One or more implementations described herein generally relate to Moineau pumps and motors inclusive of positive displacement or progressive cavity motors and pumps. Such implementations that may be used when drilling the wellbore of a subterranean well. More particularly, one or more such implementations relate to designs and methods to improve the durability of such Moineau motors/pumps.
Wellbores are frequently drilled into the Earth's formation to recover deposits of hydrocarbons and other desirable materials trapped beneath the Earth's surface. A well may be drilled using a drill bit coupled to the lower end portion of what is known in the art as a drill string. The drill string has a plurality of joints of drill pipe that are coupled together end-to-end using threaded connections. The drill string is rotated by a rotary table or top drive at the surface, which may also rotate the coupled drill bit downhole. Drilling fluid or mud is pumped down through the bore of the drill string and exits through ports at or near the drill bit. The drilling fluid serves to both lubricate and cool the drill bit during drilling operations. The drilling fluid also returns cuttings to the surface via the annulus between the drill string and the side wall of the wellbore. At the surface, the drilling fluid is filtered to remove the cuttings.
A bottom hole assembly (BHA) is often disposed in drilling string toward the lower end portion thereof. The BHA is a collection of drilling tools and measurement devices and may include the drill bit, any directional or formation measurement tools, deviated drilling mechanisms, mud motors (e.g., Moineau pumps/motors) and weight collars. A measurement while drilling (MWD) or logging while drilling (LWD) collar is often positioned just above the drill bit to take measurements relating to the properties of the formation as the wellbore is being drilled. Measurements recorded from MWD and LWD systems may be transmitted to the surface in real-time using a variety of methods known to those skilled in the art. Once received, these measurements assist operators at the surface in making decisions relating to the drilling operation.
Directional drilling is the intentional deviation of the wellbore from the path that it would naturally take. In other words, directional drilling is the steering of the drill string so that the drill string travels in the desired direction. Directional drilling can be advantageous in offshore drilling because directional drilling permits several wellbores to be drilled from a single offshore drilling platform. Directional drilling also enables horizontal drilling through the formation, which permits a longer length of the wellbore to traverse the reservoir and may permit increased hydrocarbon production. Directional drilling may also be beneficial in drilling vertical wellbores. Often, the drill bit will veer off of an intended drilling trajectory due to the sometimes unpredictable nature of the underground formation and/or the forces the drill bit experiences. When such deviation occurs, a directional drilling system may be employed to return the drill bit to its intended drilling trajectory.
A common directional drilling system and its method of use employ a BHA that includes a bent housing and a Moineau motor/pump, which is also known as a positive displacement motor (PDM) or mud motor. The bent housing includes an upper section and lower section formed on the same section of drill pipe, but the respective sections are separated by a bend in the pipe. The bent housing with the drill bit coupled thereto is pointed in the desired drilling direction. The mud motor is employed to rotate the bent housing and thereby rotate the drill bit to drill in the desired direction.
A mud motor converts some of the energy from the flow of drilling fluid or mud downward through the bore of the drill string into a rotational motion that drives the drill bit. Thus, by maintaining the bent housing at the same azimuth relative to the borehole, the drill bit will drill in a desired direction. When straight drilling is desired, the entire drill string, including the bent housing, is rotated from the surface by the rotary table or top drive, as previously described. The drill bit may angulate with the bent housing and therefore may drill a slight overbore, but straight, wellbore.
PDM power sections include a rotor and a stator. The stator may be a metal tube, e.g., steel, with a rubber or elastomer molded and disposed to an inner surface thereof to form a multi-lobed, helixed interior profile. The stator tube may be cylindrical inside (having a rubber or elastomer insert of varying thickness), or may have a similar multi-lobed, helixed interior profile disposed therein so that the molded-in rubber/elastomer is of a substantially uniform thickness (i.e., even wall). Whether solid rubber/elastomer or even wall, power sections are generally uniform throughout their length. That is, they are either all rubber/elastomer or all even wall over the entire length of the multi-lobed, helixed interior profile. The rotor may also be constructed of a metal, such as steel, with a solid or hollow inner construction. The rotor may have a multi-lobed, helically-shaped outer surface, which compliments the inner surface of the stator. The rotor may also have a rubber or elastomer disposed on its outer surface. The outer surface of the rotor has one less lobe than the inner surface of the stator such that a moving, fluid-filled chamber is formed between the rotor and the stator as fluid is pumped through the motor.
