Embodiments described herein generally relate to a display. More specifically, embodiments described herein relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display.
Input devices including display devices may be used in a variety of electronic systems. An organic light-emitting diode (OLED) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of an organic compound that emits light in response to an electric current. OLED devices are classified as bottom emission devices if light emitted passes through the transparent or semi-transparent bottom electrode and substrate on which the panel was manufactured. Top emission devices are classified based on whether or not the light emitted from the OLED device exits through the lid that is added following the fabrication of the device. OLEDs are used to create display devices in many electronics today. Today's electronics manufacturers are pushing these display devices to shrink in size while providing higher resolution than just a few years ago.
OLED pixel patterning is currently based on a process that restricts panel size, pixel resolution, and substrate size. Rather than utilizing a fine metal mask, photolithography should be used to pattern pixels. Currently, OLED pixel patterning requires lifting off organic material after the patterning process. When lifted off, the organic material leaves behind a particle issue that disrupts OLED performance. Accordingly, what is needed in the art are sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic OLED display.
In one embodiment, a device is provided. The device includes a substrate, a pixel-defining layer (PDL) structures disposed over the substrate and defining sub-pixels of the device, and a plurality overhang structures. Each overhang structure is defined by a top extension of a top structure extending laterally past a body structure. Each body structure is disposed over an upper surface of each PDL structure. The overhang structures define a plurality of sub-pixels including a first sub-pixel and a second sub-pixel. The first sub-pixel includes a first anode, a first organic light-emitting diode (OLED) material, a first cathode, and a first encapsulation layer. The first OLED material is disposed over and in contact with the first anode and under the adjacent overhang structures. The first cathode is disposed over the first OLED material and under the adjacent overhang structures. The first encapsulation layer disposed over the first cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the adjacent overhang structures. The first encapsulation layer has a first thickness. The second sub-pixel includes a second anode, a second OLED material, a second cathode, and a second encapsulation layer. The second organic light-emitting diode (OLED) material is disposed over and in contact with the second anode and under the overhang structures. The second cathode is disposed over the second OLED material and under the adjacent overhang structures. The second encapsulation layer is disposed over the second cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the adjacent overhang structures. The second encapsulation layer having a second thickness different than the first thickness.
In another embodiment, a device is provided. The device includes a substrate, a pixel-defining layer (PDL) structures disposed over the substrate and defining sub-pixels of the device, and a plurality overhang structures. Each overhang structure is defined by a top extension of a top structure extending laterally past a body structure to form an overhang. Each body structure is disposed over an upper surface of each PDL structure. The adjacent overhang structures of the plurality overhang structures define a plurality of sub-pixels including a first sub-pixel and a second sub-pixel. The first sub-pixel includes a first anode, a first organic light-emitting diode (OLED) material, a first cathode and a first encapsulation layer. The first OLED material is disposed over and in contact with the first anode and under the adjacent overhang structures. The first cathode is disposed over the first OLED material and under the adjacent overhang structures. The first encapsulation layer disposed over the first cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the overhang structures. The first encapsulation layer is in an entire area of the overhang and has a first thickness. The second sub-pixel includes a second anode, a second OLED material, a second cathode, and a second encapsulation layer. The second OLED material is disposed over and in contact with the second anode and under the adjacent overhang structures. The second cathode disposed over the second OLED material and under the adjacent overhang structures. The second encapsulation layer is disposed over the second cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the adjacent overhang structures. The second encapsulation layer has a second thickness that is different from the first thickness.
