1. Field of the Invention
The present invention relates to saline water processing systems, and particularly to a desalination system utilizing forced air for improved evaporation and condensation performance.
2. Description of the Related Art
Various methods are used for desalination of seawater. One of them is the evaporation/condensation (HD) process. In this method the salt water is evaporated and simultaneously condensed to produce desalinated water. The HD process is based on the fact that air can be mixed with significant quantities of vapor. The amount of vapor able to be carried by air increases with temperature. For example, 1 kg of dry air can carry about 0.5 kg of vapor and about 670 kcal when its temperature increases from 30° C. to 80° C. When the hot, dry air flows in contact with salt water, the air extracts a certain quantity of vapor, which simultaneously cools the hot air via heat transfer so that the air becomes humid. The desalinated water is recovered by maintaining humid air in contact with a cooling surface, causing condensation to occur with some of the vapor mixed with air. Generally, the condensation is carried out in another exchanger, where salt water is preheated by latent heat recovery. An external heat contribution is, thus, necessary to compensate for any heat loss.
Four parameters affect the evaporation process: (a) air pressure, (b) water temperature, (c) water-air contact surface area, and (d) contact time of water with the surrounding air. Evacuation of the desalination unit can improve the evaporation rate, but it is difficult to implement, requiring much consideration of the limitations.
Of course, high salt water temperature increases the water evaporation performance. However, salt scaling problems can limit the allowable temperatures used. Additionally, the temperatures at which a solar system can efficiently perform and the available waste heat must be taken into consideration.
Flashing-water contact surface area can be increased by either increasing flow rate or flashing the water into fine droplets. A limited decrease of the droplets' diameter improves evaporation through improved convective heat transfer at their surface. Moreover, use of forced air convection inside the desalination chamber may improve the evaporation rate. However, studies have shown that natural convection is more preferable, since forced-air convection does not show significant gain in the evaporation rate.
The contact time between the flashed water droplets and the surrounding air is based on the design of the desalination chamber. Heat convection can be improved if the contact time of droplets with the surrounding air is increased. This can be accomplished by increasing the length of the flashing path inside the desalination chamber. For example, conventional systems inject hot salt water vertically downward from the chamber roof. Therefore, the contact time depends on the chamber height, in this case.
For systems that use solar energy as a heat source, the solar collectors are used to heat the salt water. In most instances, the salt water can be directly heated inside the collector. Unfortunately, problems were found due to salt scaling inside the solar collectors. This is exemplary of an open-loop system. In a closed-loop system, the salt water is heated indirectly along a heat exchanger between the collector and desalination loops. One example of a closed-loop system includes a forced solar water heater. Another example utilizes vacuum pressure inside the chamber, which has been shown to greatly improve performance. Additionally, the cost of water production can be reduced using different materials, flow rates and temperatures.
In light of the above, there is still a need in the art of desalination systems to provide a more efficient and improved system and method of extracting desalinated water in current plants. Thus, a solar, water desalination system solving the aforementioned problems is desired.
The desalination system includes a desalination chamber where fine water droplets are injected by using an air atomizer to improve the evaporation rate. Hot saline water is ejected vertically upward to double the contact time between the droplets and the surrounding air. The air is preheated by solar energy in parallel with an auxiliary heater to prevent lowering of the droplet temperature. Pumped air functions as a condensation media and to pull the salt water into the atomizer. This arrangement improves the heat and mass transfer inside the desalination chamber.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The desalination system, generally referenced by the reference number 10 in the drawings, provides efficient and increased production of desalinated water. The desalination system 10 can also be referred to as “the system.” Initially, the following tables set forth brief descriptions of the nomenclature and subscripts used in describing the invention.
Referring to
The air atomizer 16 is disposed on top of the tank 14. The air atomizer 16 ejects hot salt water vertically upward inside an insulated desalination chamber 20. The desalination chamber 20 may, e.g., have dimensions of 1×1×1 m3 and is fixed carefully above the tank opening. The air blower 18 supplies air to the atomizer 16 during air distribution. An exemplary air blower can be 0.4-kW centrifugal air blower, 380 volt, with about 65% efficiency. The air is passed through a condenser 19 for preheating before going to the atomizer 16. As schematically shown
The condenser 19 includes two containers, which are connected in series. In this example, each container has a capacity of about 0.0405 m3. This arrangement permits water injection along a vertical center-line of the chamber 20 between the two containers. This results in a uniform distribution of evaporation inside the chamber 20. The use of two containers also increases the condensing surface area and improves the condensation variation. A strip can placed under the condenser 19 to prevent mixing of injected salt water with condensed distilled water.
