The present application relates generally to the use of liquid desiccants to dehumidify and cool, or heat and humidify an air stream entering a space. More specifically, the application relates to the control systems required to operate 2 or 3-way liquid desiccant mass and heat exchangers employing micro-porous membranes to separate the liquid desiccant from an air stream. Such heat exchangers can use gravity induced pressures (siphoning) to keep the micro-porous membranes properly attached to the heat exchanger structure. The control systems for such 2 and 3-way heat exchangers are unique in that they have to ensure that the proper amount liquid desiccant is applied to the membrane structures without over pressurizing the fluid and without over- or under-concentrating the desiccant. Furthermore, the control system needs to respond to demands for fresh air ventilation from the building and needs to adjust to outdoor air conditions, while maintaining a proper desiccant concentration and preventing desiccant crystallization or undue dilution. In addition, the control system needs to be able to adjust the temperature and humidity of the air supplied to a space by reacting to signals from the space such as thermostats or humidistats. The control system also needs to monitor outside air conditions and properly protect the equipment in freezing conditions by lowering the desiccant concentration in such a way as to avoid crystallization.
Liquid desiccants have been used parallel to conventional vapor compression HVAC equipment to help reduce humidity in spaces, particularly in spaces that require large amounts of outdoor air or that have large humidity loads inside the building space itself. Humid climates, such as for example Miami, Fla. require a lot of energy to properly treat (dehumidify and cool) the fresh air that is required for a space's occupant comfort. Conventional vapor compression systems have only a limited ability to dehumidify and tend to overcool the air, oftentimes requiring energy intensive reheat systems, which significantly increase the overall energy costs, because reheat adds an additional heat-load to the cooling system. Liquid desiccant systems have been used for many years and are generally quite efficient at removing moisture from the air stream. However, liquid desiccant systems generally use concentrated salt solutions such as ionic solutions of LiCl, LiBr or CaCl2 and water. Such brines are strongly corrosive, even in small quantities, so numerous attempts have been made over the years to prevent desiccant carry-over to the air stream that is to be treated. In recent years efforts have begun to eliminate the risk of desiccant carry-over by employing micro-porous membranes to contain the desiccant. An example of such as membrane is the EZ2090 poly-propylene, microporous membrane manufactured by Celgard, LLC, 13800 South Lakes Drive Charlotte, N.C. 28273. The membrane is approximately 65% open area and has a typical thickness of about 20 μm. This type of membrane is structurally very uniform in pore size (100 nm) and is thin enough to not create a significant thermal barrier. However such super-hydrophobic membranes are typically hard to adhere to and are easily subject to damage. Several failure modes can occur: if the desiccant is pressurized the bonds between the membrane and its support structure can fail, or the membrane's pores can distort in such a way that they no longer are able to withstand the liquid pressure and break-through of the desiccant can occur. Furthermore if the desiccant crystallizes behind the membrane, the crystals can break through the membrane itself creating permanent damage to the membrane and causing desiccant leaks. And in addition the service life of these membranes is uncertain, leading to a need to detect membrane failure or degradation well before any leaks may even be apparent.
Liquid desiccant systems generally have two separate functions. The conditioning side of the system provides conditioning of air to the required conditions, which are typically set using thermostats or humidistats. The regeneration side of the system provides a reconditioning function of the liquid desiccant so that it can be re-used on the conditioning side. Liquid desiccant is typically pumped between the two sides which implies that the control system also needs to ensure that the liquid desiccant is properly balanced between the two sides as conditions necessitate and that excess heat and moisture are properly dealt with without leading to over-concentrating or under-concentrating the desiccant.
There thus remains a need for a control system that provides a cost efficient, manufacturable, and efficient method to control a liquid desiccant system in such a way as to maintain proper desiccant concentrations, fluid levels, react to space temperature and humidity requirements, react to space occupancy requirements and react to outdoor air conditions, while protecting the system against crystallization and other potentially damaging events. The control system furthermore needs to ensure that subsystems are balanced properly and that fluid levels are maintained at the right set-points. The control system also needs to warn against deterioration or outright failures of the liquid desiccant membrane system.
Provided herein are methods and systems used for the efficient dehumidification of an air stream using a liquid desiccant. In accordance with one or more embodiments, the liquid desiccant is running down the face of a support plate as a falling film. In accordance with one or more embodiments, the desiccant is contained by a microporous membrane and the air stream is directed in a primarily vertical orientation over the surface of the membrane and whereby both latent and sensible heat are absorbed from the air stream into the liquid desiccant. In accordance with one or more embodiments, the support plate is filled with a heat transfer fluid that preferably flows in a direction counter to the air stream. In accordance with one or more embodiments, the system comprises a conditioner that removes latent and sensible heat through the liquid desiccant and a regenerator that removes the latent and sensible heat from the system. In accordance with one or more embodiments, the heat transfer fluid in the conditioner is cooled by a refrigerant compressor or an external source of cold heat transfer fluid. In accordance with one or more embodiments, the regenerator is heated by a refrigerant compressor or an external source of hot heat transfer fluid. In accordance with one or more embodiments, the cold heat transfer fluid can bypass the conditioner and the hot heat transfer fluid can bypass the regenerator thereby allowing independent control of supply air temperature and relative humidity. In accordance with one or more embodiments, the conditioner's cold heat transfer fluid is additionally directed through a cooling coil and the regenerator's hot heat transfer fluid is additionally directed through a heating coil. In accordance with one or more embodiments, the hot heat transfer fluid has an independent method or rejecting heat, such as through an additional coil or other appropriate heat transfer mechanism. In accordance with one or more embodiments, the system has multiple refrigerant loops or multiple heat transfer fluid loops to achieve similar effects for controlling air temperature on the conditioner and liquid desiccant concentration by controlling the regenerator temperature. In one or more embodiments, the heat transfer loops are serviced by separate pumps. In one or more embodiments, the heat transfer loops are services by a single shared pump. In one or more embodiments, the refrigerant loops are independent. In one or more embodiments, the refrigerant loops are coupled so that one refrigerant loop only handles half the temperature difference between the conditioner and the regenerator and the other refrigerant loop handles the remaining temperature difference, allowing each loop to function more efficiently.
