Tuberculosis and leprosy, caused by the bacilli from the Mycobacterium tuberculosis complex and M. leprae respectively are the two major mycobacterial diseases. Pathogenic mycobacteria have the ability to survive within host phagocytic cells. From the interactions between the host and the bacteria results the pathology of the tuberculosis infection through the damages the host immune response causes on tissues (Andersen & Brennan, 1994). Alternatively, the protection of the host is also dependent on its interactions with mycobacteria.
Identification of the bacterial antigens involved in these interactions with the immune system is essential for the understanding of the pathogenic mechanisms of mycobacteria and the host immunological response in relation to the evolution of the disease. It is also of great importance for the improvement of the strategies for mycobacterial disease control through vaccination and immunodiagnosis.
Through the years, various strategies have been followed for identifying mycobacterial antigens. Biochemical tools for fractionating and analysing bacterial proteins permitted the isolation of antigenic proteins selected on their capacity to elicit B or T cell responses (Romain et al., 1993; Sorensen et al., 1995). The recent development of molecular genetic methods for mycobacteria (Jacobs et al., 1991; Snapper et al., 1990; Hatful, 1993; Young et al., 1985) allowed the construction of DNA expression libraries of both M. tuberculosis and M. leprae in the λgt11 vector and their expression in E. coli The screening of these recombinant libraries using murine polyclonal or monoclonal antibodies and patient sera led to the identification of numerous antigens (Braibant et al., 1994; Hermans et al., 1995; Thole & van der Zee, 1990). However, most of them turned out to belong to the group of highly conserved heat shock proteins (Thole & van der Zee, 1990; Young et al., 1990).
The observation in animal models that specific protection against tuberculosis was conferred only by administration of live BCG vaccine, suggested that mycobacterial secreted proteins might play a major role in inducing protective immunity. These proteins were shown to induce cell mediated immune responses and protective immunity in guinea pig or mice model of tuberculosis (Pal & Horwitz, 1992; Andersen, 1994; Haslow et al., 1995). Recently, a genetic methodology for the identification of exported proteins based on PhoA gene fusions was adapted to mycobacteria by Lim et al. (1995). It permitted the isolation of M. tuberculosis DNA fragments encoding exported proteins. Among them, the already known 19 kDa lipoprotein (Lee et al., 1992) and the ERP protein similar to the M. leprae 28 kDa antigen (Berthet et al., 1995).
We have characterized a new M. tuberculosis exported protein named DES identified by using the PhoA gene fusion methodology. The des gene, which seems conserved among mycobacterial species, encodes an antigenic protein highly recognized by human sera from both tuberculosis and leprosy patients but not by sera from tuberculous cattle. The amino acid sequence of the DES protein contains two sets of motifs that are characteristic of the active sites of enzymes from the class II diiron-oxo protein family. Among this family, the DES protein presents significant homologies to soluble stearoyl-ACP desaturases.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
The invention will be further clarified by the following examples, which are intended to be purely exemplary of the invention.
Bacteria, Media and Growth Conditions
The bacterial strains and plasmids used in this study are listed in
Human and Cattle Sera
Serum specimens from 20 individuals with pulmonary or extra-pulmonary tuberculosis (M. tuberculosis infected) were obtained from the Bligny sanatorium (France). 6 sera from M. bovis infected human tuberculous patients and 24 sera from BCG-vaccinated patients suffering from other pathologies were respectively obtained from Institut Pasteur, (Madagascar), and the Centre de Biologie Médicale specialisée (CBMS) (Institut Pasteur, Paris). Sera from tuberculous cattle (M. bovis infected) were obtained from CNEVA, (Maison Alfort).
Subcloning Procedures
Restriction enzymes and T4 DNA ligase were purchased from Gibco/BRL, Boehringer Mannheim and New England Biolabs. All enzymes were used in accordance with the manufacturer's recommendations. A 1-kb ladder of DNA molecular mass markers was from Gibco/BRL. DNA fragments used in the cloning procedures were gel purified using the Geneclean II kit (BIO 101 Inc., La Jolla, Calif.). Cosmids and plasmids were isolated by alkaline lysis (Sambrook et al., 1989). Bacterial strains were transformed by electroporation using the Gene Pulser unit (Bio-Rad Laboratories, Richmond, Calif.).