In yet another embodiment, a device is provided. The device includes a substrate, a pixel-defining layer (PDL) structures disposed over the substrate and defining sub-pixels of the device, and a plurality overhang structures. Each overhang structure is defined by a top extension of a top structure extending laterally past a body structure to form an overhang. Each body structure disposed over an upper surface of each PDL structure. The adjacent overhang structures of the plurality overhang structures define a plurality of sub-pixels including a first sub-pixel, a second sub-pixel, and a third sub-pixel. The first sub-pixel includes a first anode, a first organic light emitting diode (OLED), a first cathode, and a first encapsulation layer. The first OLED material is disposed over and in contact with the first anode and under the adjacent overhang structures. The first cathode is disposed over the first OLED material, the first cathode extends under the adjacent overhang structures and contacting a portion of the overhang structures. The first encapsulation layer is disposed over the first cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the overhang structures. The encapsulation layer has a first thickness. The second sub-pixel a second anode, a second OLED material, a second cathode, and a second encapsulation layer. The second OLED material is disposed over and in contact with the second anode and under the adjacent overhang structures. The second cathode is disposed over the second OLED material, the second cathode extending under the adjacent overhang structures and contacting a portion of the overhang structures. The second encapsulation layer is disposed over the second cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the overhang structures. The second encapsulation layer has a second thickness that is different than the first thickness. The third sub-pixel includes a third anode, a third OLED material, a third cathode, and a third encapsulation layer. The third OLED material is disposed over and in contact with the third anode and under the adjacent overhang structures. The third cathode is disposed over the third OLED material extending under the adjacent overhang structures and contacting a portion of a body structure. The third encapsulation layer is disposed over the third cathode, extending under the adjacent overhang structures and contacting a portion of the sidewall of the overhang structures. The encapsulation layer has a third thickness that is different from the first thickness and the second thickness.
In yet another embodiment, a device is provided. The device includes a substrate, a pixel-defining layer (PDL) structures disposed over the substrate and defining sub-pixels of the device, and a plurality overhang structures. Each overhang structure is defined by a top extension of a top structure extending laterally past a body structure. Each body structure is disposed over an upper surface of each PDL structure. The adjacent overhang structures of the plurality overhang structures are define a plurality of sub-pixels including a first sub-pixel and a second sub-pixel. The first sub-pixel includes a first anode, a first organic light-emitting diode (OLED) material, a first cathode, and a first encapsulation layer. The first OLED material is disposed over and in contact with the first anode and under the adjacent overhang structures. The first cathode is disposed over the first OLED material and under the adjacent overhang structures. The first encapsulation layer is disposed over the first cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the adjacent overhang structures. The first encapsulation layer comprises at least two layers of a silicon-containing material. The second sub-pixel includes a second anode, a second OLED, a second cathode, and a second encapsulation layer. The second OLED material is disposed over and in contact with the second anode and under the adjacent overhang structures. The second cathode is disposed over the second OLED material and under the adjacent overhang structures. The second encapsulation layer is disposed over the second cathode, extending under the adjacent overhang structures and contacting a portion of a sidewall of the adjacent overhang structures. The second encapsulation layer comprises the silicon-containing material with a different composition than the first encapsulation layer.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
Embodiments described herein generally relate to a display. More specifically, embodiments described herein relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display.
Each of the embodiments described herein of the sub-pixel circuit include a plurality of sub-pixels with each of the sub-pixels defined by adjacent overhang structures that are permanent to the sub-pixel circuit. While the Figures depict three sub-pixels with each sub-pixel defined by adjacent overhang structures, the sub-pixel circuit of the embodiments described herein include a plurality of sub-pixels, such as three or more sub-pixels. Each sub-pixel has the OLED material configured to emit a white, red, green, blue or other color light when energized. E.g., the OLED material of a first sub-pixel emits a red light when energized, the OLED material of a second sub-pixel emits a green light when energized, and the OLED material of a third sub-pixel emits a blue light when energized.
The overhang structures are permanent to the sub-pixel circuit and include at least a top structure disposed over a body structure. The adjacent overhang structures defining each sub-pixel of the sub-pixel circuit of the display provide for formation of the sub-pixel circuit using evaporation deposition and provide for the overhang structures to remain in place after the sub-pixel circuit is formed. Evaporation deposition is utilized for deposition of OLED materials (including a hole injection layer (HIL), a hole transport layer (HTL), an emissive layer (EML), and an electron transport layer (ETL)) and cathode. In one embodiment, the HIL layer has a greater conductivity than the HTL layer. In another embodiment, the HIL layer has a greater energy level than the HTL layer. In some instances, an encapsulation layer may be disposed via evaporation deposition. In embodiments including one or more capping layers, the capping layers are disposed between the cathode and the encapsulation layer. The overhang structures and the evaporation angle set by the evaporation source define the deposition angles, i.e., the overhang structures provide for a shadowing effect during evaporation deposition with the evaporation angle set by the evaporation source. In order to deposit at a particular angle, the evaporation source is configured to emit the deposition material at a particular angle with regard to the overhang structure. The encapsulation layer of a respective sub-pixel is disposed over the cathode with the encapsulation layer extending under at least a portion of each of the adjacent overhang structures. The encapsulation layer of each sub-pixel contacts at least a portion of a sidewall of each of the adjacent overhang structures. The encapsulation layer can be varied by thickness, composition, and deposition method depending on the OLED materials deposited on the sub-pixels.