In accordance with one or more embodiments, a liquid desiccant system employs a heat transfer fluid on a conditioner side of the system and a similar heat transfer fluid loop on a regenerator side of the system wherein the heat transfer fluid can optionally be directed from the conditioner to the regenerator side of the system through a switching valve, thereby allowing heat to be transferred through the heat transfer fluid from the regenerator to the conditioner. The mode of operation is useful in case where the return air from the space that is directed through the regenerator is higher in temperature than the outside air temperature and the heat from the return air can be thus be used to heat the incoming supply air stream.
In accordance with one or more embodiments, the refrigerant compressor system is reversible so that heat from the compressor is directed to the liquid desiccant conditioner and heat is removed by the refrigerant compressor from the regenerator thereby reversing the conditioner and regeneration functions. In accordance with one or more embodiments, the heat transfer fluid is reversed but no refrigerant compressor is utilized and external sources of cold and hot heat transfer fluids are utilized thereby allowing heat to be transferred from one side of the system to the opposite side of the system. In accordance with one or more embodiments, the external sources of cold and hot heat transfer fluid are idled while heat is transferred from one side to the other side of the system.
In accordance with one or more embodiments, a liquid desiccant membrane system employs an indirect evaporator to generate a cold heat transfer fluid wherein the cold heat transfer fluid is used to cool a liquid desiccant conditioner. Furthermore, in one or more embodiments, the indirect evaporator receives a portion of the air stream that was earlier treated by the conditioner. In accordance with one or more embodiments, the air stream between the conditioner and indirect evaporator is adjustable through some convenient means, for example through a set of adjustable louvers or through a fan with adjustable fan speed. In accordance with one or more embodiments, the heat transfer fluid between the conditioner and indirect evaporator is adjustable so that the air that is treated by the conditioner is also adjustable by regulating the heat transfer fluid quantity passing through the conditioner. In accordance with one or more embodiments, the indirect evaporator can be idled and the heat transfer fluid can be directed between the conditioner and a regenerator is such a fashion that heat from return air from a space is recovered in the regenerator and is directed to provide heating to air directed through the conditioner.
In accordance with one or more embodiments, the indirect evaporator is used to provide heated, humidified air to a supply air stream to a space while a conditioner is simultaneously used to provide heated, humidified air to the same space. This allows the system to provide heated, humidified air to a space in winter conditions. The conditioner is heated and is desorbing water vapor from a desiccant and the indirect evaporator can be heated as well and is desorbing water vapor from liquid water. In one or more embodiments, the water is seawater. In one or more embodiments, the water is waste water. In one or more embodiments, the indirect evaporator uses a membrane to prevent carry-over of non-desirable elements from the seawater or waste water. In one or more embodiments, the water in the indirect evaporator is not cycled back to the top of the indirect evaporator such as would happen in a cooling tower, but between 20% and 80% of the water is evaporated and the remainder is discarded.
In accordance with one or more embodiments, a liquid desiccant conditioner receives cold or warm water from an indirect evaporator. In one or more embodiments, the indirect evaporator has a reversible air stream. In one or more embodiments, the reversible air stream creates a humid exhaust air stream in summer conditions and creates a humid supply air stream to a space in winter conditions. In one or more embodiments, the humid summer air stream is discharged from the system and the cold water that is generated is used to chill the conditioner in summer conditions. In one or more embodiments, the humid winter air stream is used to humidify the supply air to a space in combination with a conditioner. In one or more embodiments, the air streams are variable by a variable speed fan. In one or more embodiments, the air streams are variable through a louver mechanism or some other suitable method. In one or more embodiments, the heat transfer fluid between the indirect evaporator and the conditioner can be directed through the regenerator as well, thereby absorbing heat from the return air from a space and delivering such heat to the supply air stream for that space. In one or more embodiments, the heat transfer fluid receives supplemental heat or cold from external sources. In one or more embodiments, such external sources are geothermal loops, solar water loops or heat loops from existing facilities such as Combined Heat and Power systems.
In accordance with one or more embodiments, a conditioner receives an air stream that is pulled through the conditioner by a fan while a regenerator receives an air stream that is pulled through the regenerator by a second fan. In one or more embodiments, the air stream entering the conditioner comprises a mixture of outside air and return air. In one or more embodiments, the amount of return air is zero and the conditioner receives solely outside air. In one or more embodiments, the regenerator receives a mixture of outside air and return air from a space. In one or more embodiments, the amount of return air is zero and the regenerator receives only outside air. In one or more embodiments, louvers are used to allow some air from the regenerator side of the system to be passed to the conditioner side of the system. In one or more embodiments, the pressure in the conditioner is below the ambient pressure. In further embodiments the pressure in the regenerator is below the ambient pressure.
In accordance with one or more embodiments, a conditioner receives an air stream that is pushed through the conditioner by a fan resulting in a pressure in the conditioner that is above the ambient pressure. In one or more embodiments, such positive pressure aids in ensuring that a membrane is held flat against a plate structure. In one or more embodiments, a regenerator receives an air stream that is pushed through the regenerator by a fan resulting in a pressure in the regenerator that is above ambient pressure. In one or more embodiments, such positive pressure aids in ensuring that a membrane is held flat against a plate structure.
In accordance with one or more embodiments, a conditioner receives an air stream that is pushed through the conditioner by a fan resulting in a positive pressure in the conditioner that is above the ambient pressure. In one or more embodiments, a regenerator receives an air stream that is pulled through the regenerator by a fan resulting in a negative pressure in the regenerator compared to the ambient pressure. In one or more embodiments, the air stream entering the regenerator comprises a mixture of return air from a space and outside air that is being delivered to the regenerator from the conditioner air stream.
