The field of the disclosure relates generally to electrical circuit protection fuses, and more specifically to the fabrication of power fuses including thermal-mechanical strain fatigue resistant fusible element assemblies.
Fuses are widely used as overcurrent protection devices to prevent costly damage to electrical circuits. Fuse terminals typically form an electrical connection between an electrical power source or power supply and an electrical component or a combination of components arranged in an electrical circuit. One or more fusible links or elements, or a fuse element assembly, is connected between the fuse terminals, so that when electrical current flowing through the fuse exceeds a predetermined limit, the fusible elements melt and open one or more circuits through the fuse to prevent electrical component damage.
Full-range power fuses are operable in high voltage power distributions to safely interrupt both relatively high fault currents and relatively low fault currents with equal effectiveness. In view of constantly expanding variations of electrical power systems, known fuses of this type are disadvantaged in some aspects. Improvements in full-range power fuses are desired to meet the needs of the marketplace.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various drawings unless otherwise specified.
Recent advancements in electric vehicle technologies present unique challenges to fuse manufacturers. Electric vehicle manufacturers are seeking fusible circuit protection for electrical power distribution systems operating at voltages much higher than conventional electrical power distribution systems for vehicles, while simultaneously seeking smaller fuses to meet electric vehicle specifications and demands
Electrical power systems for conventional, internal combustion engine-powered vehicles operate at relatively low voltages, typically at or below about 48 VDC. Electrical power systems for electric-powered vehicles, referred to herein as electric vehicles (EVs), however, may operate at much higher voltages. The relatively high voltage systems (e.g., 200 VDC and above) of Evs may generally enable the batteries to store more energy from a power source and provide more energy to an electric motor of the vehicle with lower losses (e.g., heat loss) than conventional batteries storing energy at 12 Volts (V) or 24 V used with internal combustion engines, and more recent 48 V power systems.
EV original equipment manufacturers (OEMs) employ circuit protection fuses to protect electrical loads in all-battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). Across each EV type, EV manufacturers may seek to maximize the mileage range of the EV per battery charge while reducing cost of ownership. Accomplishing these objectives turns on the energy storage and power delivery of the EV system, as well as the size, volume, and mass of the vehicle components that are carried by the power system. Smaller and/or lighter vehicles may more effectively meet these demands than larger and heavier vehicles. As such, all EV components are now being scrutinized for potential size, weight, and cost savings.
Generally speaking, larger components may tend to have higher associated material costs, tend to increase the overall size of the EV or occupy an undue amount of space in a shrinking vehicle volume, and may tend to introduce greater mass that directly reduces the vehicle mileage per single battery charge. Known high voltage circuit protection fuses may, however, be relatively large and relatively heavy components. Historically, and for good reason, circuit protection fuses have tended to increase in size to meet the demands of high voltage power systems as opposed to lower voltage systems. As such, existing fuses needed to protect high voltage EV power systems may be much larger than the existing fuses needed to protect the lower voltage power systems of conventional, internal combustion engine-powered vehicles. Smaller and lighter high voltage power fuses are desired to meet the needs of EV manufacturers, without sacrificing circuit protection performance.
Electrical power systems for state of the art EVs may operate at voltages as high as 450 VDC or even higher. The increased power system voltage may desirably deliver more power to the EV per battery charge. Operating conditions of electrical fuses in such high voltage power systems may be much more severe, however, than lower voltage systems. Specifically, specifications relating to electrical arcing conditions when the fuse opens may be particularly difficult to meet for higher voltage power systems, especially when coupled with the industry preference for reduction in the size of electrical fuses. Current cycling loads imposed on power fuses by state of the art EVs may also tend to impose mechanical strain and wear that can lead to premature failure of a conventional fuse element. While known power fuses may be presently available for use by EV OEMs in high voltage circuitry of state of the art EV applications, the size and weight, not to mention the cost, of conventional power fuses capable of meeting the requirements of high voltage power systems for Evs can be impractically high for implementation in new EVs.
Providing relatively smaller power fuses that can capably handle high current and high battery voltages of state of the art EV power systems, while still providing acceptable interruption performance as the fuse element operates at high voltages can be challenging, to say the least. Improvements are needed to longstanding and unfulfilled needs in the art.