The sub-pixel circuit 100 includes a substrate 102. Metal-containing layers 104 may be patterned on the substrate 102 and are defined by adjacent pixel-defining layer (PDL) structures 126 disposed on the substrate 102. In one embodiment, the metal-containing layers 104 are pre-patterned on the substrate 102. E.g., the substrate 102 is a pre-patterned indium tin oxide (ITO) glass substrate. The metal-containing layers 104 are configured to operate anodes of respective sub-pixels. The metal-containing layers 104 include, but are not limited to, chromium, titanium, gold, silver, copper, aluminum, ITO, a combination thereof, or other suitably conductive materials.
The PDL structures 126 are disposed on the substrate 102. The PDL structures 126 include one of an organic material, an organic material with an inorganic coating disposed thereover, or an inorganic material. The organic material of the PDL structures 126 includes, but is not limited to, polyimides. The inorganic material of the PDL structures 126 includes, but is not limited to, silicon oxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (Si2N2O), magnesium fluoride (MgF2), or combinations thereof. Adjacent PDL structures 126 define a respective sub-pixel and expose the anode (i.e., metal-containing layer 104) of the respective sub-pixel of the sub-pixel circuit 100.
The sub-pixel circuit 100 has a plurality of sub-pixels 106 including at least a first sub-pixel 108a, a second sub-pixel 108b, and a third sub-pixel 108c. While the Figures depict the first sub-pixel 108a, the second sub-pixel 108b, and the third sub-pixel 108c, the sub-pixel circuit 100 of the embodiments described herein may include three or more sub-pixels 106, such as a fourth and a fifth sub-pixel. Each sub-pixel 106 has an organic light-emitting diode (OLED) material 112 configured to emit a white, red, green, blue or other color light when energized. E.g., the OLED material 112 of the first sub-pixel 108a emits a red light when energized, the OLED material of the second sub-pixel 108b emits a green light when energized, the OLED material of a third sub-pixel 108c emits a blue light when energized, and the OLED material of a fourth sub-pixel and a fifth sub-pixel emits another color light when energized.
Overhang structures 110 are disposed on an upper surface 103 of each of the PDL structures 126. The overhang structures 110 are permanent to the sub-pixel circuit. The overhang structures 110 further define each sub-pixel 106 of the sub-pixel circuit 100. The overhang structures 110 include at least a top structure 1106 disposed over a body structure 110A. In one embodiment, the top structure 1106 is disposed on the body structure 110A. The body structure 110A is disposed over the upper surface 103 of the PDL structure 126. In one embodiment, the body structure 110A is disposed on the upper surface 103 of the PDL structure 126. Each overhang structure 110 includes adjacent overhangs 109. The adjacent overhangs 109 are defined by a top extension 109A of the top structure 110B extending laterally past a sidewall 111 of the body structure 110A.
The top structure 110B includes one of a non-conductive material, inorganic material, or metal-containing material. The body structure 110A includes an inorganic material or metal-containing material. The non-conductive material includes, but it not limited to, an inorganic silicon-containing material. E.g., the silicon-containing material includes oxides or nitrides of silicon, or combinations thereof. The metal-containing materials include at least one of a metal or metal alloy such as titanium (Ti), aluminum (Al), aluminum neodymium (AlNd), molybdenum (Mo), molybdenum tungsten (MoW), copper (Cu), or combinations thereof. The inorganic materials of the body structure 110A and the top structure 110B include titanium (Ti), silicon nitride (Si3N4), silicon oxide (SiO2), silicon oxynitride (Si2N2O), or combinations thereof. The overhang structures 110 are able to remain in place, i.e., are permanent. Thus, organic material from lifted off overhang structures that disrupt OLED performance would not be left behind. Eliminating the need for a lift-off procedure also increases throughput.