The operation of the system 10 begins with preheating the saline water in the tank 14. A preferred temperature is maintained at about 70° C. by an auxiliary heater. This relatively low temperature has been found to avoid potential salt scaling, which can partially clog holes in the atomizer 16. As mentioned above, the condensed desalinated water collects under the sides of the condenser 19 through channels to outside of the system. The non-evaporated saline water naturally falls back down to the tank 14 by gravity. A float 14A can be provided in the tank 14 to regulate and maintain desired saline water levels therein, depending on the production rate of desalinated water.
The air distributor 17 can be constructed from stainless steel in the shape of a closed cylinder. An inlet, comprised of a tube, connects to the condenser 19 by a rubber hose. A plurality of outlets at the top of the distributor 17 ejects saline water vertically with the air from the blower 18. An additional plurality of tubes pull saline water from the tank 14, and these are fixed to the atomizer 16. The distributor 17 is mounted to the top of the tank 14 opening and partially immersed inside the saline water of the tank 14. As previously mentioned, the water level inside the tank 14 is maintained at a relatively constant level through the use of float 14A, as is known in the art.
With this construction, the desalination chamber 20 and the heat source of hot water are compacted in an integral, single structure. This substantially eliminates heat losses that are normally obtained during water passes. Additionally, heat loss is also minimized in return water passes. Although some of the hot air can ventilate from the chamber 20 through clearance between the chamber walls and the tank opening, which causes some heat loss, it still maintains improved heat and mass transfer inside the chamber 20.
In the instance where solely solar energy is used, it may heat the tank water by a few degrees. To raise the temperature to a more desired level, the tank water can be heated for a couple of days during sunny days prior to startup. Potentially, the temperature used for desalination is not high, but the system still works well without any additional heat.
In the instance where both solar energy and an auxiliary heat source are used in combination, the system can be provided with the auxiliary heat source 22 operatively connected to the tank 14. In this case, the auxiliary heat source 22 can be a two-kW electrical heater raising the tank temperature to desired levels, e.g., about 70° C. Preferably, the auxiliary heat source 22 is fixed inside the upper third of the tank 14 for maintaining relatively constant temperature during operation.
To monitor temperature variations inside the desalination chamber 20, k-type thermocouples can be disposed therein. These can be connected to a thermometer (type K). Additionally, moisture inside the chamber 20 can be measured by a thermo-hygrometer. The thermocouples should be calibrated and tested to estimate the correct measured temperatures. Moreover, the salinity of water is measured by a salinity meter, preferably having a resolution of about 0.01. Pressure can be measured by a Bourdon-type gauge, and a flow meter is used to measure the air flow rate. Moreover, a thermometer is used to measure the exit and inlet temperatures of the water and air.
With reference to
The following describes a mathematical model of the system 10 which incorporates thermosiphoning of solar energy. Flow in the cycle loop is assumed to be steady-state. The system 10 has been analyzed by dividing the thermosiphon loop into a number of segments normal to the flow direction and applying Bernoulli's equation for incompressible flow to each segment. The flow rate is obtained by numerical solution of the resulting set of equations.
Application of Bernoulli's equation to any node, i, in the thermosiphon loop results in the following expression for pressure drop:
ΔPii=pi·g·Δhi+pi·g·hLi. (1)
The thermosiphon model involves the numerical solution for the flow rate that satisfies the above equation. The density of the fluid is evaluated at the local temperature using a correlation for water. Temperatures and frictional head losses in each node of the collector and pipes are determined as described below. The collector inlet and outlet pipes are each considered to be single nodes, with negligible thermal capacitance.
A first law analysis yields the following expressions for average and outlet temperatures of these pipes:
Frictional head loss in either pipe is given as:
where K is the friction factor for the piping connections and the friction factor, f, is:
By this way the pressure drop can be estimated through the pipes and collector risers and headers where the friction head loss in the tank is neglected.
