Design and Assessment of a Compliant Nanofibrous Vascular Graft

Information

  • Research Project
  • 8124591
  • ApplicationId
    8124591
  • Core Project Number
    R43HL108503
  • Full Project Number
    1R43HL108503-01
  • Serial Number
    108503
  • FOA Number
    PA-10-050
  • Sub Project Id
  • Project Start Date
    9/1/2011 - 12 years ago
  • Project End Date
    8/31/2013 - 10 years ago
  • Program Officer Name
    LUNDBERG, MARTHA
  • Budget Start Date
    9/1/2011 - 12 years ago
  • Budget End Date
    8/31/2013 - 10 years ago
  • Fiscal Year
    2011
  • Support Year
    1
  • Suffix
  • Award Notice Date
    8/29/2011 - 12 years ago

Design and Assessment of a Compliant Nanofibrous Vascular Graft

DESCRIPTION (provided by applicant): Vascular grafting is performed clinically to repair or replace diseased coronary artery and peripheral vessels to restore normal blood flow patterns. Synthetic grafts composed of polymers such as Dacron and expanded polytetrafluoroethylene do not work well in small diameter (<6 mm) vessels. Such grafts exhibit low patency rates and fail, in large part, due to compliance mismatch. Compliance describes how the mechanical properties of a vascular graft change as a function of the internal hemodynamic pressure. Natural blood vessels display a complex non-linear 'J-shaped'stress-strain biomechanical behavior which is a function of extracellular matrix elastin and collagen nanofibers. Elastic fibers with straight conformation dominate the low elastic modulus at low levels of vessel distention. While collagen nanofibers with a wavy or helical orientation, with little resistance to expansion at lower values of vessel distention, dominate the high elastic modulus at higher levels of vessel distention as the nanofibers straighten. In addition to compliance, possession of a non-thrombogenic inner lining, biocompatibility and, after recipient cell ingrowth, vasoactivity is important for long term function of vascular grafts. The innovation in this proposal is design and manufacturing of composite nanofiber-based tissue-engineered vascular grafts (TEVGs) which mimic the potential implant site's arterial extracellular matrix microstructure and mechanical properties. In other words the grafts will be designed to match the compliance of each type of artery that requires replacement. Our preliminary data has demonstrated our ability to fabricate synthetic nanofibrous composite materials with overall mechanical properties matching those of a natural blood vessel (aorta) by employing a non-degradable elastin-like nanofiber and degradable collagen-like nanofibers. In this proposal these materials will be used in the construction of TEVGs mimicking the rabbit's carotid artery followed by evaluation in three specific aims. These aims include biomechanics and graft seeding with cells and in vitro assessment of remodeling profiles and retention of mechanical properties including compliance, burst strength and suture pull strength over time. Finally, cell-free TEVG designs will be assessed by vascular grafting in vivo. Patency, quantitative histology, mechanical properties and development of vasoactivity will be determined after one month post-implantation. Feasibility for progression to Phase II SBIR studies will be demonstrated by retention of biomaterial properties with e80% patency, the development of significantly better carotid-like vasoactivity after ingrowth of recipient cells and less anastomotic hyperplasia than controls (TEVGs without collagen-like microstructures) at explant. In Phase II we will propose large animal preclinical studies and other testing required for federal regulatory clearance for human trials. PUBLIC HEALTH RELEVANCE: Cardiovascular disease is a leading cause of patient morbidity and mortality. Effective small diameter vascular grafts are an unmet clinical need. The potential impact of this project is design and production of effective composite nanofiber-based tissue-engineered vascular grafts for patients requiring small diameter artery repair or replacement. The potential world-wide market for vascular grafts is predicted to be 1,657,000 units valued at $2,588M by the year 2013. The simplicity, versatility, and scalability of our proposed approach will allow rapid clinical translation and market penetration.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R43
  • Administering IC
    HL
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    278179
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:278179\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    CELL AND TISSUE SYSTEMS, INC.
  • Organization Department
  • Organization DUNS
    175100333
  • Organization City
    NORTH CHARLESTON
  • Organization State
    SC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    294064931
  • Organization District
    UNITED STATES