In accordance with one or more embodiments, an air stream's lowest pressure point is connected through some suitable means such as through a hose or pipe to an air pocket above a desiccant reservoir in such a way as to ensure that the desiccant is flowing back from a conditioner or regenerator membrane module through a siphoning action and wherein the siphoning is enhanced by ensuring that the lowest pressure in the system exists above the desiccant in the reservoir. In one or more embodiments, such siphoning action ensures that a membrane is held in a flat position against a support plate structure.
In accordance with one or more embodiments, an optical or other suitable sensor is used to monitor air bubbles that are leaving a liquid desiccant membrane structure. In one or more embodiments, the size and frequency of air bubbles is used as an indication of membrane porosity. In one or more embodiments, the size and frequency of air bubbles is used to predict membrane aging or failure.
In accordance with one or more embodiments, a desiccant is monitored in a reservoir by observing the level of the desiccant in the reservoir. In one or more embodiments, the level is monitored after initial startup adjustments have been discarded. In one or more embodiments, the level of desiccant is used as an indication of desiccant concentration. In one or more embodiments, the desiccant concentration is also monitored through the humidity level in the air stream exiting a membrane conditioner or membrane regenerator. In one or more embodiments, a single reservoir is used and liquid desiccant is siphoning back from a conditioner and a regenerator through a heat exchanger. In one or more embodiments, the heat exchanger is located in the desiccant loop servicing the regenerator. In one or more embodiments, the regenerator temperature is adjusted based on the level of desiccant in the reservoir.
In accordance with one or more embodiments, a conditioner receives a desiccant stream and employs siphoning to return the used desiccant to a reservoir. In one or more embodiments, a pump or similar device takes desiccant from the reservoir and pumps the desiccant through a valve and heat exchanger to a regenerator. In one or more embodiments, the valve can be switched so that the desiccant flows to the conditioner instead of flowing through the heat exchanger. In one or more embodiments, a regenerator receives a desiccant stream and employs siphoning to return the used desiccant to a reservoir. In one or more embodiments, a pump or similar device takes desiccant from a reservoir and pumps the desiccant through a heat exchanger and valve assembly to a conditioner. In one or more embodiments, the valve assembly can be switched to pump the desiccant to the regenerator instead of to the conditioner. In one or more embodiments, the heat exchanger can be bypassed. In one or more embodiments, the desiccant is used to recover latent and/or sensible heat from a return air stream and apply the latent heat to a supply air stream by bypassing the heat exchanger. In one or more embodiments, the regenerator is switched on solely when regenerator of desiccant is required. In one or more embodiments, the switching of the desiccant stream is used to control the desiccant concentration.
In accordance with one or more embodiments, a membrane liquid desiccant plate module uses an air pressure tube to ensure that the lowest pressure in the air stream is applied to the air pocket above the liquid desiccant in a reservoir. In one or more embodiments, the liquid desiccant fluid loop uses an expansion volume near the top of the membrane plate module to ensure constant liquid desiccant flow to the membrane plate module.
In accordance with one or more embodiments, a liquid desiccant membrane module is positioned above a sloped drain pan structure, wherein any liquid leaking from the membrane plate module is caught and directed towards a liquid sensor that sends a signal to a control system warning that a leak or failure in the system has occurred. In one or more embodiments, such a sensor detects the conductance of the fluid. In one or more embodiments, the conductance is an indication of which fluid is leaking from the membrane module.
In no way is the description of the applications intended to limit the disclosure to these applications. Many construction variations can be envisioned to combine the various elements mentioned above each with its own advantages and disadvantages. The present disclosure in no way is limited to a particular set or combination of such elements.
The liquid desiccant is collected at the bottom of the wavy plates at 20 and is transported through a heat exchanger 22 to the top of the regenerator 24 to point 26 where the liquid desiccant is distributed across the wavy plates of the regenerator. Return air or optionally outside air 28 is blown across the regenerator plate and water vapor is transported from the liquid desiccant into the leaving air stream 30. An optional heat source 32 provides the driving force for the regeneration. The hot transfer fluid 34 from the heat source can be put inside the wavy plates of the regenerator similar to the cold heat transfer fluid on the conditioner. Again, the liquid desiccant is collected at the bottom of the wavy plates 27 without the need for either a collection pan or bath so that also on the regenerator the air can be vertical. An optional heat pump 36 can be used to provide cooling and heating of the liquid desiccant. It is also possible to connect a heat pump between the cold source 12 and the hot source 32, which is thus pumping heat from the cooling fluids rather than the desiccant.
A refrigerant compressor/heat pump 317 compresses a refrigerant moving in a circuit 316. The heat of compression is rejected into a refrigerant heat exchanger 310b, collected into an optional refrigerant receiver 318 and expanded in an expansion valve 315 after which it is directed to the refrigerant heat exchanger 310a, where the refrigerant picks up heat from the 3-way conditioner and is returned to the compressor 317. As can be seen in the figure, the liquid circuit 313 around the regenerator 312 is very similar to that around the conditioner 301. Again, the siphoning method is employed to circulate the heat transfer fluid through the regenerator module 312. However, there are two considerations that are different in the regenerator. First, it is oftentimes not possible to receive the same amount of return air 322 from a space as is supplied to that space 319. In other words, air flows 319 and 322 are not balanced and can sometimes vary by more than 50%. This is so that the space remains positively pressurized compared to the surrounding environment to prevent moisture infiltration into the building. Second, the compressor itself adds an additional heat load that needs to be removed. This means that one has to either add additional air to the return air from the building, or one has to have another way of rejecting the heat from the system. Fan-coil 326 utilizes an independent radiator coil and can be used to achieve the additional cooling that is required. It should be understood that other heat rejection mechanism besides a fan coil could be employed such as a cooling tower, ground source heat dump etc. Optional diverter valve 325 can be employed to bypass the fan coil if desired. An optional pre-heating coil 328 is used to preheat the air entering the regenerator. It should be clear that the return air 322 could be mixed with outdoor air or could even be solely outdoor air.