While described in the context of EV applications and a particular type and ratings of fuse, the benefits of the disclosure are not necessarily limited to EV applications or to the particular type or ratings described. Rather, the benefits of the disclosure are believed to more broadly accrue to many different power system applications and can also be practiced in part or in whole to construct different types of fuses having similar or different ratings than those discussed herein.
Such random current loading conditions, exemplified in the current pulse profile of
In the example illustrated, the planar sections 240 define a plurality of sections of reduced cross-sectional area 241, referred to in the art as weak spots. The weak spots 241 may be defined by apertures in the planar sections 240. The weak spots 241 correspond to the narrow portion of the section 240 between adjacent apertures. The reduced cross-sectional areas at the weak spots 241 will experience higher heat concentration than the rest of the fuse element assembly 208 as current flows through the fuse element assembly 208.
The weak spots 241 of the fuse element assembly 208 fabricated by metal stamping or punching have been found to be disadvantageous for EV applications having the type of cyclic current loads described above. Such stamped fuse element designs undesirably introduce mechanical strains and stresses on the fuse element weak spots 241 such that a shorter service life tends to result. This short fuse service life manifests itself in the form of nuisance fuse operation resulting from the mechanical fatigue of the fuse element at the weak spots 241.
As illustrated in
Repeated physical mechanical manipulations of metal, caused by the heating effects of the transient current pulses, in turn cause changes in the grain structure of metal fuse element. These mechanical manipulations may be sometimes referred to as working the metal. Working of metals will cause a strengthening of the grain boundaries where adjacent grains may be tightly constrained to neighboring grains. Over working of a metal will result in disruptions in the grain boundary, where grains slip past each other and cause what is called a slip band or plane. This slippage and separation between the grains result in a localized increase of the electrical resistance that accelerates the fatigue process by increasing the heating effect of the current pulses. The formation of slip bands is where fatigue cracks are first initiated.
The inventors have found that a manufacturing method of stamping or punching metal to form the fuse element assembly 208 causes localized slip bands on all stamped edges of the fuse element weak spots 241 because the stamping processes to form the weak spots 241 may be shearing and tearing mechanical processes. This tearing process pre-stresses the weak spots 241 with many slip band regions. The slip bands and fatigue cracks, combined with the buckling described due to heat effects, eventually lead to a premature structural failure of the weak spots 241 that may be unrelated to electrical fault conditions. Such premature failure mode that does not relate to a problematic electrical condition in the power system is sometimes referred to as nuisance operation of the fuse. Since once the fuse elements fail the circuitry connected to the fuse is not operational again until the fuse is replaced, avoiding such nuisance operation is highly desirable in an EV power system from the perspective of both EV manufacturers and consumers. Indeed, given an increased interest in EV vehicles and their power systems, the effects of fuse fatigue may be deemed to be a negative Critical to Quality (CTQ) attribute in the vehicle design.
Accordingly, improved fuse elements and methods for fabricating fuse elements including weak spots that are fatigue resistant may be highly desirable.
Exemplary embodiments of fuse elements and the method of fabricating such fuse elements are described below that advantageously avoid the strain damages at weak spots from the manufacturing process of stamping or punching, while also providing an effective arc extinguishing mechanism. Weak spots in the exemplary embodiments may be formed directly onto a planar substrate, avoiding micro tears from the punching or stamping processes. The weak spots may be connected by a separately-fabricated conductor having coplanar connector sections and oblique connector sections used for effective arc extinguishing.
While described below in reference to particular embodiments, such description is intended for the sake of illustration rather than limitation. The significant benefit of the inventive concepts will now be explained in reference to the exemplary embodiments illustrated in the FIGS. Method aspects will be in part apparent and in part explicit in the following discussion.
