Design and synthesis of bone-selective osteogenic oxysterol-bisphosphonate analogues

Information

  • Research Project
  • 9352741
  • ApplicationId
    9352741
  • Core Project Number
    R44AG055374
  • Full Project Number
    5R44AG055374-03
  • Serial Number
    055374
  • FOA Number
    PA-14-071
  • Sub Project Id
  • Project Start Date
    9/1/2013 - 11 years ago
  • Project End Date
    4/30/2018 - 6 years ago
  • Program Officer Name
    WILLIAMS, JOHN
  • Budget Start Date
    6/1/2017 - 7 years ago
  • Budget End Date
    4/30/2018 - 6 years ago
  • Fiscal Year
    2017
  • Support Year
    03
  • Suffix
  • Award Notice Date
    5/31/2017 - 7 years ago
Organizations

Design and synthesis of bone-selective osteogenic oxysterol-bisphosphonate analogues

? DESCRIPTION (provided by applicant): Osteoporosis directly affects 10 million Americans and another 34 million are osteopenic and at risk for developing osteoporosis. Bisphosphonate drugs, for example alendronic acid (ALN, Fosamax), can improve bone density and reduce fracture risk by slowing osteoclastic bone resorption; however, many of the existing anti-resorptive therapies are plagued with untoward side effects and limited duration of clinical benefits. New and improved strategies for therapeutic intervention in osteoporosis are needed, particularly with new treatments that safely promote anabolic bone growth. A dual therapy approach, addressing both resorption and formation of bone could also be helpful. Presently, there is only one FDA approved bone anabolic agent, Forteo (teriparatide), that confers significant clinical benefits in osteoporosis, but its use is severely restricted due to safety concerns. Multipotent mesenchymal stem cells (MSCs) are precursors of a variety of cell types, including osteoblasts and adipocytes. Formation of new bone is driven by osteoblastic differentiation of MSCs, a process that can be thrown off balance by age, lifestyle factors and hormonal changes that occur with menopause. Parhami et al. discovered that specific oxysterols induce osteogenesis when applied to MSCs while inhibiting their adipogenesis. The most promising proprietary semi-synthetic oxysterol to date, OXY133, displays increased potency for osteogenic differentiation in vitro, including in primary rat, rabbit, and human MSCs, and it stimulates robust localized bone formation in vivo in rat and rabbit spine fusion and crania and femoral defect models. During SBIR Phase I research, we have begun evaluating drug conjugates of osteo- anabolic Oxy133 and Alendronate (ALN), a well-established anti-resorptive drug that also serves as a bone- targeting agent. We have worked out methods for chemical conjugation and characterized biophysical and biological properties of the resulting conjugates. Oxy133-ALN conjugates display strong in vitro binding to bone mineral and stimulate Hedgehog (Hh) pathway signaling and osteogenesis in MSCs. In this application, we propose to further develop Oxy133-ALN conjugates as potential dual therapy agents for osteoporosis, stimulating bone formation by osteoblasts (function of Oxy133), and inhibiting bone resorption by osteoclasts (function of ALN). Expanding on our successful Phase I studies, we propose to perform Phase II studies as part of 3 Specific Aims: Aim 1: Development of scalable methods for the synthesis of Oxy133-ALN conjugates. Aim 2: Evaluation of the inhibition of osteoclastic bone-resorption by Oxy133-ALN conjugates and the possibility of a dual therapy. Aim3: Determination of Oxy133-ALN conjugate tissue distribution properties and evaluation of select Oxy133- ALN conjugates for efficacy in an OVX mouse model.

IC Name
NATIONAL INSTITUTE ON AGING
  • Activity
    R44
  • Administering IC
    AG
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    499690
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    866
  • Ed Inst. Type
  • Funding ICs
    NIA:499690\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    MAX BIOPHARMA, INC.
  • Organization Department
  • Organization DUNS
    965562858
  • Organization City
    LOS ANGELES
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    900494420
  • Organization District
    UNITED STATES