The desiccant loop (details of which will be shown in later figures) provides diluted desiccant to the regenerator module 312 through port 323. Concentrated desiccant is removed at port 324 and directed back to the conditioner module to be reused. Control of the air temperature and thus the regeneration effect is again achieved through an optional diverter valve 304b similar to valve 304a in the conditioner circuit. The control system is thus able to control both the conditioner and regenerator air temperatures independently and without pressurizing the membrane plate module plates.
Also in
Similar to the situation described in
Similar to the conditioner and regenerator modules 301 and 312, the evaporator module 505 receives a stream of heat transfer fluid 508. The transfer fluid enters the evaporator module and the evaporation in the module results in a strong cooling effect on the heat transfer fluid. The temperature drop in the cooling fluid can be measured by temperature sensor 507 in the heat transfer fluid 509 that is leaving the evaporator 505. The cooled heat transfer fluid 509 enters the conditioner module, where it absorbs the heat of the incoming air stream 319. As can be seen in the figure, both the conditioner 319 and the evaporator 505 have a counter flow arrangement of their primary fluids (heat transfer fluid and air) thus resulting in a more efficient transfer of heat. Louvers 502 are used to vary the amount of air that is diverted to the evaporator. The exhaust air stream 506 of the evaporator module 505 carries off the excess evaporated water.
Again in
The reservoir 805 is also equipped with a level sensor 803. The level sensor can be used to determine the level of desiccant in the reservoir but is also an indication of the average concentration desiccant in the reservoir. Since the system is charged with a fixed amount of desiccant and the desiccant only absorbs and desorbs water vapor, the level can be used to determine the average concentration in the reservoir.
Again referring to
This application is a division of U.S. patent application Ser. No. 14/493,781, filed on Feb. 28, 2014, entitled DESICCANT AIR CONDITIONING SYSTEMS WITH CONDITIONER AND REGENERATOR HEAT TRANSFER FLUID LOOPS, which claims priority from U.S. Provisional Patent Application No. 61/771,340, filed on Mar. 1, 2013, entitled METHODS FOR CONTROLLING 3-WAY HEAT EXCHANGERS IN DESICCANT CHILLERS, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1791086 | Sperr | Feb 1931 | A |
2221787 | Downs et al. | Nov 1940 | A |
2235322 | Martin | Mar 1941 | A |
2433741 | Crawford | Dec 1947 | A |
2634958 | Simpelaar | Apr 1953 | A |
2660159 | Hughes | Nov 1953 | A |
2708915 | Mandelburg | May 1955 | A |
2939686 | Wildermuth | Jun 1960 | A |
2988171 | Arnold et al. | Jun 1961 | A |
3119446 | Weiss | Jan 1964 | A |
3193001 | Meckler | Jul 1965 | A |
3276634 | Arnot | Oct 1966 | A |
3409969 | Simons | Nov 1968 | A |
3410581 | Christensen | Nov 1968 | A |
3455338 | Pollit | Jul 1969 | A |
3718181 | Reilly et al. | Feb 1973 | A |
4100331 | Fletcher et al. | Jul 1978 | A |
4164125 | Griffiths | Aug 1979 | A |
4176523 | Rousseau | Dec 1979 | A |
4205529 | Ko | Jun 1980 | A |
4209368 | Coker et al. | Jun 1980 | A |
4222244 | Meckler | Sep 1980 | A |
4235221 | Murphy | Nov 1980 | A |
4239507 | Benoit et al. | Dec 1980 | A |
4259849 | Griffiths | Apr 1981 | A |
4324947 | Dumbeck | Apr 1982 | A |
4399862 | Hile | Aug 1983 | A |
4429545 | Steinberg | Feb 1984 | A |
4435339 | Kragh | Mar 1984 | A |
4444992 | Cox, III | Apr 1984 | A |
4583996 | Sakata et al. | Apr 1986 | A |
4607132 | Jarnagin | Aug 1986 | A |
4612019 | Langhorst | Sep 1986 | A |
4649899 | Moore | Mar 1987 | A |
4660390 | Worthington | Apr 1987 | A |
4691530 | Meckler | Sep 1987 | A |
4703629 | Moore | Nov 1987 | A |
4730600 | Harrigill | Mar 1988 | A |
4744414 | Schon | May 1988 | A |
4766952 | Onodera | Aug 1988 | A |
4786301 | Rhodes | Nov 1988 | A |
4832115 | Albers et al. | May 1989 | A |
4872578 | Fuerschbach et al. | Oct 1989 | A |
4882907 | Brown, II | Nov 1989 | A |
4887438 | Meckler | Dec 1989 | A |
4900448 | Bonne et al. | Feb 1990 | A |
4910971 | McNab | Mar 1990 | A |
4939906 | Spatz et al. | Jul 1990 | A |
4941324 | Peterson et al. | Jul 1990 | A |
4955205 | Wilkinson | Sep 1990 | A |
4971142 | Mergler | Nov 1990 | A |
4976313 | Dahlgren et al. | Dec 1990 | A |