Referring now to
The substrate 310 may be a planar substrate (
In the exemplary embodiment, the weak spots 312 may be formed on the substrate 310. The number of weak spots 312 can be three or other numbers such as one, two, or four that enable the fuse element assembly 302 to function as described herein. The weak spots 312 may be spaced apart from each other. In some embodiments, the weak spots 312 may be disposed apart from each other along the longitudinal direction of the substrate 310. The weak spots 312 may be made of conductive material such as copper. The weak spots 312 may be printed on the substrate 310 using known techniques. In some embodiments, however, the weak spots 312 may be formed on the substrate 310 using techniques other than printing. Multiple layers of the weak spots 312 may be formed over one another to change the overall thickness of the weak spots 312. The electrical resistance and performance of the weak spots 312 may be, therefore, relatively more controllable than the weak spots formed by metal stamping or punching. Because the weak spots 312 may be formed without mechanical micro tears from the mechanical manufacturing processes like metal stamping or punching, the weak spots 312 do not suffer from load current cycling fatigue as the weak spots 241 of the known fuse 200, especially when under the large, seemingly random cyclic current changes in a direct current power system of an EV.
In some embodiments, the fuse element assembly 302 further includes a dielectric layer 316 disposed between the substrate 310 and the weak spots 312 (
Referring back to
In an exemplary embodiment, the conductor 314 includes coplanar connector sections 318 and obliquely extending sections 320. The obliquely extending sections 320 bend out of plane of the coplanar connector sections 318. The conductor 314 may further include first and second terminal tabs extending from the obliquely extending sections 320. The conductor 314 couples to terminal contact blocks 322, 324 through the terminal tabs 326, 328.
In the contemplated embodiment, the coplanar connector sections 318 may be mounted on respective ones of the weak spots 312. Alternatively, the coplanar connector sections 318 may be mounted on the substrate 310 and may be connected with weak spots 312. As a result, the obliquely extending sections 320 extend above the substrate 310 in between the weak spots 312, and the first and second terminal tabs 326, 328 may extend coplanar to one another in a plane spaced from the coplanar connector sections 318 and the substrate 310. The plane of the first and second terminal tabs 326, 328 may extend parallel to the coplanar connector sections 318 and the substrate 310.
In the exemplary embodiment, the power fuse 300 includes three fuse element assemblies 302 (
A full-range fuse can be realized by using at least one fuse element assembly 302 that is responsive to relatively low current operation (or overload faults) and at least one fuse element assembly 302 that is responsive to relatively high current operation (or short circuit faults). The fuse element assemblies 302 may also be used in a fuse that is not full range.
In the exemplary embodiment, the power fuse 300 may further include an arc extinguishing filler 330 (
In one contemplated embodiment, the arc extinguishing filler 330 is composed of quartz silica sand and a sodium silicate binder. The quartz sand has a relatively high heat conduction and absorption capacity in its loose compacted state, but can be silicated to provide improved performance For example, a liquid sodium silicate solution is added to the sand and then the free water is dried off. Separately provided arc barrier materials (not illustrated) may also be provided to prevent arcing from reaching the ends of the terminal tabs 326, 328.
In the exemplary embodiment, the fuse element assembly 302 provides access of the arc to the arc quenching medium such as sand in the arc extinguishing filler 330. When weak spots 312 melt at predetermined current conditions, arcing starts at weak spots 312. As the arc grows in length it migrates from the weak spots 312 and the substrate 310 and follows the obliquely extending sections 320 into the surrounding arc extinguishing filler 330 for efficient cooling and quicker extinguishment.
In contrast, the substrates 1310 of the fuse element assembly 1302 may be separate from one another. The arc extinguishing filler 330 may be filled in the fuse 300, including the space separating adjacent substrates 1310. As a result, the arc is suppressed by the arc extinguishing filler 330.