Southern Blot Analysis and Colony Hybridization.
DNA fragments for radiolabeling were separated on 0.7% agarose gels (Gibco BRL) in a Tris-borate-EDTA buffer system (Sambrook et al., 1989) and isolated from the gel by using Geneclean II (BIO 101). Radiolabeling was carried out with the random primed labeling kit Megaprime (Amersham) with 5 μCi of (α-32P)dCTP, and nonincorporated label was removed by passing through a Nick Column (Pharmacia). Southern blotting was carried out in 0.4 M NaOH with nylon membranes (Hybond-N+, Amersham) according to the Southern technique (Southern, 1975), prehybridization and hybridization was carried out as recommended by the manufacturer using RHB buffer (Amersham). Washing at 65° C. was as follows: two washes with 2×SSPE (150 mM NaCl, 8.8 mM NaH2PO4, 1 mM EDTA pH 7.4)-SDS 0.1% of 15 minutes each, one wash with 1×SSPE-SDS 0.1% for 10 minutes, two washes with 0.7×SSPE-SDS 0.1% of 15 minutes each. Autoradiographs were prepared by exposure with X-ray film (Kodak X-Omat AR) at −80° C. overnight. Colony hybridization was carried out using nylon membrane discs (Hybond-N+ 0.45 μm, Amersham). E. coli colonies adsorbed on the membranes were lysed in a (0.5 M NaOH, 1.5 M NaCl) solution, before being placed for one minute in a micro-wave oven to fix the DNA. Hybridization and washings were as described for the Southern blotting analysis.
DNA Sequencing and Analysis
Sequences of double-stranded plasmid DNA were determined by the dideoxy-chain termination method (Sanger et al., 1977) using the Taq Dye Deoxy Terminator Cycle sequencing Kit (Applied Biosystems), on a GeneAmp PCR System 9600 (Perkin Elmer), and run on a DNA Analysis System-Model 373 stretch (Applied Biosystems). The sequence was assembled and processed using DNA strider™ (CEA, France) and the University of Wisconsin Genetics Computer Group (UWGCG) packages. The BLAST algorithm (Altschul et al., 1990) was used to search protein data bases for similarity.
Expression and Purification of the DES Protein in E. coli
A 1043 bp NdeI-BamHI fragment of the des gene was amplified by PCR using nucleotides JD8 (5′-CGGCATATGTCAGCCAAGCTGACCGACCTGCAG-3′) (SEQ ID NO: 3) and JD9 (5′-CGGATCCCGCGCTCGCCGCTCTGCATCGTCG-3′)(SEQ ID NO: 4), and cloned into the NdeI-BamHI sites of pET14b (Novagen) to generate pET-des. PCR amplifications were carried out in a DNA thermal Cycler (Perkin Elmer), using Taq polymerase (Cetus) according to the manufacturer's recommendations. PCR consisted of one cycle of denaturation (95° C., 6 min) followed by 25 cycles of amplification consisting of denaturation (95° C., 1 min), annealing (57° C., 1 min), and primer extension (72° C., 1 min). In the pET-des vector, the expression of the des gene is under control of the T7 bacteriophage promoter and the DES antigen is expressed as a fusion protein containing six histidine residues. Expression of the des gene was induced by addition of 0.4 mM IPTG in the culture medium. The DES protein was purified by using a nickel-chelate affinity resin according to the recommendations of the supplier (Qiagen, Chatsworth, Calif.). Linked to the localization of the DES protein in cytoplasmic inclusion bodies, the purification was carried out under denaturating conditions in guanidine hydrochloride buffers. The protein was eluted in buffer A (6 M guanidine hydrochloride, 0.1 M NaH2PO4, 0.01 M Tris, pH 8) containing 100 mM EDTA. The purified protein was kept and used in buffer A, as all attempts to solubilize it in other buffers were unsuccessful.