4979965 | Sannholm | Dec 1990 | A |
4984434 | Peterson et al. | Jan 1991 | A |
4987750 | Meckler | Jan 1991 | A |
5005371 | Yonezawa et al. | Apr 1991 | A |
5181387 | Meckler | Jan 1993 | A |
5182921 | Yan | Feb 1993 | A |
5186903 | Cornwell | Feb 1993 | A |
5191771 | Meckler | Mar 1993 | A |
5221520 | Cornwell | Jun 1993 | A |
5351497 | Lowenstein | Oct 1994 | A |
5361828 | Lee et al. | Nov 1994 | A |
5375429 | Tokizaki et al. | Dec 1994 | A |
5448895 | Coellner et al. | Sep 1995 | A |
5462113 | Wand | Oct 1995 | A |
5471852 | Meckler | Dec 1995 | A |
5528905 | Scarlatti | Jun 1996 | A |
5534186 | Walker et al. | Jul 1996 | A |
5582026 | Barto, Sr. | Dec 1996 | A |
5595690 | Filburn et al. | Jan 1997 | A |
5605628 | Davidson et al. | Feb 1997 | A |
5606865 | Caron | Mar 1997 | A |
5638900 | Lowenstein et al. | Jun 1997 | A |
5641337 | Arrowsmith et al. | Jun 1997 | A |
5661983 | Groten et al. | Sep 1997 | A |
5685152 | Sterling | Nov 1997 | A |
5685485 | Mock et al. | Nov 1997 | A |
5797272 | James | Aug 1998 | A |
5816065 | Maeda | Oct 1998 | A |
5832993 | Ohata et al. | Nov 1998 | A |
5860284 | Goland et al. | Jan 1999 | A |
5860285 | Tulpule | Jan 1999 | A |
5928808 | Eshraghi | Jul 1999 | A |
5933702 | Goswami | Aug 1999 | A |
5950442 | Maeda et al. | Sep 1999 | A |
6012296 | Shah | Jan 2000 | A |
6018954 | Assaf | Feb 2000 | A |
6035657 | Dobak, III et al. | Mar 2000 | A |
6083387 | LeBlanc et al. | Jul 2000 | A |
6103969 | Bussey | Aug 2000 | A |
6131649 | Pearl et al. | Oct 2000 | A |
6134903 | Potnis et al. | Oct 2000 | A |
6138470 | Potnis et al. | Oct 2000 | A |
6156102 | Conrad et al. | Dec 2000 | A |
6171374 | Barton et al. | Jan 2001 | B1 |
6216483 | Potnis et al. | Apr 2001 | B1 |
6216489 | Potnis et al. | Apr 2001 | B1 |
6244062 | Prado | Jun 2001 | B1 |
6247604 | Taskis et al. | Jun 2001 | B1 |
6266975 | Assaf | Jul 2001 | B1 |
6417423 | Koper et al. | Jul 2002 | B1 |
6442951 | Maeda et al. | Sep 2002 | B1 |
6463750 | Assaf | Oct 2002 | B2 |
6487872 | Forkosh et al. | Dec 2002 | B1 |
6488900 | Call et al. | Dec 2002 | B1 |
6497107 | Maisotsenko et al. | Dec 2002 | B2 |
6497749 | Kesten et al. | Dec 2002 | B2 |
6502807 | Assaf et al. | Jan 2003 | B1 |
6514321 | Lehto et al. | Feb 2003 | B1 |
6539731 | Kesten et al. | Apr 2003 | B2 |
6546746 | Forkosh et al. | Apr 2003 | B2 |
6557365 | Dinnage et al. | May 2003 | B2 |
6660069 | Sato et al. | Dec 2003 | B2 |
6684649 | Thompson | Feb 2004 | B1 |
6739142 | Korin | May 2004 | B2 |
6745826 | Lowenstein et al. | Jun 2004 | B2 |
6766817 | da Silva et al. | Jul 2004 | B2 |
6848265 | Lowenstein et al. | Feb 2005 | B2 |
6854278 | Maisotsenko et al. | Feb 2005 | B2 |
6854279 | Digiovanni et al. | Feb 2005 | B1 |
6918404 | Dias da Silva et al. | Jul 2005 | B2 |
6938434 | Fair | Sep 2005 | B1 |
6945065 | Lee et al. | Sep 2005 | B2 |
6976365 | Forkosh et al. | Dec 2005 | B2 |
6986428 | Hester et al. | Jan 2006 | B2 |
7066586 | Da Silva et al. | Jun 2006 | B2 |
RE39288 | Assaf | Sep 2006 | E |
7143597 | Hyland et al. | Dec 2006 | B2 |
7191821 | Gronwall et al. | Mar 2007 | B2 |
7197887 | Maisotsenko et al. | Apr 2007 | B2 |
7228891 | Shin et al. | Jun 2007 | B2 |
7258923 | van den Bogerd et al. | Aug 2007 | B2 |
7269966 | Lowenstein et al. | Sep 2007 | B2 |
7279215 | Hester et al. | Oct 2007 | B2 |
7306650 | Slayzak et al. | Dec 2007 | B2 |
7337615 | Reidy | Mar 2008 | B2 |
7430878 | Assaf | Oct 2008 | B2 |
7758671 | Kesten et al. | Jul 2010 | B2 |
7930896 | Matsui et al. | Apr 2011 | B2 |
7938888 | Assaf | May 2011 | B2 |
8141379 | Al-Hadhrami et al. | Mar 2012 | B2 |
8337590 | Herencia et al. | Dec 2012 | B2 |
8353175 | Wohlert | Jan 2013 | B2 |
8496732 | Culp et al. | Jul 2013 | B2 |
8499576 | Meijer | Aug 2013 | B2 |
8500960 | Ehrenberg et al. | Aug 2013 | B2 |
8623210 | Manabe et al. | Jan 2014 | B2 |
8641806 | Claridge et al. | Feb 2014 | B2 |
8648209 | Lastella | Feb 2014 | B1 |
8695363 | Tang et al. | Apr 2014 | B2 |
8696805 | Chang et al. | Apr 2014 | B2 |
8769971 | Kozubal et al. | Jul 2014 | B2 |
8790454 | Lee et al. | Jul 2014 | B2 |
8800308 | Vandermeulen et al. | Aug 2014 | B2 |
8876943 | Gottlieb et al. | Nov 2014 | B2 |
8881806 | Xie et al. | Nov 2014 | B2 |
8943844 | Forkosh | Feb 2015 | B2 |
8943850 | Vandermeulen et al. | Feb 2015 | B2 |
8968945 | Fasold et al. | Mar 2015 | B2 |
9000289 | Vandermeulen et al. | Apr 2015 | B2 |
9086223 | Vandermeulen et al. | Jul 2015 | B2 |
