This application claims the priority benefit of Taiwan application serial no. 107104784, filed on Feb. 9, 2018. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The technical field relates to assistive device and electronic system for assistive device design. In another aspect, the invention relates to assistive device for limb parts and electronic system for assistive device design for limb parts.
Assistive devices are often used when people get injury and with disabilities, such as plaster, crutch, protective clothing, prosthetics, and so on. Distinguished by abilities, the assistive device can be divided to the species as follows. The movement assistive devices such as wheelchair, corrective shoes, walking frame, and crutch. The physical function assistive devices such as prosthetics for arm or legs and pencil grip. The living assistive devices such as safety alarm and stair climber. The treatment assistive devices such as plaster, backrest, waist guard, knee guard, neck guard, and cushion. The assistive devices commonly used by consumers are associated with body movement and physical function such as protective clothing, walking frame, prosthetics, and plaster.
In general, assistive devices for fixing limbs are often used by experienced doctors or health care providers by plaster or molds, but assistive devices made by plaster often provides awful user experience. For example, due to the plaster is hardened after cool down, the skin of user is very uncomfortable while contacting the hardened plaster. In another aspect, the assistive devices made by plaster are formed in high temperature, so it is hard to change the material or structure to fulfill customized requirements. Although the assistive devices can be produced in different sizes, but they also can't fit every user's limb perfectly and provide comfort to the users.
A design method for assistive devices and an electronic system for assistive devices design are provided.
In an exemplary embodiment, a design method for an assistive device, and the design method is apply to an electronic device comprising a processor, the design method comprising: obtaining point cloud data of a limb part; generating a plurality of reference cross sections according to the point cloud data, wherein each of the reference cross sections are determined by a plurality of bone protrusion feature points, wherein the bone protrusion points are respectively corresponding to a plurality of bony prominences of the limb part; establishing an initial digital model of the assistive device according to the reference cross sections; and performing a structural simulation analysis according to the initial digital model and a plurality of design limitations to obtain a product digital model of the assistive device.
In another exemplary embodiment, An electronic system for designing an assistive device comprising: a 3D scanner, for scanning a limb part for generating a point cloud data; and an electronic device comprising a processor, the electronic device is coupled to the 3D scanner; wherein the processor receives the point cloud data of the limb part from the 3D scanner; wherein the processor determining a plurality of reference cross section according to the point cloud data, wherein each of the reference cross section is determined by a plurality bone protrusion feature points in the point cloud data, wherein the bone protrusion feature points are respectively corresponding to a plurality of bony prominences of the limb part; wherein the processor establish an initial digital model of the assistive device according to the reference cross sections, and performs a structural simulation analysis according to the initial digital model and a plurality of design limitations to establish a product digital model of the assistive device.
Another exemplary embodiment of a method for designing an assistive device for an electronic device comprising a processor and a display device, the method comprising: obtaining a point cloud data of a limb part by the processor, and display the point cloud data by the display device; determining a plurality of reference cross sections by a user interface executed by the processor according to the point cloud data, wherein each of the reference cross sections are determined by a plurality of bone protrusion feature points in the point cloud data, and the bone protrusion feature points are respectively corresponding to a plurality of bony prominences of the limb part; establishing an initial digital model of the assistive device by the processor according to the reference cross sections; and performing a structural simulation analysis by the processor according to the initial digital model and a plurality of design limitations to establish a product digital model of the assistive device.
Methods disclosed above may be practiced by the devices or systems disclosed above which are hardware or firmware capable of performing particular functions and may take the form of program code embodied in a memory and/or embodied in a computer-readable storage medium/computer program product, combined with specific hardware. When the program code is loaded into and executed by an electronic device, a controller, a computer processor or a machine, the electronic device, the processor, the computer or the machine becomes an apparatus or system for practicing the disclosed method.
The application will become more fully understood by referring to the following detailed description with reference to the accompanying drawings, wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing. It should be understood that the embodiments may be realized in software, hardware, firmware, or any combination thereof.
The processor 122, for example, is a central processing unit (CPU), a microprocessor, an embedded control chip, a digital signal processor (DSP), an application specific integrated circuits (ASIC), or so on. The display device 124 can display the point cloud data received by the electronic device 120 and a user interface executed by the processor 122. In the embodiment, the user interface can be displayed as window screens, each of the window screens is able to display different information such as point cloud data in different aspect of views, a digital model of the assistive device, and so on. The processor 122 can quickly determine bone protrusion feature points among the point cloud data through the user interface by the design method in the embodiment of the application, and the processor 122 establishes an initial digital model of the assistive device according to the bone protrusion feature points. Then, the processor 122 performs a structural simulation according to the initial digital model to establish a product digital model of the assistive device. Therefore, the product digital model of the assistive device can avoid extrusion on the bony prominences of the limb part, thus the assistive device can also provide comfort when supporting the limb part.