The rotor rotates and gyrates in response to a fluid (e.g., drilling fluid or mud) pumped downhole through the drill string and stator of the PDM. The rubber or elastomeric materials within the motor, as discussed above, provide a seal between the rotor and the stator. Without this seal, the motor may operate inefficiently and/or fail altogether. Nevertheless, as the rotor turns or rotates within the stator, this rubber or elastomer can sustain undesirable lateral and shear forces between the rotor and the stator, which may lead to motor failure. Motor failure during directional drilling can be a significant and undesirable event. One mode of motor failure is rubber chunking in which one or more portions of the rubber or elastomer break off. Thus, there is a desire to reduce or eliminate the excessive lateral and shear forces sustained by the rubber or elastomer so as to improve motor durability and reduce motor failure.
Described herein are implementations of various technologies for improving the durability and/or efficiency of a progressive cavity motor or pump. In one implementation, a progressive cavity motor or pump may include a stator with an internal axial bore therethrough. The internal axial bore has an inwardly facing surface with axial lobes to form a stator helical profile. The progressive cavity motor also has a rotor with an outer surface having axial lobes to form a rotor helical profile that is at least partially complimentary to the stator helical profile. The rotor is rotationally disposed within the internal axial bore of the stator. The axial lobes of the rotor number at least one less than the axial lobes of the stator to form a moving chamber between the rotor and stator. The rotor has a diameter that varies along an axial length thereof with the diameter of the rotor proximate an uphole end portion thereof being no greater than at a downhole end portion thereof.
In another implementation, a progressive cavity motor or pump may include a stator with an internal axial bore therethrough. The internal axial bore has an inwardly facing surface with axial lobes to form a stator helical profile. The progressive cavity motor also has a rotor with an outer surface having axial lobes to form a rotor helical profile that is at least partially complimentary to the stator helical profile. The rotor is rotationally disposed within the internal axial bore of the stator. The axial lobes of the rotor number at least one less than the axial lobes of the stator to form a moving chamber between the rotor and stator. The rotor has a variable stiffness along an axial length thereof. In one or more other implementations, the stator, rather than or in addition to the rotor, may have a variable stiffness along an axial length thereof. In some implementations, the rotor diameter proximate its downhole end portion may become increasingly less while the inner diameter of the stator proximate its downhole end portion may remain constant such that a variable fit occurs between the rotor and stator near their downhole end portions.
In yet another implementation, a method of increasing durability of a progressive cavity motor or pump is disclosed. The method involves providing a stator with an internal axial bore therethrough with the internal axial bore having an inwardly facing surface with axial lobes to form a stator helical profile. The method also provides a rotor with an outer surface having axial lobes to form a rotor helical profile that is at least partially complimentary to the stator helical profile. The rotor is rotationally disposed within the internal axial bore of the stator. The axial lobes of the rotor number at least one less than the axial lobes of the stator to form a moving chamber between the rotor and stator. Further, the rotor has a variable diameter along an axial length thereof. The method also involves varying rotor diameter along the axial length of the rotor to increase rotor stiffness toward a downhole end portion of the rotor.
The above referenced summary section is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description section. The summary is not intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve disadvantages noted in any part of this disclosure.
Implementations of various techniques will hereafter be described with reference to the accompanying drawings. It should be understood, however, that the accompanying drawings illustrate various implementations described herein and are not meant to limit the scope of various techniques described herein.
The discussion below is directed to certain specific implementations. It is to be understood that the discussion below is for the purpose of enabling a person with ordinary skill in the art to make and use any subject matter defined now or later by the patent “claims” found in any issued patent herein.
It is specifically intended that the claims not be limited to the implementations and illustrations contained herein, but include modified forms of those implementations including portions of the implementations and combinations of elements of different implementations as come within the scope of the following claims.
Reference will now be made in detail to various implementations, examples of which are illustrated in the accompanying drawings and figures. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, apparatuses and systems have not been described in detail so as not to obscure aspects of the implementations.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first object could be termed a second object, and, similarly, a second object could be termed a first object, without departing from the scope of the claims. The first object and the second object are both objects, respectively, but they are not to be considered the same object.