SDS-PAGE and Immunoblotting
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out as described by Laemmli (1970). For Western blotting experiments (immunoblotting), approximately 10 μg of DES purified protein were run on a SDS-polyacrylamide gel and transferred onto nitrocellulose membranes (Hybond C extra, Amersham) using a Bio-Rad mini transblot apparatus according to the recommendations of the manufacturer (Bio-Rad Laboratories, Richmond, Calif.). Transfer yield was visualized by transient staining with Ponceau Rouge. The membrane were incubated with human patient or cattle sera diluted 1/200e at 37° C. for 1 hour and with a goat anti-human (Promega) or rabbit anti-cattle (Biosys)IgG alkaline phosphatase-conjugated secondary antibody diluted 1/2500e for 30 minutes at 37° C. The color reaction was performed by addition of 5-bromo-4-chloro-3-indolylphosphate (0.165 mg/ml) and toluidinum nitroblue tetrazolium (0.33 mg/ml) as substrates.
ELISA
The human or cattle sera were tested for antibodies against DES by enzyme-linked immunosorbent assay (ELISA). The 96-well micro-titer trays (Nunc) were coated with 0.1 μg (per well) of purified DES protein in guanidine hydrochloride buffer A (6 M guanidine hydrochloride, 0.1 M NaH2PO4, 0.01 M Tris, pH 8) (1 h at 37° C. and 16 h at 4° C.). After three washes, wells were saturated with bovine serum albumin 3% in phosphate buffered saline (PBS) for 30 min at room temperature. After three washes, sera diluted from 1/50e to 1/3200e in buffer (PBS, 0.1% Tween 20, 1% bovine serum albumin) were added to the wells for 2 h at 37° C. After three washes, the wells were treated with goat anti-human IgG-alkaline phosphatase conjugate (Promega) diluted 1/4000e for 1 h at 37° C. Then, 4 mg of p-nitrophenylphosphate per ml were added as substrate. After 20 min of incubation at 37° C., the plates were read photometrically at an optical density of 405 nm in micro-ELISA Autoreader (Dynatech, Marnes la Coquette, France).
Statistics
Antibody response of the different sera tested were compared by using the Student t test. P≧0.05 was considered nonsignificant.
Nucleotide Sequence and Accession Number
The nucleotide sequences of des has been deposited in the Genome Sequence Data Base (GSDB) under the accession number U49839.
Cloning of the Des Gene
The construction of a library of fusions of M. tuberculosis genomic DNA to the phoA gene and its expression in M. smegmatis, described by Lim et al. (1995), led to the isolation of several PhoA+ clones. pExp421 is the plasmid harboured by one of the PhoA+ clones selected from this library. Detection of enzymatically active alkaline phosphatase indicated that the pExp421 insert contains functional expression and exportation signals. Restriction analysis showed that pExp421 carries a 1.1 kb insert. Partial determination of its sequence identified a 577 bp ORF, named des, fused in frame to the phoA gene and presenting two motifs, of 9 and 14 amino acids, conserved with soluble stearoyl-acyl-carrier protein desaturases (Lim et al., 1995).
To isolate the full-lengh des gene, the M. tuberculosis H37Rv pYUB18 genomic cosmid library (Jacobs et al., 1991), was screened by colony hydridization with the 1.1 kb probe (probe A, see
The EcoRV restriction profile revealed a single hybridizing fragment of 4.5 kb which was subcloned into pBluescript KS− (Stratagène) to give plasmid pBS-des.
Characterization of the Des Gene
The DNA sequence of the full des ORF was determined (
Although the detection of a phoA enzymatical activity in the M. smegmatis clone harbouring the pExp421 suggests the DES protein is exported, no structural similarities were found between the DES protein N terminal amino acids and signal sequences of bacterial exported proteins (Izard & Kendall, 1994).
