johnson | May 2020 | A1 |
20200163603 | Jordan et al. | May 2020 | A1 |
20200164359 | Jordan et al. | May 2020 | A1 |
20200246560 | Hodson et al. | Aug 2020 | A1 |
20200253521 | Ivosevic et al. | Aug 2020 | A1 |
20200261668 | Hodson et al. | Aug 2020 | A1 |
20200289808 | Moeckly et al. | Sep 2020 | A1 |
20200297945 | Cottenden et al. | Sep 2020 | A1 |
20200353155 | Bernstein et al. | Nov 2020 | A1 |
20210022681 | Chickering, III et al. | Jan 2021 | A1 |
20210030975 | Burton et al. | Feb 2021 | A1 |
20210059588 | Welch et al. | Mar 2021 | A1 |
20210100487 | Cho et al. | Apr 2021 | A1 |
20210121110 | Kelly et al. | Apr 2021 | A1 |
20210170153 | Ross et al. | Jun 2021 | A1 |
20210196567 | Baker et al. | Jul 2021 | A1 |
20210228124 | Gonzalez-Zugasti et al. | Jul 2021 | A1 |
20210259599 | Haghgooie et al. | Aug 2021 | A1 |
20210298679 | Pierart | Sep 2021 | A1 |
20210330227 | Levinson et al. | Oct 2021 | A1 |
20210369150 | Bernstein et al. | Dec 2021 | A1 |
20210378567 | Weidemaier et al. | Dec 2021 | A1 |
20220031211 | Yakhnich et al. | Feb 2022 | A1 |
20220058895 | Han | Feb 2022 | A1 |
20220062607 | Davis et al. | Mar 2022 | A1 |
20220071534 | Gonzalez-Zugasti et al. | Mar 2022 | A9 |
20220133192 | Brancazio | May 2022 | A1 |
20220134072 | Kosel et al. | May 2022 | A1 |
20220215921 | Levinson et al. | Jul 2022 | A1 |
20220218251 | Jackson et al. | Jul 2022 | A1 |
20220233117 | Lee et al. | Jul 2022 | A1 |
20220249818 | Chickering, III et al. | Aug 2022 | A1 |
20220257158 | Haghgooie et al. | Aug 2022 | A1 |
20220287642 | Chickering, III et al. | Sep 2022 | A1 |
20220313128 | Bernstein et al. | Oct 2022 | A1 |
20220330860 | Nawana | Oct 2022 | A1 |
20220330861 | Nawana | Oct 2022 | A1 |
20220347451 | Jung et al. | Nov 2022 | A1 |
20220361784 | Jordan et al. | Nov 2022 | A1 |
20220369957 | Nawana | Nov 2022 | A1 |
20230109881 | Nawana et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
2006283345 | Mar 2007 | AU |
2016266112 | Dec 2016 | AU |
101296752 | Oct 2008 | CN |
0931507 | Jul 1999 | EP |
1769735 | Apr 2007 | EP |
2493537 | Sep 2012 | EP |
3513833 | Jul 2019 | EP |
3490453 | Dec 2021 | EP |
3962363 | Mar 2022 | EP |
2550668 | Nov 2015 | ES |
2565805 | Apr 2016 | ES |
1492500 | Nov 1977 | GB |
2428197 | Jan 2007 | GB |
2004024164 | Jan 2004 | JP |
2018538535 | Dec 2018 | JP |
100873642 | Dec 2008 | KR |
101857300 | May 2018 | KR |
2010101625 | Sep 2010 | NO |
9311747 | Jun 1993 | WO |
9929296 | Jun 1999 | WO |
0078286 | Dec 2000 | WO |
0210037 | Feb 2002 | WO |
0226217 | Apr 2002 | WO |
0232785 | Apr 2002 | WO |
02083205 | Oct 2002 | WO |
02083231 | Oct 2002 | WO |
02083232 | Oct 2002 | WO |
03002069 | Jan 2003 | WO |
03030880 | Apr 2003 | WO |