In one example, the top structure 110B includes a non-conductive inorganic material and the body structure 110A includes a conductive inorganic material or a metal-containing material. In another example, the top structure 110B includes a conductive inorganic material or metal-containing material and the body structure 110A includes a conductive inorganic material or metal-containing material. An assistant cathode 202 (shown in
Adjacent overhangs 109 are defined by the top extension 109A of the top structure 110B. At least a bottom surface 107 of the top structure 110B is wider than a top surface 105 of the body structure 110A to form the top extension 109A (as shown in
The overhang structures 110 and an evaporation angle set by an evaporation source define deposition angles, i.e., the overhang structures 110 provide for a shadowing effect during evaporation deposition with the evaporation angle set by the evaporation source. The overhang 109 and the evaporation source define an OLED angle θOLED of the OLED material 112 and a cathode angle θcathode of the cathode 114 (shown in
Each sub-pixel 106 includes include an encapsulation layer 116, e.g., the first sub-pixel 108a has a first encapsulation layer 116A, the second sub-pixel 108b has a second encapsulation layer 116B, and the third sub-pixel 108c has a third encapsulation layer 116C. The encapsulation layer 116 may be or may correspond to a local passivation layer. The encapsulation layer 116 of a respective sub-pixel is disposed over the cathode 114 (and OLED material 112) with the encapsulation layer 116 extending under at least a portion of the overhang structures 110 and over at least a portion of a sidewall of each of the adjacent overhang structures 110. In one embodiment, as shown in sub-pixels 108b and 108c of
In embodiments including one or more capping layers, the capping layers are disposed between the cathode 114 and the encapsulation layer 116. E.g., a first capping layer and a second capping layer are disposed between the cathode 114 and the encapsulation layer 116. Each of the embodiments described herein may include one or more capping layers disposed between the cathode 114 and the encapsulation layer 116. The first capping layer may include an organic material. The second capping layer may include an inorganic material, such as lithium fluoride. The first capping layer and the second capping layer may be deposited by evaporation deposition. In another embodiment, the sub-pixel circuit 100 further includes at least a global passivation layer 120 disposed over the overhang structure 110 and the encapsulation layer 116. In yet another embodiment, the sub-pixel includes an intermediate passivation layer disposed over the overhang structures 110 of each of the sub-pixels 106, and disposed between the encapsulation layer 116 and the global passivation layer 120.
The arrangement 101A and the arrangement 101B of the sub-pixel circuit 100 further include at least a global passivation layer 120 disposed over the overhang structures 110 and the encapsulation layers 116. In one embodiment, an intermediate layer 118 may be disposed between the global passivation layer 120 and the overhang structures 110 and the encapsulation layers 116. The intermediate layer 118 may include an inkjet material, such as an acrylic material.
The top structure 110B includes an underside edge 206 and an overhang vector 208. The underside edge 206 extends past the sidewall 111 of the body structure 110A. The overhang vector 208 is defined by the underside edge 206 and the PDL structure 126. The OLED material 112 is disposed over the metal-containing layer 104, over the sidewall 127 of the PDL structure 126, and over a first portion 210 of the upper surface 103 of the PDL structure 126, extending under the overhang 109 to an OLED endpoint 218. The OLED material 112 forms an OLED angle θOLED between an OLED vector 212 and the overhang vector 208. The OLED vector 212 is defined by an OLED endpoint 218 extending under the top structure 110B and the underside edge 206 of the top structure 110B. In one embodiment, the OLED material 112 may include one or more of a HIL, a HTL, an EML, and an ETL.