Like in M. leprae genome, a second ORF presenting high homologies to the M. leprae putative NtrB gene (cosmid B2266), is located downstream of the des gene in M. tuberculosis
The Des Protein Presents the Conserved Amino Acid Motifs of the Class II Diiron-Oxo Proteins
Further analysis of the amino-acid sequence of the DES protein revealed the presence of conserved motifs found only in class II diiron-oxo proteins (Fox et al., 1994) (
The class II diiron-oxo protein family contains up to date ribonucleotide reductases, hydrocarbon hydroxylases (methane monooxygenase, toluene-4-monooxygenase and phenol hydroxylase) and soluble-ACP desaturases. On the overall sequence alignment the DES protein presents higher homology to soluble stearoyl-ACP desaturases than to ribonucleotide reductases or bacterial hydroxylases. The percentage identity at the amino acid level of the DES protein was said to be 30% with the Oryza sativa stearoyl-ACP desaturase, whereas it is only 17% with the Methylococcus capsulatus methane monooxygenase (accession n° M58499), 17.5% with the Pseudomonas sp CF 600 phenol hydroxylase (accession n° M60276) and 17.7% with the Epstein Barr ribonucleotide reductase (accession n° V01555). Homologies to the soluble Δ9 desaturases mostly concern the amino acids located within the active site in helices C, E and F (
Distribution of the Des Gene in Other Mycobacterial Species
The presence of the des gene in Pstl-digested chromosomal DNA from various mycobacterial strains was analyzed by Southern blotting (
Expression of the Des Gene in E. coli
In order to overexpress the DES protein, the des gene was subcloned into the bacteriophage T7 promoter-based expression vector pET14b (Novagen). A PCR amplification product of the des gene (see material and methods) was cloned into the NdeI-BamHI sites of the vector, leading to plasmid pET-des. Upon IPTG induction of E. coli BL21 DE3 pLysS cells harbouring the plasmid pET-des, a protein of about 40 kDa was overproduced. The size of the overproduced protein is in agreement with the molecular mass calculated from the deduced polypeptide. As shown in
Immunogenicity of the DES Protein After Infection
20 serum samples from M. tuberculosis infected human patients (4 with extra-pulmonary tuberculosis, 15 with pulmonary tuberculosis and 1 with both forms of the disease), 6 sera from M. bovis infected human patients and 4 sera from M. bovis infected cattle were tested either pooled or taken individually in immunoblot experiments to determine the frequency of recognition of the purified DES protein by antibodies from infected humans or cattle. 20 out of the 20 sera from the M. tuberculosis infected human patients and 6 out of the 6 sera from the M. bovis infected human patients recognized the recombinant antigen as shown by the reaction with the 37 kDa band (
In contrast, the pool of serum specimens from M. bovis infected cattle did not recognize the DES protein. These results indicate that the DES protein is highly immunogenic in tuberculosis human patients. Both pulmonary and extra-pulmonary tuberculosis patients recognize the antigen.
Magnitude of Human Patients Antibody Response
An enzyme-linked immunosorbent assay (ELISA) was used to compare the sensitivity of the different serum samples from 20 tuberculosis patients (15 infected by M. tuberculosis and 5 infected by M. bovis) to the DES antigen. This technique was also carried out to compare the sensitivity of the antibody response to DES of the 20 tuberculosis patients to the one of 24 patients (BCG-vaccinated) suffering from other pathologies. As shown on
No differences in the sensitivity of the antibody response was noticed between patients suffering from pulmonary or extra-pulmonary tuberculosis.
The PhoA gene fusion methodology permitted the identification of a new M. tuberculosis exported antigenic protein.
This 37 kDa protein contains conserved amino acid residues which are characteristic of class 11 diiron-oxo-proteins. Proteins from that family are all enzymes that require iron for activity. They include ribonucleotide reductases, hydrocarbon hydroxylases and stearoyl-ACP desaturases. The M. tuberculosis DES protein only presents significant homologies to plant stearoyl-ACP desaturases (44% identity at the nucleotide level, and 30% identity at the amino-acid level) which are also exported enzymes as they are translocated across the chloroplastic membranes (Keegstra & Olsen, 1989). This result suggests that the DES protein could be involved in the mycobacterial fatty acid biosynthesis. Furthermore, the localization of the protein outside the cytoplasm would be consistent with its role in the lipid metabolism, since lipids represent 60% of the cell wall constituents and that part of the biosynthesis of the voluminous mycolic acids containing 60 to 90 carbon atoms occurs outside the cytoplasm. Among all the different steps of the lipid metabolism, desaturation reactions are of special interest, first because they very often take place at early steps of lipid biosynthesis and secondly because, through the control they have on the unsaturation rate of membranes, they contribute to the adaptation of mycobacteria to their environment (Wheeler & Ratledge, 1994). An enzyme system involving a stearoyl-Coenzyme A desaturase (analog of the plant stearoyl-ACP-desaturases), catalyzing oxydative desaturation of the CoA derivatives of stearic and palmitic acid to the corresponding Δ9 monounsatured fatty acids has been biochemically characterized in Mycobacterium phlei (Fulco & Bloch, 1962; Fulco & Bloch, 1964; Kashiwabara & al., 1975; Kashiwabara & Sato, 1973). This system was shown to be firmly bound to a membranous structure (Fulco & Bloch, 1964). Thus, M. tuberculosis stearoyl-Coenzyme A desaturase (Δ9 desaturase) is expected to be an exported protein. Sonicated extracts of E. coli expressing the DES protein were assayed for Δ9 desaturating activity according to the method described by Legrand and Besadoun (1991), using (stearoyl-CoA) 14C as a substrate. However, no Δ9 desaturating activity could be detected. This result is probably linked to the fact desaturation systems are multi-enzyme complexes involving electron transport chains and numerous cofactors, often difficult to render functional in vitro. E. coli and mycobacteria being very different from a lipid metabolism point of view, the M. tuberculosis recombinant Δ9 desaturase might not dispose in E. coli of all the cofactors and associated enzymes required for activity or might not interact properly with them. Moreover, not all cofactors involved in the Δ9 desaturation process of mycobacteria are known, and they might be missing in the incubation medium.