03035510 | May 2003 | WO |
03066126 | Aug 2003 | WO |
03084597 | Oct 2003 | WO |
03086349 | Oct 2003 | WO |
03086350 | Oct 2003 | WO |
03089036 | Oct 2003 | WO |
2004009172 | Jan 2004 | WO |
2004022133 | Mar 2004 | WO |
2004022142 | Mar 2004 | WO |
2004032990 | Apr 2004 | WO |
2004039429 | May 2004 | WO |
2004062715 | Oct 2004 | WO |
2004098576 | Nov 2004 | WO |
2005006535 | Jan 2005 | WO |
2005026236 | Mar 2005 | WO |
2005060441 | Jul 2005 | WO |
2005014078 | Oct 2005 | WO |
2005084534 | Oct 2005 | WO |
2005123173 | Dec 2005 | WO |
2006016364 | Feb 2006 | WO |
2006055795 | May 2006 | WO |
2006055799 | May 2006 | WO |
2006055802 | May 2006 | WO |
2006055844 | May 2006 | WO |
2006062848 | Jun 2006 | WO |
2006062974 | Jun 2006 | WO |
2006108185 | Oct 2006 | WO |
2006115663 | Nov 2006 | WO |
2006135696 | Dec 2006 | WO |
2007002521 | Jan 2007 | WO |
2007002522 | Jan 2007 | WO |
2007002523 | Jan 2007 | WO |
2007023276 | Mar 2007 | WO |
2007061781 | May 2007 | WO |
2007064486 | Jun 2007 | WO |
2007103712 | Sep 2007 | WO |
2006110723 | Nov 2007 | WO |
2007124411 | Nov 2007 | WO |
2008014161 | Jan 2008 | WO |
2007124406 | Feb 2008 | WO |
2008008845 | Apr 2008 | WO |
2008049107 | Apr 2008 | WO |
2008091602 | Sep 2008 | WO |
2008121459 | Oct 2008 | WO |
2008149333 | Jan 2009 | WO |
2009037192 | Mar 2009 | WO |
2009046173 | May 2009 | WO |
2009061895 | May 2009 | WO |
2009061907 | May 2009 | WO |
2009056981 | Aug 2009 | WO |
2009126653 | Oct 2009 | WO |
2009158300 | Dec 2009 | WO |
2009142852 | Jan 2010 | WO |
2010049048 | May 2010 | WO |
2010059605 | May 2010 | WO |
2010062908 | Jun 2010 | WO |
2010071262 | Jun 2010 | WO |
2010098339 | Sep 2010 | WO |
2010101621 | Sep 2010 | WO |
2010101626 | Sep 2010 | WO |
2010101620 | Nov 2010 | WO |
2010129783 | Nov 2010 | WO |
2010002613 | Dec 2010 | WO |
2010110916 | Dec 2010 | WO |
2010151329 | Dec 2010 | WO |
2010117602 | Mar 2011 | WO |
2011016615 | Apr 2011 | WO |
2011053787 | May 2011 | WO |
2011053788 | May 2011 | WO |
2011053796 | May 2011 | WO |
2011063067 | May 2011 | WO |
2011065972 | Jun 2011 | WO |
2011071788 | Jun 2011 | WO |
2011075099 | Jun 2011 | WO |
2011075103 | Jun 2011 | WO |
2011075104 | Jun 2011 | WO |
2011075105 | Jun 2011 | WO |
2011075569 | Jun 2011 | WO |
2011084316 | Jul 2011 | WO |
2011088211 | Jul 2011 | WO |
2011094573 | Aug 2011 | WO |
2011014514 | Sep 2011 | WO |
2011088214 | Sep 2011 | WO |
2011113114 | Sep 2011 | WO |
2011116388 | Sep 2011 | WO |
2011084951 | Nov 2011 | WO |
2011088211 | Dec 2011 | WO |
2011150144 | Dec 2011 | WO |
2011163347 | Dec 2011 | WO |
2012030316 | Mar 2012 | WO |
2012018486 | Apr 2012 | WO |
2012045561 | Apr 2012 | WO |
2012048388 | Apr 2012 | WO |
2012049155 | Apr 2012 | WO |
