The present disclosure generally relates to the field of voltage reference circuits in integrated circuits. In particular, the present disclosure is directed to a design structure comprising a voltage reference circuit for low voltage applications in an integrated circuit.
In many integrated circuit designs, it is necessary to have local reference voltages of known values that are stable among process and temperature variations. With advances in semiconductor technology, the semiconductor geometries are decreasing. In particular, with the scaling of semiconductor technologies and the use of ultra-thin gate oxides, the demand for low power and low voltage reference circuits is increasing strongly. A well-known technique for providing a regulated reference voltage is the band gap reference circuit, which may be utilized as a general-purpose voltage regulator circuit for supplying a stable voltage reference in, for example, an integrated circuit. However, a drawback of the traditional band gap reference circuit is that it uses an arrangement of semiconductor diodes that are unable to operate at power supply voltages less than about 1.0 volts, because the forward bias of a diode is around 0.7 volts and, thus, the proper voltage margins may not be maintained. Consequently, as semiconductor technologies advance and the operating voltages decrease, traditional band gap reference techniques have reached the limit of their voltage margins.
For these reasons, a need exists for a voltage reference circuit for use in low voltage applications in an integrated circuit, in order to replace diode-style band gap reference circuits that are unable to operate with power supply voltages that are less than about 1 volt.
One embodiment is directed to a design structure. The design structure comprises a voltage reference circuit that includes a first voltage divider stack comprising a first input for receiving a regulated voltage, and a first internal node for providing a first divided output voltage. A second voltage divider stack is electrically coupled in parallel with the first voltage divider stack and has a nonlinear relationship to the regulated voltage. The second voltage divider stack comprises a second input for receiving the regulated voltage, and a second internal node for providing a second divided output voltage. A voltage regulator is operatively configured to generate the regulated voltage as a function of the first divided output voltage and the second divided output voltage.
Another embodiment is also directed to a design structure. The design structure comprises a voltage reference circuit that includes a first voltage divider stack comprising a first input for receiving a regulated voltage, and a first internal node for providing a first divided output voltage. A second voltage divider stack is electrically coupled in parallel with the first voltage divider stack. The second voltage divider stack comprises a first leaky capacitor having a first leakage current and including a second input for receiving the regulated voltage. The second voltage divider stack also comprises a second leaky capacitor electrically coupled in series with the first leaky capacitor so as to define a second internal node therebetween for providing a second divided output voltage. A voltage regulator is operatively configured to generate the regulated voltage as a function of the first divided output voltage and the second divided output voltage.
In a further embodiment, the present invention is directed to a method of providing a voltage reference signal. The method comprises dividing a regulated voltage so as to provide a first divided voltage output having a first profile of the first divided output voltage versus the regulated voltage. The regulated voltage is divided so as to provide a second divided voltage having a second profile of the second divided voltage versus the regulated voltage that crosses the first profile at a single crossover voltage. The regulated voltage is generated as a function of the first divided output voltage and the second divided output voltage so that each of the first divided output voltage and the second divided output voltage are substantially equal to one another. At least one of the following is output as a voltage reference signal: the regulated voltage, the first divided output voltage and the second divided output voltage.
For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
Referring now to the drawings,
TD voltage reference circuit 14 may be used in place of a diode-style band gap reference circuit and may be designed to operate with power supply voltages that are relatively low, e.g., less than about 1 volt, to output a voltage reference, which may be any one of the first voltage V1, the second voltage V2, and regulated output voltage VREG, that is very stable across process and temperature variations. At a very high level and as explained in more detail below, TD voltage reference circuit 14 utilizes differential op-amp circuit 20 in a feedback loop to compare first and second output voltages V1, V2 of first and second device stacks 16, 18 with one another and output regulated output voltage VREG as a function of the first and second voltages V1, V2, respectively. Because of the linear behavior of first device stack 16 and the non-linear behavior of second device stack 18, there is a single non-zero value of regulated voltage VREG at which the first and second voltages V1, V2 are equal to one another. Once TD voltage reference circuit 14 locks onto this value, regulated voltage VREG and first and second voltages V1, V2 remain highly stable amid process and temperature variations.