The cathode 114 is disposed over the OLED material 112, over the first portion 210 of the PDL structure 126, and over a second portion 211 of the upper surface 103 of the PDL structures 126 in each sub-pixel 106. In some embodiments, which can be combined with other embodiments described herein, the cathode 114 is disposed on a first portion 220 of the sidewall 111 of the body structure 110A. In other embodiments, as shown in
The encapsulation layer 116 is disposed over the cathode 114 (and OLED material 112) with the encapsulation layer 116 extending at least under the top structure 110B of the overhang structure 110 and over at least a portion of a sidewall of the overhang structure 110. In one embodiment, as shown in sub-pixels 108b and 108c of
The encapsulation layer 116 may be varied using deposition thicknesses. Each encapsulation layer 116 has a thickness. The thickness is the distance from the bottom surface of the encapsulation layer to the top surface of the encapsulation layer 116. The first encapsulation layer 116A has a first thickness t1, the second encapsulation layer 116B has a second thickness t2, and the third encapsulation layer 116C has a third thickness t3. In another embodiment, the second thickness t2 is different from the first thickness t1, and the third thickness t3 that is different from the first thickness t1 and the second thickness t2. In one embodiment, as shown in
In another embodiment, the thickness of the encapsulation layer 116 is increased as the wavelength of the light emitted increases, e.g., the first encapsulation layer 116A thickness t1 is thickest at sub-pixel 108a having a red OLED material 112 (˜580 nm), the second encapsulation layer 116B thickness t2 is thinner at second sub-pixel 108b having a green OLED material 112 (˜540 nm), and the third encapsulation layer 116C thickness t3 is thinnest at sub-pixel 108c having a blue OLED material 112 (˜440 nm). In another embodiment, the thickness of the encapsulation layer 116 is decreased as the wavelength of light emitted increases, e.g. the first encapsulation layer 116A thickness t1 is thinnest at sub-pixel 108a having a red OLED material 112 (˜580 nm), the second encapsulation layer 116B thickness t2 is thicker at second sub-pixel 108b having a green OLED material 112 (˜540 nm), and the third encapsulation layer 116C thickness t3 is thickest at sub-pixel 108c having a blue OLED material 112 (˜440 nm). In another embodiment, the thickness of the encapsulation layer 116 may vary independent from the type of OLED light used at the sub-pixels 108a, 108b, and 108c. The encapsulation layer in each sub-pixel are varied in thickness in order to protect deposited layers during etching of subsequent encapsulation layers. The thicknesses t2 and t3 can range between about 0.5 μm and about 2.0 μm, such as about 0.8 μm to about 1.2 μm.
The encapsulation layer 116 includes the non-conductive inorganic material, such as the silicon-containing material. The silicon-containing material may include silicon nitride (e.g., Si3N4) materials, silicon oxynitride materials (e.g., Si2N2O), silicon oxide materials (e.g., SiO2), or a combination thereof. In one embodiment, the first encapsulation layer 116A includes silicon nitride materials, the second encapsulation layer 116B includes a silicon oxynitride material, and the third encapsulation layer 116C includes silicon oxide. The thicknesses of the encapsulation layer 116 may depend on the etch selectivity of the material of the encapsulation layer 116. The silicon-containing materials can further be varied to change the optical properties of the encapsulation layer 116. For example, the silicon-containing materials can be tuned to increase or decrease the refractive index. The difference in refractive index can also effect the etching rate of the encapsulation layer 116. This allows for additional etch selectivity control of the encapsulation layer 116. In one embodiment, the first encapsulation layer 116A has a first refractive index, the second encapsulation layer 1166 has a second refractive index, and the third encapsulation layer 116C has a third refractive index. In this embodiment, the first refractive index, the second refractive index, and the third refractive index are different from each other.
At least one of the first encapsulation layer 116A, the second encapsulation layer 116B, and the third encapsulation layer 116C may include at least two layers of the silicon-containing material. At least one of the first encapsulation layer 116A, the second encapsulation layer 116B, and the third encapsulation layer 116C includes a composition for at least one of the layers of the silicon-containing material that is different from the compositions of the other encapsulation layers 116. In a first example, the first encapsulation layer 116A includes a silicon oxynitride material over a silicon nitride material. The second encapsulation layer 116B includes a silicon oxide layer over a silicon nitride layer. The third encapsulation layer 116C includes a silicon nitride layer over a silicon oxide layer. In a second example, the first encapsulation layer 116A includes a silicon oxide layer over a silicon oxynitride layer. The second encapsulation layer 116B includes a silicon nitride layer over a silicon oxynitride layer. The third encapsulation layer 116C has a silicon oxynitride layer over a silicon oxide layer. The silicon nitride material has a thickness of about 0.8 μm to about 1.2 μm. The silicon oxynitride layer has a thickness of about 0.2 μm to about 0.4 μm. The silicon oxide layer has a thickness of about 0.2 μm to about 0.4 μm.