2012054592 | Apr 2012 | WO |
2012021792 | May 2012 | WO |
2012028675 | May 2012 | WO |
2012061556 | May 2012 | WO |
2012089627 | Jul 2012 | WO |
2012122162 | Sep 2012 | WO |
2012145665 | Oct 2012 | WO |
2012117302 | Nov 2012 | WO |
2012149126 | Nov 2012 | WO |
2012149143 | Nov 2012 | WO |
2012154362 | Dec 2012 | WO |
2012173971 | Dec 2012 | WO |
2012149134 | Jan 2013 | WO |
2012149155 | Mar 2013 | WO |
2013036602 | Mar 2013 | WO |
2013050701 | Apr 2013 | WO |
2013055638 | Apr 2013 | WO |
2013055641 | Apr 2013 | WO |
2013059409 | Apr 2013 | WO |
2013082418 | Jun 2013 | WO |
2013082427 | Jun 2013 | WO |
2013090353 | Jun 2013 | WO |
2013096026 | Jun 2013 | WO |
2013096027 | Jun 2013 | WO |
2013112877 | Aug 2013 | WO |
2013120665 | Aug 2013 | WO |
2013136176 | Sep 2013 | WO |
2013136185 | Nov 2013 | WO |
2013165715 | Nov 2013 | WO |
2013188609 | Dec 2013 | WO |
2014004462 | Jan 2014 | WO |
2014018558 | Jan 2014 | WO |
2014039367 | Mar 2014 | WO |
2014052263 | Apr 2014 | WO |
2014058746 | Apr 2014 | WO |
2014059104 | Apr 2014 | WO |
2014078545 | May 2014 | WO |
2014081746 | May 2014 | WO |
2014099404 | Jun 2014 | WO |
2014105458 | Jul 2014 | WO |
2014110016 | Jul 2014 | WO |
2014096001 | Aug 2014 | WO |
2014132239 | Sep 2014 | WO |
2014132240 | Sep 2014 | WO |
2014153447 | Sep 2014 | WO |
2014160804 | Oct 2014 | WO |
2014172246 | Oct 2014 | WO |
2014172247 | Oct 2014 | WO |
2014193725 | Dec 2014 | WO |
2014193727 | Dec 2014 | WO |
2014193729 | Dec 2014 | WO |
2014204951 | Dec 2014 | WO |
2014186263 | Jan 2015 | WO |
2015006292 | Jan 2015 | WO |
2015009523 | Jan 2015 | WO |
2015009530 | Jan 2015 | WO |
2015009531 | Jan 2015 | WO |
2015031552 | Mar 2015 | WO |
2015034709 | Mar 2015 | WO |
2015038556 | Mar 2015 | WO |
2015023649 | Apr 2015 | WO |
2015072924 | May 2015 | WO |
2015116625 | Aug 2015 | WO |
2015153570 | Oct 2015 | WO |
2015153624 | Oct 2015 | WO |
2015168210 | Nov 2015 | WO |
2015168215 | Nov 2015 | WO |
2015168217 | Nov 2015 | WO |
2015179511 | Nov 2015 | WO |
2016009986 | Jan 2016 | WO |
2016099986 | Jan 2016 | WO |
2016018892 | Feb 2016 | WO |
2016081843 | May 2016 | WO |
2016099986 | Jun 2016 | WO |
2016100708 | Jun 2016 | WO |
2016109336 | Jul 2016 | WO |
2016109339 | Jul 2016 | WO |
2016109342 | Jul 2016 | WO |
2016118459 | Jul 2016 | WO |
2016122915 | Aug 2016 | WO |
2016132368 | Aug 2016 | WO |
2016137853 | Sep 2016 | WO |
2016164508 | Oct 2016 | WO |
2015168219 | Dec 2016 | WO |
2017024115 | Feb 2017 | WO |
2017044887 | Mar 2017 | WO |
2017062727 | Apr 2017 | WO |
2017062922 | Apr 2017 | WO |
2017075018 | May 2017 | WO |
2017075586 | May 2017 | WO |
2017087355 | May 2017 | WO |
2017087368 | May 2017 | WO |
2017112400 | Jun 2017 | WO |