In the exemplary embodiment, weak spots 1312 may be included in the fuse element assembly 1302. Compared to the weak spot 312 (see
In some embodiments, the substrate 1310 may be a rod having an increased thickness than a substrate formed as a sheet. The rod may be a square rod or rectangular rod where the axial profile 1020 is square or rectangular (
In some embodiments, in attaching 1106 the weak spot 1312 to the conductor 314, solder 1110 is applied to the weak spot pads 1203 with the substrate 1310 initially as one piece. In one example, the solder 1110 is applied to the substrate 1310 by stencil printing the solder 1110 onto the substrate 1310 and reflowing the solder 1110 on the substrate 1310. Afterwards, the weak spots 1312 may be separated from one another such that each substrate 1310 includes one weak spot 1312. Weak spot pads 1203 may be placed in a tape and reel or matrix tray. A solder paste or flux (not illustrated) is applied to coplanar connector sections 318 of the conductor 314. In one example, the solder paste or flux is placed on a side of the coplanar connector section 318 opposite a valley 1112 formed by the coplanar connector section 318 and its neighboring obliquely extending sections 320. The conductor 314 is placed over the weak spot pads 1203. Alternatively, the weak spot pads 1203 may be placed over the conductor 314. In another example, the solder paste or flux is placed on a side of the coplanar connector section 318 the same as the valley 1112. The weak spot pads 1203 may be picked up and placed in the valley 1112 of the conductor 314. Once the weak spot pads 1203 and the conductor 314 are placed together, the conductor 314 and the weak spot pads 1203 may be reflowed. In one example, weight may be applied to the tops of the substrates 1310 or the coplanar connector section 318 to facilitate reflow.
In the exemplary embodiment, the coplanar connector section 318 includes two portions 1209 separate by a gap 1210 (also see
Weak spots 312 may be used in place of weak spots 1312 and vice versa to enable the fuse element assemblies and methods to function or operate as described herein.
The benefits and advantages of the present disclosure are now believed to have been amply illustrated in relation to the exemplary embodiments disclosed.
Various embodiments of power fuses and fuse element assemblies and their fabrication methods are described herein including a plurality of weak spots formed on a substrate without stamped weak spot openings, thereby avoiding thermal-mechanical fatigue strain in the fuse element assembly when subjected to transient load current cycling events. Further, the fuse assembly includes a conductor having coplanar connector sections mounted on the weak spots and obliquely extending sections extending above the substrate such that an arc extinguishing filler can be disposed to surround at least part of the fuse element assembly, thereby effectively extinguishing arc generated after the fuse element assembly opens at predetermined current conditions.
While exemplary embodiments of components, assemblies and systems are described, variations of the components, assemblies and systems are possible to achieve similar advantages and effects. Specifically, the shape and the geometry of the components and assemblies, and the relative locations of the components in the assembly, may be varied from those described and depicted without departing from inventive concepts described. Also, in certain embodiments, certain components in the assemblies described may be omitted to accommodate particular types of fuses or the needs of particular installations, while still providing the needed performance and functionality of the fuses.
An embodiment of a power fuse for protecting an electrical load subject to transient load current cycling events in a direct current electrical power system has been disclosed. The power fuse includes at least one fuse element assembly that includes an elongated planar substrate, a plurality of fusible weak spots, and a conductor. The plurality of fusible weak spots are formed on the planar substrate and are longitudinally spaced from one another on the planar substrate. The conductor is separately provided from the planar substrate and the plurality of weak spots. The conductor includes a solid elongated strip of metal having no stamped weak spot openings therein and therefore avoiding thermal-mechanical fatigue strain in the conductor when subjected to the transient load current cycling events. The solid elongated strip of metal includes coplanar connector sections that are mounted to respective ones of the plurality of weak spots on the planar substrate and obliquely extending sections bent out of plane of the connector sections to extend above the elongated planar substrate in between the plurality of fusible weak spots. The conductor further includes first and second terminal tabs that extend coplanar to one another in a plane parallel to but spaced from the connector sections and the substrate.
Optionally, the power fuse further includes an arc quenching media that surrounds at least part of the at least one fuse element assembly. The at least one fuse element assembly further includes a dielectric layer formed over the substrate and nested between the substrate and the plurality of weak spots. The conductor is formed in one piece. The substrate is alumina ceramic. The power fuse further includes a housing enclosing the at least one fuse element assembly. The plurality of fusible weak spots are printed on the planar substrate. The power fuse of has a voltage rating of at least 500 V. The power fuse has a current rating of at least 150 A. The at least one fuse element assembly includes first and second fuse element assemblies electrically connected in parallel with each other.