The 3D printer 130 is coupled to the electronic device 122, and the 3D printer 130 produces the assistive device according to the product digital model of the assistive device. Because of the product digital model is established after the structural simulation, the product digital model may has different structures as compare to the structure of conventional assistive devices. Therefore, the assistive device of the embodiment of the application is recommended to produce through 3D printing technique. Moreover, 3D printing technique is capable to transform the product digital model to a final product in a short time. As a result, the production period of a customized assistive device can be shortened.
In step S220, the processor 122 determines a plurality of reference sections according to the point cloud data. Each of the reference sections is determined by the bone protrusion feature points in the point cloud data respectively, and each of the bone protrusion feature points corresponding to a plurality of bony prominences of the limb part. For example, bony prominences is located at the root of fingers, the wrist back of a hand, and the ankle of a foot.
Refer to
In step S260, the processor 122 performs the structural simulation according to the initial digital model and the design limitations to establish a product digital model of the assistive device. In step S261, the processor 122 performs the structural simulation by a computer aided engineering tool according to the initial digital model and the design limitations input ay step S240 and S250, to establish a parameterized digital model of the assistive device. The parameterized digital model may also called as a model of finite element method. The structural simulation is performed by structure algorithm to produce a digital model of the assistive device with enough supporting strength. In the embodiment, the finite element method is established by mesh split.
In step S262, the processor 122 determines whether the parameterized digital model meets the design limitations in step S250. When the parameterized digital model does not meet the design limitations, the process is proceed from step S262 to S263 and the processor 122 corrects the parameterized digital model. The correction mentioned above may be performed by the processor 122 automatically, by the user input manually, or by a doctor or an experienced assistive device designer modifies part of the parameters or materials of the assistive device. After the correction in step S263, the processor 122 may proceed step S261 from S263 to perform the structural simulation by the computer aided engineering tool to establish a modified parameterized digital model of the assistive device.
When the parameterized digital model or modified parameterized digital model established in step S261 meets the design limitations, the process is proceed from step S262 to S264. The processor 122 marks the parameterized digital model or the modified parameterized digital model as the product digital model when he parameterized digital model or the modified parameterized digital model meets the design limitations. Therefore, a 3D limb digital model of a customized assistive device may be produced in a short time through step S210 to S260 according to the bony prominences of the limb. In step S270, the 3D printer 130 may produce the assistive device according to the product digital model of the assistive device, and performs surface treatment to the assistive device such as polishing. As the result, the assistive device may be produced quickly and automatically. The digital models in the embodiment are established by structural algorithm according to the point cloud data of the limb part. Therefore, the assistive device can avoid extrusion on the bony prominences of the limb part, thus the assistive device can also provide comfort when supporting the limb part.
The following paragraph will describe how to determine reference sections G1 to G4 and protector reference points A1 to A4, B1 to B4, C1 to C4, and D1 to D4 of the assistive device according to the bone protrusion feature points. The protector reference points are used to determine the corresponding reference sections of the initial digital model of the assistive device. In the embodiment, each of the reference sections has four corresponding protector reference points respectively.
The reference section G2 is determined as the following process. In the embodiment, a second surface PL2 is formed by moving the first surface PL1 along a reversed direction of the arm direction DA for a first offset distance DD1 according to a doctor indication or rule of thumb. Then, the second protector reference points B1 to B4 are determined at the intersection (such as a second reference section G2) of the point cloud data 300 and the second surface PL2. The second protector reference points B1 to B4 are used to form the second reference section G2. The second reference section G2 is determined according to a protection area of the assistive device includes the wrist or arm part of the limb or not. If the assistive device also provides protection to the arm part, the first offset distance DD1 is larger. If the assistive device only provides protection to the wrist part, the first offset distance DD1 is smaller.
As the embodiment described above, the initial digital model of the assistive device can be established in step S230 according to the first protector reference points A1 to A4, the second protector reference points B1 to B4, the third protector reference points C1 to C4, and the fourth protector reference points D1 to D4. Then, the step S240 to S270 are performed.
While the application has been described by way of example and in terms of exemplary embodiment, it is to be understood that the application is not limited thereto. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this application. For example, the systems and methods described in the embodiments of the present APPLICATION may be implemented in physical embodiments of hardware, software, or a combination of hardware and software. Therefore, the scope of the present application shall be defined and protected by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
107104784 | Feb 2018 | TW | national |