The net weight of fluid in the collector is found by dividing the collector into Nx equally sized nodes. The thermal performance is modeled according to the Hottel-Whillier equation. The temperature at the midpoint of any collector node, k, is:
The collector parameter F′UL is calculated from the value of FRUL and G at test conditions:
The overall useful energy collection is:
The tank 14 has been initially divided into four segments of volume Vi and temperature Ti, so that no temperature inversions are present. In one time period, the heat source delivers a volume of liquid, Vh, equal to {dot over (m)}hΔt/ρ at a temperature Th. Assuming Th is greater than T1 (first segment temperature), then a new segment is added at the top of the tank and the existing profile is shifted. At the same time, the fluid enters from the load with a volume, VL, equal to {dot over (m)}hΔt/ρ and temperature of TL. If TL is less than T4 (fourth segment temperature), then a segment is added at the bottom of the tank and the profile is shifted once more. The net shift of the profile in the tank is equal to the difference between the total heat source volume and load volume or ({dot over (m)}h−{dot over (m)}L)Δt/ρ. The average temperature delivered to load is:
Storage losses from the tank and conduction between segments are evaluated before the temperature profile has been adjusted for flows. This is accomplished by solving the following differential equation for each segment:
where Δhi−1=separation between centers of segments i−1 and i, and Δhi+1=separation between centers of segments i and i+1.
The energy input to the tank 14 due to the hot inlet stream is:
Qin=mhCP(Th−TR). (10)
The energy supplied to the load is:
Qsup=mLCP(TD−TL). (10)
A schematic diagram of a nozzle arrangement 30 is depicted in
Applying Bernoulli equation between the points 31 and 32 for water flow gets:
Similarly applying Bernoulli equation between the points 3 and 2 for water flow gets
So the atomized water flow rate can be determined as:
To estimate the distilled mass flow rate, an energy balance is applied for the desalination chamber 20. Since the input energy to the chamber (input atomized water and air, and inlet air) equals the output energy (output desalinated water, saline water and outlet air), the following equations are developed:
Assume that the desalinated outlet water temperature, Td=TD−8 and the saline water outlet temperature,
The above twenty three equations are solved simultaneously together for each time step to estimate the different variables considered under the measured weather data of the locale. In this instance, the locale is Cairo city.
The following describes the results of the above analysis. In the system 10 where constant temperature was maintained, the auxiliary heater 20 is used to heat saline water in the tank 14 up to a predefined temperature. This condition was used to analyze performance of the system 10 under relatively constant conditions. The performance of the desalination system 10 is evaluated by the quantity of the desalinated water produced. The measured data is observed as follows.
At the start, fresh air temperature entering the condenser 19 is about 30° C. During operation, the exiting air from the condenser 19 reached 55° C. (at steady state) from 50° C. (at warm up) with a regular volume flow rate of about 0.085 m3/s. The air pressure at the distributor 17 is about 1.2 bar. Hot water feeding the atomizer 16 is about 70° C. The temperature of the exiting desalinated water is about 30° C. Relative humidity (RH) in the side of the condenser enclosure is measured between 18% (at warm up) to 30% (at steady state), and in the side of the humidifier enclosure; it ranges between 60 to 80%. After about fifteen minutes of operation, the flashing water condensed and collected in the channel. This delay can be considered as the warm up period of the desalination system 10. It has been found that about 1.5 liters of desalinated water was collected each hour. The system 10 can produce at least about 36 liter/day during continuous daily operation.
The temperature distribution inside the desalination chamber 20 was obtained by measuring the temperatures at different locations inside, as exemplarily shown in
To evaluate performance of the condenser 19 and the evaporator, the temperature was measured for each side (an average value). A lower value of temperature of the condenser side indicates that the condenser surfaces are large enough to condense all of evaporated steam. That can be seen in the form of low measured humidity, as shown in FIG. 5. Therefore, the flow rate of the evaporated hot water could be raised. That is clearly presented in
As expected, the enclosure that surrounds the condenser 19 has the minimum relative humidity. The vapor is condensed on the condenser surfaces. In the far regions, the vapor is increased causing higher relative humidity. It exchanges the mass and heat with the near regions of condenser 19, naturally. As shown in
Moreover, the increasing water flow rate increases the heat and mass transfer coefficients, as well as the solar collector efficiency. At the same time, it lowers the operating water temperature in the unit, and hence lowers the evaporation and condensation rate. The optimum flow rate is significantly affected by the desalination unit size, evaporative area and condenser surface area. As presented in
Accordingly, this also indicates that the mass of the system 10 is a factor that can adversely affect performance. For example, the delay of fifteen minutes was recorded before the steady production of fresh water. Logically, most of the heat energy received in these early minutes was used to warm the relatively large mass of the system 10, which is about 150 kg. This lag time can be reduced by using lighter materials than galvanized steel for construction.