2017112451 | Jun 2017 | WO |
2017112452 | Jun 2017 | WO |
2017112748 | Jun 2017 | WO |
2017113011 | Jul 2017 | WO |
2017139084 | Aug 2017 | WO |
2017112476 | Sep 2017 | WO |
2017176693 | Oct 2017 | WO |
2017176704 | Oct 2017 | WO |
2017193076 | Nov 2017 | WO |
2018022535 | Feb 2018 | WO |
2018048786 | Mar 2018 | WO |
2018048790 | Mar 2018 | WO |
2018048795 | Mar 2018 | WO |
2018048797 | Mar 2018 | WO |
2018057760 | Mar 2018 | WO |
2018128976 | Jul 2018 | WO |
2018132515 | Jul 2018 | WO |
2018204217 | Nov 2018 | WO |
2018213244 | Nov 2018 | WO |
2019067567 | Apr 2019 | WO |
2019121324 | Jun 2019 | WO |
2020025823 | Feb 2020 | WO |
2020102281 | May 2020 | WO |
2020223710 | Nov 2020 | WO |
2021007344 | Jan 2021 | WO |
2021041881 | Mar 2021 | WO |
2021076846 | Apr 2021 | WO |
2021121638 | Jun 2021 | WO |
2021198768 | Oct 2021 | WO |
2021222066 | Nov 2021 | WO |
2021222805 | Nov 2021 | WO |
2022064055 | Mar 2022 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2022/046384 mailed Jan. 5, 2023. |
International Search Report and Written Opinion for PCT/US2022/048913 mailed Feb. 21, 2023. |
International Search Report and Written Opinion for PCT/US22/029829 mailed Nov. 23, 2022. |
International Preliminary Report of Patentability, PCT/US2022/029829, dated Nov. 21, 2023. |
International Preliminary Report on Patentability, PCT/US2022/024607 dated Oct. 12, 2023. |
Written Opinion for International Application, No. PCT/US2022/024607, dated Oct. 12, 2023. |
International Search Report and Written Opinion, PCT/US2022/024607, dated Aug. 4, 2022. |
Taiwan Office Action, TW111142334, dated Dec. 12, 2023. |
Taiwan Office Action, TW111142334, dated May 18, 2023. |
International Preliminary Report of Patentability for PCT/US2022/046384 issued Apr. 16, 2024. |
International Preliminary Report of Patentability for PCT/US2022/048913 dated May 2, 2024. |
International Search Report and Written Opinion for International Application No. PCT/US2023/080656 dated Feb. 19, 2024. |
International Search Report and Written Opinion for International Application No. PCT/US2023/086234 dated Mar. 7, 2024. |
International Search Report and Written Opinion for PCT/US2023/086151 dated May 13, 2024. |
International Search Report for International Application No. PCT/2023/086214 dated Apr. 8, 2024. |
Number | Date | Country | |
---|---|---|---|
20230233824 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17994454 | Nov 2022 | US |
Child | 18090107 | US | |
Parent | 17991284 | Nov 2022 | US |
Child | 18090107 | US | |
Parent | 17971142 | Oct 2022 | US |
Child | 18090107 | US | |
Parent | 17903802 | Sep 2022 | US |
Child | 18090107 | US | |
Parent | 17500873 | Oct 2021 | US |
Child | 18090107 | US |