The encapsulation layer 116 may further be varied using different modes of deposition, e.g., atomic layer deposition (ALD), chemical vapor deposition (CVD), and physical vapor deposition (PVD). In one example, the first sub-pixel 108a includes silicon nitride is deposited using CVD and silicon oxide deposited using ALD. The second sub-pixel 108b includes silicon nitride deposited using CVD and silicon oxynitride deposited using CVD. The third sub-pixel 108c includes silicon nitride deposited using CVD. The encapsulation layer 116 may further be varied between using an inductively coupled plasma (IDP) or a conductively coupled plasma (CCP) for the deposition processes.
By varying the encapsulation layer 116 compositions, deposition methods, and thicknesses, the encapsulation layer in each sub-pixel protects deposited layers during deposition of subsequent layers and improves process yield and efficiency. The variation in encapsulation layer 116 thicknesses further controls the distance between the underside edge 206 and the top surface of the encapsulation layer 116, as shown in sub-pixels 108b and 108c in
The encapsulation layer 116 extends under the overhang structure 110 to contact the second portion of the body structure 110A. A distance is defined between an encapsulation edge 230 and the top surface 119 of the encapsulation layer 116. In one embodiment, the first encapsulation layer 116A is in an entire area of the overhang 109. In this embodiment, the thickness t1 of the encapsulation is from the bottom surface 107 of the top structure 110B to the bottom surface of the first encapsulation layer 116A. E.g., there is no distance between an encapsulation edge 230 and the top surface 119 of the encapsulation layer 116. In another embodiment, as shown at sub-pixel 108a in
During evaporation deposition of the OLED material 112, the underside edge 206 of the top structure 110B defines the position of the OLED endpoint 218. E.g., the OLED material 112 is evaporated at an OLED maximum angle that corresponds to the OLED vector 212 and the underside edge 206 ensures that the OLED material 112 is not deposited past the OLED endpoint 218. During evaporation deposition of the cathode 114, the underside edge 206 of the top structure 110B defines the position of the cathode endpoint 226. E.g., the cathode 114 is evaporated at a cathode maximum angle that corresponds to the cathode vector 224 and the underside edge 206 ensures that the cathode 114 is not deposited past the cathode endpoint 226. The OLED angle θOLED is less than the cathode angle θcathode.
At operation 301, as shown in
At operation 302, as shown in
At operation 303, as shown in
At operation 304, as shown in
At operation 305, as shown in
At operation 308, as shown in
At operation 309, as shown in
At operation 310, as shown in
Thicknesses, compositions, and deposition methods of the encapsulation layer 116 may be varied, as described above. By varying the encapsulation layer 116 compositions and deposition methods to create variations in thicknesses, the encapsulation layer 116 protects the deposited OLED material 112 from damage during layering and improves process yield and efficiency. The variation in encapsulation layer 116 thicknesses further controls the distance between the underside edge 206 and the top surface of the encapsulation layer 116, as shown in sub-pixels 108b and 108c in
At operation 501, as shown in
At operation 503, as shown in
At operation 504, as shown in
At operation 506, as shown in
At operation 507, as shown in
Operations 501-508 described herein form the sub-pixel circuit 100 including two or more sub-pixels 106. Operations 505-508 may be repeated for each addition sub-pixel, e.g. for a third and/or a fourth sub-pixel. The encapsulation layer 116 for a third sub-pixel 108c, as shown in
Thicknesses, compositions, and deposition methods of the encapsulation layer 116 may be varied, as described above. By varying the encapsulation layer 116 compositions and deposition methods to create variations in thicknesses, the encapsulation layer 116 protects the deposited OLED material 112 from damage during layering and improves process yield and efficiency. The variation in encapsulation layer 116 thicknesses further controls the distance between the underside edge 206 and the top surface of the encapsulation layer 116, as shown in sub-pixels 108b and 108c in
In summation, described herein are device relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The adjacent overhang structures defining each sub-pixel of the sub-pixel circuit of the display provide for formation of the sub-pixel circuit using evaporation deposition and provide for the overhang structures to remain in place after the sub-pixel circuit is formed (e.g., utilizing the methods of the fifth, sixth, or seventh exemplary embodiments). Evaporation deposition may be utilized for deposition of an OLED material and cathode. The overhang structures define deposition angles, i.e., provide for a shadowing effect during evaporation deposition, for each of the OLED material and the cathode such the OLED material does not contact the body structure (and assistant cathode according to embodiments) and the cathode contacts the body structure according to some embodiments. The encapsulation layer of a respective sub-pixel is disposed over the cathode with the encapsulation layer extending under at least a portion of each of the adjacent overhang structures and over a sidewall of each of the adjacent overhang structures. The encapsulation layer in each sub-pixel are varied in thickness in order to protect deposited layers during etching of encapsulation subsequent layers. The variation in thickness can be descending, ascending, or dependent on the OLED material deposited (e.g., the color of the OLED).