9101874 | Vandermeulen | Aug 2015 | B2 |
9101875 | Vandermeulen et al. | Aug 2015 | B2 |
9243810 | Vandermeulen et al. | Jan 2016 | B2 |
9273877 | Vandermeulen et al. | Mar 2016 | B2 |
9308490 | Vandermeulen et al. | Apr 2016 | B2 |
9377207 | Vandermeulen et al. | Jun 2016 | B2 |
9429332 | Vandermeulen et al. | Aug 2016 | B2 |
9470426 | Vandermeulen | Oct 2016 | B2 |
9506697 | Vandermeulen | Nov 2016 | B2 |
9631823 | Vandermeulen et al. | Apr 2017 | B2 |
9631824 | Maisey et al. | Apr 2017 | B1 |
9631848 | Vandermeulen et al. | Apr 2017 | B2 |
9709285 | Vandermeulen | Jul 2017 | B2 |
9709286 | Vandermeulen et al. | Jul 2017 | B2 |
9835340 | Vandermeulen et al. | Dec 2017 | B2 |
10006648 | Vandermeulen et al. | Jun 2018 | B2 |
10024558 | Vandermeulen | Jul 2018 | B2 |
10024601 | Vandermeulen | Jul 2018 | B2 |
10168056 | Vandermeulen et al. | Jan 2019 | B2 |
10323867 | Vandermeulen | Jun 2019 | B2 |
20010008148 | Ito et al. | Jul 2001 | A1 |
20010013226 | Potnis et al. | Aug 2001 | A1 |
20010015500 | Shimanuki et al. | Aug 2001 | A1 |
20020023740 | Lowenstein et al. | Feb 2002 | A1 |
20020026797 | Sundhar | Mar 2002 | A1 |
20020038552 | Maisotsenko et al. | Apr 2002 | A1 |
20020098395 | Shimanuki et al. | Jul 2002 | A1 |
20020104439 | Komkova et al. | Aug 2002 | A1 |
20020139245 | Kesten et al. | Oct 2002 | A1 |
20020139320 | Shimanuki et al. | Oct 2002 | A1 |
20020148602 | Nakamura | Oct 2002 | A1 |
20030000230 | Kopko | Jan 2003 | A1 |
20030029185 | Kopko | Feb 2003 | A1 |
20030033821 | Maisotsenko et al. | Feb 2003 | A1 |
20030051498 | Sanford | Mar 2003 | A1 |
20030106680 | Serpico et al. | Jun 2003 | A1 |
20030121271 | Dinnage et al. | Jul 2003 | A1 |
20030209017 | Maisotsenko et al. | Nov 2003 | A1 |
20030230092 | Lowenstein et al. | Dec 2003 | A1 |
20040040697 | Pierre et al. | Mar 2004 | A1 |
20040061245 | Maisotsenko et al. | Apr 2004 | A1 |
20040101698 | Yamanaka et al. | May 2004 | A1 |
20040109798 | Chopard et al. | Jun 2004 | A1 |
20040112077 | Forkosh et al. | Jun 2004 | A1 |
20040118125 | Potnis et al. | Jun 2004 | A1 |
20040134212 | Lee et al. | Jul 2004 | A1 |
20040168462 | Assaf | Sep 2004 | A1 |
20040194944 | Hendricks et al. | Oct 2004 | A1 |
20040211207 | Forkosh et al. | Oct 2004 | A1 |
20040230092 | Thierfelder et al. | Nov 2004 | A1 |
20040231512 | Slayzak et al. | Nov 2004 | A1 |
20040261440 | Forkosh et al. | Dec 2004 | A1 |
20050095433 | Bogerd et al. | May 2005 | A1 |
20050106021 | Bunker et al. | May 2005 | A1 |
20050109052 | Albers et al. | May 2005 | A1 |
20050133082 | Konold et al. | Jun 2005 | A1 |
20050210907 | Gillan et al. | Sep 2005 | A1 |
20050217485 | Olapinski et al. | Oct 2005 | A1 |
20050218535 | Maisotsenko et al. | Oct 2005 | A1 |
20050257551 | Landry | Nov 2005 | A1 |
20060042295 | Assaf | Mar 2006 | A1 |
20060070728 | Shin et al. | Apr 2006 | A1 |
20060124287 | Reinders | Jun 2006 | A1 |
20060156750 | Lowenstein et al. | Jul 2006 | A1 |
20060156761 | Mola et al. | Jul 2006 | A1 |
20060278089 | Theilow | Dec 2006 | A1 |
20070169916 | Wand et al. | Jul 2007 | A1 |
20070175234 | Pruitt | Aug 2007 | A1 |
20070234743 | Assaf | Oct 2007 | A1 |
20080127965 | Burton | Jun 2008 | A1 |
20080156471 | Han et al. | Jul 2008 | A1 |
20080196758 | McGuire | Aug 2008 | A1 |
20080203866 | Chamberlain | Aug 2008 | A1 |
20080302357 | DeNault | Dec 2008 | A1 |
20080314567 | Noren | Dec 2008 | A1 |
20090000732 | Jacobine et al. | Jan 2009 | A1 |
20090056919 | Hoffman et al. | Mar 2009 | A1 |
20090095162 | Hargis et al. | Apr 2009 | A1 |
20090126913 | Lee et al. | May 2009 | A1 |
20090173096 | Wohlert | Jul 2009 | A1 |
20090183857 | Pierce et al. | Jul 2009 | A1 |
20090200022 | Bravo et al. | Aug 2009 | A1 |
20090238685 | Santa Ana | Sep 2009 | A1 |
20100000247 | Bhatti et al. | Jan 2010 | A1 |
20100012309 | Uges | Jan 2010 | A1 |
20100018322 | Neitzke et al. | Jan 2010 | A1 |
20100051083 | Boyk | Mar 2010 | A1 |
20100077783 | Bhatti et al. | Apr 2010 | A1 |
20100084120 | Yin et al. | Apr 2010 | A1 |
20100170776 | Ehrenberg et al. | Jul 2010 | A1 |
20100319370 | Kozubal et al. | Dec 2010 | A1 |
20110073290 | Chang et al. | Mar 2011 | A1 |
20110100618 | Carlson | May 2011 | A1 |
20110101117 | Miyauchi et al. | May 2011 | A1 |
20110126885 | Kokotov et al. | Jun 2011 | A1 |
20110132027 | Gommed et al. | Jun 2011 | A1 |
20120052785 | Nagamatsu et al. | Mar 2012 | A1 |
