The present invention is directed toward a safety apparatus and more particularly toward a safety apparatus in the form of a descent controller used by a workman or other person to control his descent down a rope. The descent controller of the present invention also includes a centrifugal brake that prevents the rapid descent of the workman.
Descent control devices have been developed, all with the objective of lowering a person or load from a higher to a lower elevation. These devices have taken many forms and have utilized a variety of elements capable of providing a mechanical advantage together with a braking mechanism. Safety features, such as deadman and panic control features, are equally important, particularly when the device is used for descent, escape, or rescue purposes.
In more recent years, concerns with occupational safety have led to the development of mechanisms which enable a worker to lower himself from an elevated position such as a scaffold, crane, lift truck or platform in the event of an emergency. The equipment is, in many respects, similar to known fire escape devices, mountain climbing equipment, and military equipment.
A descent load lowering device in the form of a small cylindrical drum about which a rope is wound to provide a descent braking function is disclosed in U.S. Pat. No. 4,550,801 to Forrest. The device shown therein includes end plates on each end of a cylindrical drum with apertures on each end plate through which a rope is threaded and wound in two of more turns around the drum. The lower end plate is provided with one or more arcuate tapered slots opening into the rope receiving aperture for engaging and binding the rope in order to increase friction and form somewhat of a brake. The operator grasps and moves the free untensioned end of the rope along a tapered slot to vary the rate of descent or stop it altogether by tensioning and holding the rope in the narrow end of the arcuate tapered slot.
While devices such as shown in the Forest patent have provided some benefit, they take some skill and experience to operate properly. Furthermore, should the workman make a mistake or be injured, there are no safety provisions for automatically controlling his descent or for preventing freefall.
A descent control device with a brake, in the form of a vertical cylindrical drum or capstan about which a rope is wound and a tapered slot through the drum for receiving and releasably gripping the rope along which descent is made, together with a releasable locking end plate, is described in U.S. Pat. No. 4,883,146 to Varner et al. As with Forrest, the device shown in the Varner et al. patent includes end plates on each end of a vertical cylindrical drum or capstan with apertures on each end plate through which a rope is threaded. The rope is wound in two or more turns around the drum. The lower plate is provided with an arcuate tapered slot opening into the rope receiving aperture for engaging and binding the rope in order to provide a brake.
Unlike Forrest, however, the rope of Varner et al. is mechanically forced into the aperture by a locking end plate rotatably mounted on the capstan below the lower end plate. The locking plate includes an aperture for loosely receiving the rope. A spring rotatably biases the locking plate to releasably and forcibly urge the rope into the narrowed tapered slot in the lower end plate for locking the rope against movement on the capstan. By rotating the locking plate against the force of the spring the rope can be progressively released from the tapered slot.
Apparently recognizing the difficulty in operating the device of the Varner et al. '146 patent, the inventors designed improvements thereon and obtained U.S. Pat. Nos. 5,038,888 and 5,131,491. These improvement patents, however, continue to rely on the original concept of forcing a rope into an arcuate slot to control decent. These improved patented devices can still be difficult to operate because of the manner in which they must be manipulated to control ones descent.
In addition, and perhaps more importantly, none of the Forrest or Varner et al. devices includes a mechanism such as an additional safety brake or the like. Such a brake could prevent serious injury to a workman in the event of an unwanted rapid descent or freefall due to a malfunction of the descent controller or due to the workman improperly using the device from panic or as a result of an injury. While positive safety brakes are known, none has ever been combined with a descent controller.
The present invention is designed to overcome the deficiencies of the prior art discussed above. Accordingly, it is an object of the invention to provide a descent controller that is easy to operate and unlikely to malfunction.
It is a further object of the present invention to provide a descent controller that provides a smooth controlled descent with limited skill or training needed by the operator.
It is a still further object of the invention to provide a descent controller that includes a safety brake that will automatically stop descent or freefall due to a malfunction of the descent controller or due to the workman improperly using the device from panic or as a result of an injury.
In accordance with the illustrative embodiments demonstrating features and advantages of the present invention, there is provided a descent controller for lowering a workman or other person along a vertically extending rope from an elevated position to a relatively lower position includes a friction device that may be in the form of a cylinder having a plurality of turns of rope wrapped therearound or a plurality of spaced apart horizontal bars with the rope woven between the bars. The friction device interacts with said rope to retard the movement of the controller along the rope. A lever operated pawl is mounted beneath the friction device and is used by the workman to applying an adjustable force on said rope in order to control his descent down the rope. A centrifugal brake is mounted below the lever centrifugal brake. The centrifugal brake includes a wheel mounted for rotation and has the rope passing around at least a portion of said wheel. Included within the brake is a pawl brake mounted for rotation with the wheel and a fixed stop member. Upon sensing rapid rotation of the wheel, the pawl brake moves outwardly by centrifugal force to engage the fixed stop member and applies a positive stopping force on the wheel to prevent movement of the descent controller relative to said rope thereby preventing accidental freefall.