However, if the DES protein encodes a Δ9 desaturase, an amazing point concerns its primary sequence. Indeed, all animal, fungal and the only two bacterial Δ9 desaturases sequenced to date (Sakamoto et al., 1994) are integral membrane proteins which have been classified into a third class of diiron-oxo proteins on the basis of their primary sequences involving histidine conserved residues (Shanklin et al., 1994). The plant soluble Δ9 desaturases are the only desaturases to possess the type of primary sequence of class II diiron-oxo proteins (Shanklin & Somerville, 1991). No bacteria have yet been found which have a plant type Δ9 desaturase.
As shown by immunoblotting and ELISA experiments, the DES protein is a highly immunogenic antigen which elicits B cell response in 100% of the tuberculosis M. bovis or M. tuberculosis-infected human patients tested, independently of the form of the disease (extrapulmonary or pulmonary). It also elicits an antibody response in lepromatous leprosy patients. Interestingly, although more sera would need to be tested, tuberculous cattle do not seem to recognize the DES antigen. Furthermore, the ELISA experiments showed that it is possible to distinguish tuberculosis patients from patients suffering from other pathologies on the basis of the sensitivity of their antibody response to the DES antigen. The DES antigen is therefore a good candidate to be used for serodiagnosis of tuberculosis in human patients. The reason why the non-tuberculous patients tested recognize at a low level the DES protein could be due to the fact they are all BCG-vaccinated individuals (BCG expressing the protein), or to a cross-reactivity of their antibody response with other bacterial antigens. It would now be interesting to know whether the DES antigen possesses, in addition to its B cell epitopes, T cell epitopes which are the only protective ones in the host immunological response against pathogenic mycobacteria. If the DES protein is also a good stimulator of the T cell response in a majority of tuberculosis patients, it could be used either individually or as part of a “cocktail” of antigens in the design of a subunit vaccine against tuberculosis.
The references cited herein are listed on the following pages and are expressly incorporated by reference.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This is a division of application Ser. No. 10/368,433, filed Feb. 20, 2003 (now U.S. Pat. No. 7,071,320), which is a division of application Ser. No. 09/230,485, filed Apr. 20, 1999 (now U.S. Pat. No. 6,582,925), which is a 35 U.S.C. §371 filing of PCT/IB97/00923, filed Jul. 25, 1997, and claims priority to Provisional Application No. 60/022,713, filed Jul. 26, 1996. Applicants hereby claim priority to each of those applications under the provisions of 35 U.S.C. §§120, 119, and 365. The entire contents of each of the priority applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6010855 | Jackson et al. | Jan 2000 | A |
6204038 | Jackson et al. | Mar 2001 | B1 |
6248581 | Gicquel et al. | Jun 2001 | B1 |
Number | Date | Country |
---|---|---|
WO 92 16652 | Oct 1992 | WO |
WO 94 00493 | Jan 1994 | WO |
WO 95 14713 | Jan 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20060241291 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60022713 | Jul 1996 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10368433 | Feb 2003 | US |
Child | 11357726 | US | |
Parent | 09230485 | US | |
Child | 10368433 | US |