20120114527 | Hoglund et al. | May 2012 | A1 |
20120118148 | Culp et al. | May 2012 | A1 |
20120118155 | Claridge et al. | May 2012 | A1 |
20120125020 | Vandermeulen et al. | May 2012 | A1 |
20120125021 | Vandermeulen et al. | May 2012 | A1 |
20120125031 | Vandermeulen et al. | May 2012 | A1 |
20120125581 | Allen et al. | May 2012 | A1 |
20120131937 | Vandermeulen et al. | May 2012 | A1 |
20120131938 | Vandermeulen et al. | May 2012 | A1 |
20120131939 | Vandermeulen et al. | May 2012 | A1 |
20120132513 | Vandermeulen et al. | May 2012 | A1 |
20120152318 | Kee | Jun 2012 | A1 |
20120186281 | Vandermeulen et al. | Jul 2012 | A1 |
20130056177 | Coutu et al. | Mar 2013 | A1 |
20130101909 | Fasold et al. | Apr 2013 | A1 |
20130186121 | Erb et al. | Jul 2013 | A1 |
20130199220 | Ma et al. | Aug 2013 | A1 |
20130227982 | Forkosh | Sep 2013 | A1 |
20130255287 | Forkosh | Oct 2013 | A1 |
20130340449 | Kozubal et al. | Dec 2013 | A1 |
20140054004 | LePoudre et al. | Feb 2014 | A1 |
20140054013 | LePoudre et al. | Feb 2014 | A1 |
20140150481 | Vandermeulen | Jun 2014 | A1 |
20140150656 | Vandermeulen | Jun 2014 | A1 |
20140150657 | Vandermeulen et al. | Jun 2014 | A1 |
20140150662 | Vandermeulen et al. | Jun 2014 | A1 |
20140223947 | Ranjan et al. | Aug 2014 | A1 |
20140245769 | Vandermeulen et al. | Sep 2014 | A1 |
20140250935 | Prochaska et al. | Sep 2014 | A1 |
20140260367 | Coutu et al. | Sep 2014 | A1 |
20140260369 | LePoudre | Sep 2014 | A1 |
20140260371 | Vandermeulen | Sep 2014 | A1 |
20140260398 | Kozubal et al. | Sep 2014 | A1 |
20140260399 | Vandermeulen | Sep 2014 | A1 |
20140262125 | Erb et al. | Sep 2014 | A1 |
20140262144 | Erb et al. | Sep 2014 | A1 |
20140264968 | Erb et al. | Sep 2014 | A1 |
20140360373 | Peacos et al. | Dec 2014 | A1 |
20140366567 | Vandermeulen | Dec 2014 | A1 |
20150107287 | Forkosh | Apr 2015 | A1 |
20150184876 | Vandermeulen et al. | Jul 2015 | A1 |
20150300754 | Vandermeulen et al. | Oct 2015 | A1 |
20150323216 | Wallin | Nov 2015 | A1 |
20150338140 | Vandermeulen | Nov 2015 | A1 |
20160187011 | Vandermeulen | Jun 2016 | A1 |
20160290665 | Vandermeulen et al. | Oct 2016 | A1 |
20160290666 | Coutu et al. | Oct 2016 | A1 |
20170074530 | Kozubal | Mar 2017 | A1 |
20170102155 | Vandermeulen | Apr 2017 | A1 |
20170106639 | Vandermeulen et al. | Apr 2017 | A1 |
20170167794 | Vandermeulen | Jun 2017 | A1 |
20170184319 | Vandermeulen et al. | Jun 2017 | A1 |
20170292722 | Vandermeulen | Oct 2017 | A1 |
20180051897 | Vandermeulen et al. | Feb 2018 | A1 |
20180163977 | Vandermeulen | Jun 2018 | A1 |
20200096241 | Vandermeulen | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
100366981 | Feb 2008 | CN |
101336358 | Dec 2008 | CN |
100476308 | Apr 2009 | CN |
101636630 | Jan 2010 | CN |
102282426 | Dec 2011 | CN |
202229469 | May 2012 | CN |
202734094 | Feb 2013 | CN |
0781972 | Jul 1997 | EP |
1120609 | Aug 2001 | EP |
1563229 | Aug 2005 | EP |
1781995 | May 2007 | EP |
2256434 | Dec 2010 | EP |
2306100 | Apr 2011 | EP |
2787293 | Oct 2014 | EP |
1172247 | Nov 1969 | GB |
S54-77443 | Jun 1979 | JP |
S62-297647 | Dec 1987 | JP |
02306067 | Dec 1990 | JP |
H03-125830 | May 1991 | JP |
H03-213921 | Sep 1991 | JP |
H08-105669 | Apr 1996 | JP |
H09-184692 | Jul 1997 | JP |
H10-220914 | Aug 1998 | JP |
H11-137948 | May 1999 | JP |
H11-197439 | Jul 1999 | JP |
H11-351700 | Dec 1999 | JP |
2000-230730 | Aug 2000 | JP |
2001-517773 | Oct 2001 | JP |
2002-206834 | Jul 2002 | JP |
2004-524504 | Aug 2004 | JP |
2005-134060 | May 2005 | JP |
2006-263508 | Oct 2006 | JP |
2006-529022 | Dec 2006 | JP |
2008020138 | Jan 2008 | JP |
2009-517622 | Apr 2009 | JP |
04273555 | Jun 2009 | JP |
2009-180433 | Aug 2009 | JP |
2009-192101 | Aug 2009 | JP |
2009-281668 | Dec 2009 | JP |
2009-293831 | Dec 2009 | JP |
201054136 | Mar 2010 | JP |
2010-247022 | Nov 2010 | JP |
2011064359 | Mar 2011 | JP |
2011-511244 | Apr 2011 | JP |
201192815 | May 2011 | JP |
2011-163682 | Aug 2011 | JP |
2012-073013 | Apr 2012 | JP |
2013-064549 | Apr 2013 | JP |
10-2001-0017939 | Mar 2001 | KR |
2004-0026242 | Mar 2004 | KR |
10-0510774 | Aug 2005 | KR |
2014-0022785 | Feb 2014 | KR |
201009269 | Mar 2010 | TW |
WO-1997021061 | Jun 1997 | WO |
WO-1999022180 | May 1999 | WO |
WO-2000011426 | Mar 2000 | WO |
WO-2000055546 | Sep 2000 | WO |
WO-2002066901 | Aug 2002 | WO |
WO-2002086391 | Oct 2002 | WO |
WO-2003004937 | Jan 2003 | WO |