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority to U.S. patent application Ser. No. 17/881,358, filed on Aug. 4, 2022, which claims benefit to U.S. Provisional Patent Application Ser. No. 63/229,266, filed on Aug. 4, 2021, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6060728 | Ghosh et al. | May 2000 | A |
6137220 | Nagayama | Oct 2000 | A |
6476988 | Yudasaka | Nov 2002 | B1 |
8686629 | Oh et al. | Apr 2014 | B2 |
8987717 | Kang | Mar 2015 | B2 |
9324962 | Kim | Apr 2016 | B2 |
9337244 | Hatano et al. | May 2016 | B2 |
10170526 | Yang | Jan 2019 | B1 |
10325970 | Bang et al. | Jun 2019 | B2 |
10580843 | Zhao et al. | Mar 2020 | B2 |
10615231 | Wu et al. | Apr 2020 | B2 |
11610954 | Lin et al. | Mar 2023 | B1 |
11665931 | Chen | May 2023 | B2 |
20020014836 | Codama et al. | Feb 2002 | A1 |
20030006697 | Weaver | Jan 2003 | A1 |
20040169468 | Peng | Sep 2004 | A1 |
20040180457 | Birnstosk et al. | Sep 2004 | A1 |
20040238846 | Wittmann | Dec 2004 | A1 |
20060170340 | Tzen et al. | Aug 2006 | A1 |
20090009069 | Takata | Jan 2009 | A1 |
20120217516 | Hatano | Aug 2012 | A1 |
20120228603 | Nakamura | Sep 2012 | A1 |
20130001620 | Sugisawa et al. | Jan 2013 | A1 |
20140131743 | Jiang et al. | May 2014 | A1 |
20160240589 | Jeong | Aug 2016 | A1 |
20170069695 | Choung et al. | Mar 2017 | A1 |
20180358584 | Jeong et al. | Dec 2018 | A1 |
20190058020 | Tsai et al. | Feb 2019 | A1 |
20190088730 | Lee et al. | Mar 2019 | A1 |
20190334112 | Lee et al. | Oct 2019 | A1 |
20190348482 | Bae et al. | Nov 2019 | A1 |
20200119114 | Kim et al. | Apr 2020 | A1 |
20200168670 | Kim | May 2020 | A1 |
20200194676 | Chang | Jun 2020 | A1 |
20200312930 | Choi et al. | Oct 2020 | A1 |
20210066652 | Lee | Mar 2021 | A1 |
20210111366 | Chang | Apr 2021 | A1 |
20210135150 | Wang | May 2021 | A1 |
20210296619 | Wang | Sep 2021 | A1 |
20230263012 | Chen et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
105742311 | Nov 2018 | CN |
115884633 | Mar 2023 | CN |
H09330792 | Dec 1997 | JP |
2002-056986 | Feb 2002 | JP |
2016225319 | Dec 2016 | JP |
20170012707 | Feb 2017 | KR |
102090555 | Mar 2020 | KR |
20200042996 | Apr 2020 | KR |
102207605 | Jan 2021 | KR |
Entry |
---|
PCT/US2022/039443, International Search Report and Written Opinion dated Nov. 23, 2022, 9 pages. |
International Search Report/Written Opinion issued to PCT/US2021/021097 on Jul. 1, 2021. |
International Search Report/Written Opinion issued to PCT/US2021/021077 on Jun. 23, 2021. |
International Search Report and Written Opinion dated Aug. 27, 2024 for Application No. PCT/US2024/025796. |
Number | Date | Country | |
---|---|---|---|
20230255064 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
63229266 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17881358 | Aug 2022 | US |
Child | 18301805 | US |