For the purpose of illustrating the invention, there are shown in the accompanying drawings forms which are presently preferred; it being understood that the invention is not intended to be limited to the precise arrangements and instrumentalities shown.
Referring now to the drawings in detail wherein like reference numerals have been used throughout the various figures to designate like elements, there is shown in
All of the foregoing general description of the descent controller 10 and the manner in which it is used are well known in the art. While the present invention is an improvement on prior devices of the same class, the general use and purpose of the invention is well known. It is generally used by a workman or other person to lower himself from an elevated position to a relatively lower position in a safe and controlled manner.
The descent controller 10 is comprised essentially of three parts. An upper friction means 16, a force applying means 18 and a safety brake 20. The friction means 16 is comprised essentially of a cylinder 22 having a length which is adapted to receive a plurality of turns 24 of rope 12 wrapped therearound as shown in
With the rope 12 passing through the notch 28, being wound around the cylinder 22 and passing downwardly through the notch 32, a substantially cylindrical cover 34 can be applied over the friction means 16. Because the rope 12 will be suspended from above and will be of significant length, the cover 34 is provided with an elongated slot 36 in the outer wall thereof so that it can pass around the rope 12. Appropriate locking means can be provided for locking the cover 34 onto the main body portion of the descent controller so that it is securely held in the position as shown, for example, in
The friction means 16 just described is, per se, conventional and well known in the art. A basic example of the same can be found in the Forrest patent described above and more sophisticated examples are shown in the Varner et al. patents.
The adjustable force applying means 18 located beneath the friction means 16 is adapted to selectively apply an adjustable force on the rope in order for a workman to control his descent. This aspect of the invention includes a movable pawl 38 and a fixed wall segment 40. Preferably, the inner surface of the wall 40 is curved so as to follow the outer contours of the rope 12 resting against the wall 40 as shown in
The pawl 38 is normally spring biased toward the wall segment 40 through the use of a coil spring 44 (see
As shown most clearly in
In order to prevent too rapid of a descent, a stop mechanism such as shown at 50 in
When properly operated, a workman can control the use of the descent controller and his resultant descent by moving the lever 46. There is always the remote possibility, however, that the pawl or lever may malfunction, that the rope could disengage from its proper location between the pawl 38 and the stationary wall segment 40 or that the workman could panic and hold the lever in the open position. This would result in the rapid descent of the workman which could create a dangerous situation. Accordingly, the present invention is provided with the safety brake 20.
The brake 20 is in the form of a centrifugal brake and is comprised of a wheel 52 secured to axle 54 for rotation therewith relative to the housing 56. As shown most clearly in
A rotatable wire bale 62 ensures that the rope 12 is forced around the wheel 52. As shown in
As shown most clearly in
Located outside of the circumference of the plate 64 and secured to the main body portion of the descent controller are a pair of fixed stops 72 and 74 which are preferably spaced 180° away from each other. As long as plate 64 is rotating at a reasonable speed, the pawl 66 remains in the position shown in
A second embodiment of the invention is illustrated in
The friction means 116 of this embodiment includes a plurality of vertically spaced apart horizontal bars 180, 182 and 184 supported between vertical side posts 186 and 188. As shown best in
As best seen in
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and accordingly, reference should be made to the appended claims rather than to the foregoing specification as indicating the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 10/439,212, filed May 15, 2003, now U.S. Pat. No. 6,814,185.
Number | Name | Date | Kind |
---|---|---|---|
812950 | Price | Feb 1906 | A |
1114392 | Shuart | Oct 1914 | A |
2256582 | Sorensen | Sep 1941 | A |
2323883 | Wiley | Jul 1943 | A |
3217840 | Holkesvick | Nov 1965 | A |
3738449 | Arancio | Jun 1973 | A |
4145027 | Brimo | Mar 1979 | A |
4399889 | Todd | Aug 1983 | A |
4476956 | Eger | Oct 1984 | A |
4550801 | Forrest | Nov 1985 | A |
4580658 | Brda | Apr 1986 | A |
4883146 | Varner et al. | Nov 1989 | A |
5038888 | Varner et al. | Aug 1991 | A |
5131491 | Varner et al. | Jul 1992 | A |
5145036 | Omalia | Sep 1992 | A |
5850893 | Hede et al. | Dec 1998 | A |
6131697 | Bassett | Oct 2000 | A |
Number | Date | Country | |
---|---|---|---|
Parent | 10439212 | May 2003 | US |
Child | 10978093 | US |