WO-2004046618 | Jun 2004 | WO |
WO-2006006177 | Jan 2006 | WO |
WO-2008037079 | Apr 2008 | WO |
WO-2009094032 | Jul 2009 | WO |
WO-2009144880 | Dec 2009 | WO |
WO-2009157277 | Dec 2009 | WO |
WO-2011062808 | May 2011 | WO |
2011150081 | Dec 2011 | WO |
WO-2011161547 | Dec 2011 | WO |
2012071036 | May 2012 | WO |
WO-2012082093 | Jun 2012 | WO |
WO-2013172789 | Nov 2013 | WO |
2014152905 | Sep 2014 | WO |
2014201281 | Dec 2014 | WO |
WO-2015077364 | May 2015 | WO |
Entry |
---|
Lachner, “An Investigation into the Feasibility of the Use of Water as a Refrigerant,” International Refrigeration and Air Conditioning Conference, 723:1-9 (2004). |
Refrigerant—Random House Kernerman Webster's College Dictionary, “Refrigerant,” Random House, <https://thefreedictionary.com/refrigerant> (2010). |
Extended European Search Report for EP application No. EP18179986.7 dated Mar. 29, 2019. |
Chinese Patent Application 201480013101.0, Office Action dated Mar. 22, 2017. |
“Siphon.” Encyclopedia Americana. Grolier Online, 2015. Web. Apr. 3, 2015. 1 page. |
1—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual Report 2005, Publication No. Publication 260097, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jan. 31, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering. |
2—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual, Report 2006, Publication No. Publication 260098, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Nov. 14, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering. |
3—Open Absorption System for Cooling and Air Conditioning Using Membrane Contactors—Final Report, Publication No. Publication 280139, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jul. 8, 2008, Author: Viktor Dorer, Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering. |
4—Conde-Petit, M. 2007. Liquid Desiccant-Based Air-Conditioning Systems—LDACS, Proc. of the 1st European Conference on Polygeneration—Technologies and Applications, 217-234, A. Coronas, ed., Tarragona—Spain, Oct. 16-17, Published by CREVER—Universitat Rovira I Virgili, Tarragona, Spain. |
5—Conde-Petit, M. 2008. Open Absorption Systems for Air-Conditioning using Membrane Contactors,Proceedings '15. Schweizerisches Status—Seminar «Energie- und Umweltforschung im Bauwesen»', Sep. 11-12—ETH Zurich, Switzerland. Published by BRENET—Eggwilstr. 16a, CH-9552 Bronschhofen—Switzerland (brenet@vogel-tech.ch). |
6—Third Party Observations for PCT/US2011/037936, dated Sep. 24, 2012. |
Ashrae, et al., “Desiccant Dehumidification and Pressue Drying Equipment,” 2012 Ashrae Handbook—HVAC Systems and Equipment, Chapter 24, pp. 24.1-24.12. |
Beccali, et al., “Energy and Economic Assessment of Desiccant Cooling,” Solar Energy, Issue 83, pp. 1828-1846, Aug. 2009. |
European Search Report for EP147756438.9, dated Nov. 24, 2016. |
Fimbres-Weihs, et al., “Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules,” Chemical Engineering and Processing 49 (2010) pp. 759-781. |
International Search Report and Written Opinion for PCT/US2014/019470, dated Jun. 2, 2014. |
Korean Patent Application 10-2015-7024529, Office Action dated Jul. 28, 2016. |
Li, F., et al., “Novel spacers for mass transfer enhancement in membrane separations,” Journal of Membrane Science, 253 (2005), pp. 1-12. |
Li, Y., et al., “CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions,” Desalination 233 (2008) pp. 351-358. |
Liu, et al., “Research Progress in Liquid Desiccant Air Conditioning Devices and Systems,” Frontiers of Energy and Power Engineering in China, vol. 4, Issue 1, pp. 55-65, Feb. 2010. |
Lowenstein, “A Solar Liquid-Desiccant Air Conditioner,” Solar 2003, Proceedings of the 32nd ASES Annual Conference, Austin, TX, Jul. 2003. |
Mathioulakis, “Desalination by Using Alternative Energy,” Desalination, Issue 203, pp. 346-365, 2007. |
Perry “Perry's Chemical Engineers handbook” 1999 McGraw Hill p. 11-52,11-53. |
Russell, et al., “Optimization of Photovolatic Thermal Collector Heat Pump Systems,” ISES International Solar Energy Conference, Atlanta, GA, vol. 3, pp. 1870-1874, May 1979. |
Welty, “Liquid Desiccant Dehumidification,” Engineered Systems, May 2010, vol. 27 Issue 5, p. 34. |
Number | Date | Country | |
---|---|---|---|
20170184319 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61771340 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14193781 | Feb 2014 | US |
Child | 15457506 | US |