A method of fabricating a power fuse for protecting an electrical load subject to transient load current cycling events in a direct current electrical power system has been disclosed. The method includes forming a plurality of fusible weak spots on an elongated planar substrate such that the plurality of fusible weak spots are longitudinally spaced from one another on the planar substrate. The method further includes providing a conductor separately from the planar substrate and the plurality of weak spots. The conductor includes a solid elongated strip of metal having no stamped weak spot openings therein and therefore avoiding thermal-mechanical fatigue strain in the conductor when subjected to the transient load current cycling events. The solid elongated strip of metal includes coplanar connector sections and obliquely extending sections bent out of plane of the connector sections. The conductor further includes first and second terminal tabs that extend coplanar to one another. The method also includes mounting the coplanar connector sections of the conductor to respective ones of the plurality of weak spots on the planar substrate such that the obliquely extending sections of the conductor extend above the elongated planar substrate in between the plurality of fusible weak spots and the first and second terminal tabs extend coplanar to one another in a plane parallel to but spaced from the connector sections and the substrate, thereby completing a first fuse element assembly.
Optionally, the method further includes surrounding at least part of the first fuse element assembly with an arc quenching medium. Forming a plurality of weak spots includes printing the plurality of weak spots on the elongated planar substrate. Forming a plurality of weak spots further includes providing a dielectric layer on the substrate, and forming the plurality of weak spots over the dielectric layer to cover the dielectric layer and to nest the dielectric layer between the substrate and the plurality of weak spots. Forming a dielectric layer includes printing the dielectric layer on the substrate, and forming the plurality of weak spots includes printing the plurality of weak spots over the dielectric layer to cover the dielectric layer and to nest the dielectric layer between the substrate and the plurality of weak spots. Providing a conductor further includes forming the conductor in one piece. The conductor is formed with support bridges connecting the coplanar connector sections, and mounting the coplanar connector sections further includes removing the support bridges after the coplanar connector sections of the conductor have been mounted on respective ones of the plurality of weak spots. The substrate includes alumina ceramic. The method further includes forming a second fuse element assembly, and electrically connecting the first and second fuse element assemblies in parallel with each other. The method further includes electrically connecting the first and second terminal tabs of the conductor with first and second conductive terminals, and enclosing the first fuse element assembly with a housing, leaving at least part of the first and second conductive terminals exposed.
Another embodiment of a power fuse for protecting an electrical load subject to transient load current cycling events in a direct current electrical power system is disclosed. The power fuse includes at least one fuse element assembly including a plurality of planar substrates, a plurality of fusible weak spots, each formed on one of the plurality of planar substrates, and a conductor. The conductor is separately provided from the plurality of planar substrates and the plurality of weak spots, wherein the conductor includes an elongated strip of metal having no stamped weak spot openings therein and therefore avoiding thermal-mechanical fatigue strain in the conductor when subjected to the transient load current cycling events. The elongated strip of metal further includes coplanar connector sections that are attached to respective ones of the plurality of weak spots and obliquely extending sections bent out of plane of the coplanar connector sections. The plurality of weak spots are longitudinally spaced apart from one another along the conductor, and the plurality of planar substrates are longitudinally spaced apart from one another along the conductor.
Optionally, one of the plurality of fusible weak spots includes openings. The plurality of fusible weak spots are printed on the planar substrates. Each of the plurality of weak spots is attached to a side of one of the coplanar connector sections the same as a valley formed by the coplanar connector section and its neighboring obliquely extending sections. The coplanar connector section forms a pocket sized to receive the weak spot therein. The coplanar connector sections are attached to respective ones of the plurality of weak spots through a first solder and a second solder, the first solder having a melting temperature higher than the melting temperature of the second solder, the first solder deposited over the respective ones of the plurality of weak spots, and the second solder deposited over the first solder.
Another embodiment of a method of fabricating a power fuse for protecting an electrical load subject to transient load current cycling events in a direct current electrical power system is disclosed. The method includes forming a plurality of fusible weak spots on a plurality of planar substrates. The method also includes providing a conductor separately from the plurality of planar substrates and the plurality of weak spots, wherein the conductor includes an elongated strip of metal having no stamped weak spot openings therein and therefore avoiding thermal-mechanical fatigue strain in the conductor when subjected to the transient load current cycling events. The elongated strip of metal includes coplanar connector sections and obliquely extending sections bent out of plane of the coplanar connector sections. The method further includes attaching the coplanar connector sections of the conductor to respective ones of the plurality of weak spots such that the plurality of weak spots are longitudinally spaced apart from one another along the conductor and the plurality of planar substrates are longitudinally spaced apart from one another along the conductor.