The influence of feeding hot water on unit productivity with natural air circulation shows that increasing the temperature of the feed water increases productivity, while the ambient temperature has a negligible effect on the total productivity. However, increasing the evaporating salt water may raise the possibility of scales concentration.
In
The other two levels have the same variation of relative humidity with higher values. The variation is regular around the regular shape condenser from right to left of
In the system 10, when solar energy is used as the sole heat source, lower temperatures are obtained, as presented in
Accordingly, the upper level has the higher temperatures, while the lower level has the lower ones. Moreover, it is found that the system in that case can produce about ten liters of desalinate water at daytime, as shown in
A numerical simulation and annual performance of the system has been conducted using the same specifications, geometry and dimensions of the system 10 described above. To validate the numerical simulation, the developed program was run using the same weather conditions of the experimental data that are shown in
In general, the difference in the hourly variation between the estimated and measured values makes no significant difference in the accumulated values, and the validation can be accepted. On the other hand the hourly variation in the collector outlet temperature (Tc) and load temperature (TL) to the atomizer are shown in
The annual variation of the distilled water produced by the system 10 is presented in
The monthly average quantity of the distilled water is estimated in
The system efficiency is estimated annually under the weather conditions of Cairo °N. The system efficiency is defined as:
In
In
md=10−8IT2+0.0001IT. (25)
With the above evaluations, the cost of water production per cubic meter of desalinate, C, can be estimated by the following:
The initial (capital) cost of the system is about US$ 500. If the annual operating man hours is 500 hours at a wage of $5/hr and the average annual productivity of about 13 m3, then the estimated liter cost of the desalinated water is about 0.2 US$/liter. This may be higher than that produced by conventional energy, but it is acceptable where conventional energy is not readily available.
As a result of the above, the system 10 provides a more efficient humidification-dehumidification solar desalination system. The system 10 can work by either solar energy or auxiliary heater, or both. A natural-circulation solar water heater is used as a heat source. Forced air is used as a condenser fluid, and later on it is used as an atomizer of hot saline water. The system can work continuously, and the daily production of the distilled water is about 36 liters/day. That corresponds to about 0.37 liter for each kilowatt-hour of input energy. When the system 10 uses solar energy only, it can produce about 5 liters/day. That can be acceptable in light of conventional systems. With the validated numerical simulation of the system 10, the predicted results are in close alignment to the measured ones. The system performance was presented annually and monthly, and an empirical equation of the produced distilled water was obtained. The price of clean water can cost about 0.2 US$/liter. From the system evaluations, it has been found that using the described forced air system increases water atomization, resulting in increased condensation.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3206379 | Hill | Sep 1965 | A |
3355364 | Hammond | Nov 1967 | A |
3408262 | Matye | Oct 1968 | A |
3931371 | Maurer et al. | Jan 1976 | A |
4664752 | Zievers et al. | May 1987 | A |
4762593 | Youngner | Aug 1988 | A |
4888097 | Palmer et al. | Dec 1989 | A |
5053110 | Deutsch | Oct 1991 | A |
5181991 | Deutsch | Jan 1993 | A |
6165326 | Markopulos | Dec 2000 | A |
6293121 | Labrador | Sep 2001 | B1 |
6391162 | Kamiya et al. | May 2002 | B1 |
6699369 | Hartman et al. | Mar 2004 | B1 |
6919000 | Klausner et al. | Jul 2005 | B2 |
7154190 | Kaploun | Dec 2006 | B2 |
8365463 | Walsh, Jr. | Feb 2013 | B2 |
20040060808 | LaViolette | Apr 2004 | A1 |
20060124440 | Pautz et al. | Jun 2006 | A1 |
20110174605 | Ugolin | Jul 2011 | A1 |
20110309162 | Rock | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
201648163 | Nov 2010 | CN |
101671056 | Jan 2011 | CN |
102010020 | Apr 2011 | CN |
201932925 | Aug 2011 | CN |
29 22 348 | Dec 1980 | DE |
58-124583 | Jul 1983 | JP |
Entry |
---|
Jerome E. Johnson et al.“The development of a solar thermal water purification, heating, and power generation system: A case study”, Mar. 2009, pp. 1-26. |
Number | Date | Country | |
---|---|---|---|
20140238839 A1 | Aug 2014 | US |