The terminology used in the description of the present disclosure herein is for the purpose of describing particular implementations and is not intended to be limiting of the present disclosure. As used in the description of the present disclosure and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses one or more possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes” and/or “including,” when used in this specification, specify the presence of stated features, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, operations, elements, components and/or groups thereof.
As used herein, the terms “up” and “down”; “upper” and “lower”; “upwardly” and downwardly”; “below” and “above”; and other similar terms indicating relative positions above or below a given point or element may be used in connection with some implementations of various technologies described herein. However, when applied to equipment and methods for use in wells or boreholes that are deviated or horizontal, or when applied to equipment and methods that when arranged in a well or borehole are in a deviated or horizontal orientation, such terms may refer to a left to right, right to left, or other relationships as appropriate.
One or more implementations disclosed herein are directed to a Moineau-type motor or pump, also known as a progressive cavity motor or pump, having a rotor and/or stator arranged and designed to improve or increase durability. In one implementation, the rotor has a variable diameter along its axial length. The stator may also have a variable inner diameter that at least partially corresponds to the variable diameter of the rotor. In another implementation, the rotor has a variable stiffness along its axial length. Such variable stiffness may be attained by manipulating the minor and major diameters along the length of the rotor or by having axial portions of the rotor constructed of different materials, each with a different stiffness. Various implementations will now be disclosed in more detail with reference to
Continuing with
The bending stiffness, Kr, of the rotor is proportional to the fourth power of the outside (outer) diameter of the rotor, OD, minus the fourth power of the inside (inner) diameter of the rotor, ID, via the following equation:
K
rα(OD4−ID4)
In essence, this means that for a plain rotor with zero inside diameter, increasing the diameter by 10% along some axial portion thereof increases the bending stiffness by nearly 50%, which leads to nearly 50% less bending of the rotor along that increased diameter.
Now turning to
While the rotor 20 of
While the stator 30 of
The stator may incorporate a rigid stator form (e.g., a stator tube insert) or be an even wall stator construction to which a uniform thickness of an elastomer material is molded and applied to improve the sealing properties of the rotor/stator components while also stiffening the stator for transmission of increased torsional forces. Various examples of suitable stator construction are described in U.S. RE21374, U.S. Pat. No. 3,975,120, U.S. Pat. No. 5,171,138 A or U.S. Pat. No. 5,221,197.
The increased diameter of the rotor 40 proximate its lower end portion 48 increases the stiffness of the rotor 40 in its lower end portion 48 (as compared to the stiffness of the rotor 40 uphole thereof). Further, the increased diameter of the rotor 40 proximate its upper end portion 42 increases the stiffness of the rotor 40 in its upper end portion 42 (as compared to the stiffness of the rotor 40 proximate its midpoint or between about point 44 and about point 46 therealong). In this way, the diameter of the rotor 40 may be varied along the axial length of the rotor to concentrate a lower stiffness of the rotor towards or proximate a midpoint (between about point 44 and about point 46) of the rotor 40. Such a stiffness profile permits the middle portion of the rotor 40 to bend and/or flex to a greater extent than the end portions 42, 48 thereof.
While points 44 and 46 are shown on
Furthermore, with any of the various implementations disclosed herein, such desired axial length of the rotor diameter increases and/or decreases may be selected so as to concentrate regions of stiffness or flexibility into the rotor. In this way, additional bending of the rotor and/or stator is permitted where needed to provide greater sealing (and greater power) as well as less bending of the rotor and/or stator where needed to reduce the side load on the stator and provide greater durability to the stator and/or rotor (and the elastomer thereof).
Returning to
One implication of the variable stiffness rotor is that it also allows the rotor to have a variable fit with the stator as desired. For example, the rotor 10 of
Although only a few example implementations have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example implementations without materially departing from “Design and Method to Improve Downhole Motor Durability.” Accordingly, all such modifications are intended to be included within the scope of this disclosure. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of the any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
The present application claims the benefit of, and priority to, U.S. Provisional Patent Application No. 62/096,353, filed Dec. 23, 2014, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/066552 | 12/18/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62096353 | Dec 2014 | US |