Optionally, attaching the coplanar connector sections further includes attaching one of the plurality of weak spots to its respective one of the coplanar connector sections at a side of the coplanar connector section opposite a valley formed by the coplanar connector section and its neighboring obliquely extending sections. Alternatively, attaching the coplanar connector sections further includes attaching one of the plurality of weak spots to its respective one of the coplanar connector sections at a side of the coplanar connector section the same as a valley formed by the coplanar connector section and its neighboring obliquely extending sections. The conductor further includes a support bridge connecting the coplanar connector sections, the obliquely extending sections and the support bridge forming a receptacle sized to receive one of the plurality of planar substrates therein. Attaching the coplanar connector sections further includes aligning the coplanar connector sections with the plurality of planar substrates using the support bridges and the obliquely extending sections and holding the planar substrates in place using the support bridges and the obliquely extending sections during reflow. Attaching the coplanar connector sections also includes removing the support bridges after the coplanar connector sections of the conductor have been attached with respective ones of the plurality of weak spots. Forming a plurality of fusible weak spots further includes forming the plurality of fusible weak spots on a single piece of planar substrate and separating the single piece of planar substrate into the plurality of planar substrates such that each planar substrate includes one weak spot. Forming the plurality of fusible weak spots on a single piece of planar substrate further includes applying a first solder to the plurality of weak spots. Applying a first solder further includes stencil printing the first solder to the plurality of weak spots and reflowing the first solder on the plurality of weak spots. Attaching the coplanar connector sections further includes dispensing a second solder on the coplanar connector sections of the conductor, wherein the second solder has a melting temperature lower than the melting temperature of the first solder, placing the plurality of weak spots with the coplanar connector sections such that the first solder and the second solder face each other, and reflowing the first solder and the second solder. Attaching the coplanar connector sections further includes placing the plurality of weak spots with the coplanar connector sections and applying weight to at least one of the plurality of planar substrates and the coplanar connector sections. One of the plurality of fusible weak spots includes openings. Forming a plurality of fusible weak spots further includes forming the plurality of fusible weak spots on the plurality of planar substrates by printing the plurality of fusible weak spots on the plurality of planar substrates. One of the coplanar connector sections forms a pocket sized to receive one of the plurality of weak spots, attaching the coplanar connector sections further including disposing the weak spot into the pocket.
One more embodiment of a power fuse for protecting an electrical load subject to transient load current cycling events in a direct current electrical power system is disclosed. The power fuse includes at least one fuse element assembly including one or more substrates, one or more fusible weak spots each printed on one of the one or more substrates, and a conductor. The conductor is separately provided from the one or more substrates and the one or more weak spots, wherein the conductor includes an elongated strip of metal having no stamped weak spot openings therein and therefore avoiding thermal-mechanical fatigue strain in the conductor when subjected to the transient load current cycling events. The elongated strip of metal further includes coplanar connector sections that are attached to respective ones of the one or more weak spots and obliquely extending sections bent out of plane of the coplanar connector sections. The one or more weak spots are longitudinally spaced apart from one another along the conductor, and the one or more substrates are longitudinally spaced apart from one another along the conductor.
Optionally, one of the one or more substrates forms into a rod having an increased thickness than a substrate formed as a sheet.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 17/185,537 filed on Feb. 25, 2021, entitled “Design and Fabrication of Printed Fuse,” which is a continuation-in-part under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/590,020 filed on Oct. 1, 2019, entitled “Design and Fabrication of Printed Fuse,” now U.S. Pat. No. 11,087,943, issued on Aug. 10, 2021, which relates in subject matter to and claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/897,024 filed Sep. 6, 2019, entitled “Design and Fabrication of Printed Fuse,” the entirety of all which documents are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62897024 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17185537 | Feb 2021 | US |
Child | 18165806 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16590020 | Oct 2019 | US |
Child | 17185537 | US |