At a more detailed level, first device stack 16 may include two similar n-type transistors N1, N2 (
In the example of TD voltage reference circuit 14, op-amp circuit 20 is arranged in a negative feedback configuration for sensing a difference in voltage as between first output node V1 of first device stack 16 and second output node V2 of second device stack 18 and then taking corrective action to either increase or decrease regulated voltage VREG until first and second output voltages V1, V2 are substantially equal to one another. More details of differential op-amp circuit 20 are discussed below in the description of
Current-mirror circuit 22 may be a general-purpose current source that provides gate bias voltages for positive field-effect transistors (pFETs) and/or negative field-effect transistors (nFETs). More details of current-mirror circuit 22 may be found below in the description of
In the present example, transistors N1, N2 have substantially equal oxide thickness, substantially equal voltage thresholds (Vts), and substantially equal oxide areas. The range of oxide thickness is such that a tunneling current can flow through transistors N1, N2. This range may be, e.g., about 4.0 nanometers (nm) down to about 0.8 nm. In one example, the oxide thickness of each transistor N1, N2 is 1.40 nm. The range of Vt may be about 100 millivolts (mV) to about 400 mV, which may be considered a typical or “normal-Vt” range for such devices. In one example, the normal-Vt of both transistors N1, N2 may be 0.347 V. The oxide area is expressed in terms of channel width W and length L in microns. The only requirement on the oxide area of transistors N1, N2 is that each is at least 1.0 square micron with dimensions of at least 1.0 micron×1.0 micron. This condition is to allow the Vt of transistors N1, N2 to be independent of the variations in the W/L ratio. In one example, the W/L ratio of each transistor N1, N2 may be 5.0/10.0 microns. Because the oxide area of transistors N1, N2 are equal, the voltage across transistor N1 is equal to the voltage across transistor N2 and, thus, first voltage V1 is substantially equal to one-half of regulated voltage VREG. Consequently, first voltage V1 has a linear relationship to regulated voltage VREG.
As also mentioned above, second device stack 18 may include a stack of two dissimilar nFETs N3, N4 electrically connected in series between VREG and ground and biased in a current tunneling mode in order to form a second voltage divider circuit. Intermediate voltage node V2 is located between transistors N3 and N4. The bulk nodes B of corresponding respective transistors N3, N4 may be electrically connected ground. In one embodiment, transistors N3, N4 have substantially equal oxide thicknesses, but have unequal oxide areas and unequal Vts. Like transistors N1, N2 of first device stack 16, the oxide thickness range for transistors N3, N4 may be, e.g., about 4.0 nm down to about 0.8 nm. In one example, the oxide thickness of each transistor N3, N4 is 1.4 nm.
In the present example and like transistors N1, N2, transistor N3 may be considered a normal-Vt device. However, transistor N4 may be considered a low-Vt or an ultra-low-Vt device as compared with each of transistors N1, N2, N3. A low-Vt range may be considered to be about 0.0 mV to about 200 mV. In one example, the low-Vt of transistor N4 may be 0.128 V. An ultra-low-Vt range may be considered to be about −200 mV to about 100 mV. In one example, the ultra-low-Vt of transistor N4 may be 0.026 V. Alternatively, transistor N4 may be considered a high-Vt device as compared with transistor N3. A high-Vt range may be about 300 mV to about 600 mV. In one example, the high-Vt of transistor N4 may be 0.573 V. Because transistors N1, N2, N3, N4 are low-Vt, normal-Vt, or high-Vt devices, when power supply voltage VDD is 1.0 volt or less, there is sufficient voltage margin within TD voltage reference circuit 14 to allow device operation, which is not the case in the traditional diode-style band gap reference circuits.
Like transistors N1, N2, the only requirement on the oxide areas of transistors N3, N4 is that each is at least 1.0 square micron with dimensions of at least 1.0×1.0 micron. In one example, the W/L of transistor N3 may be 130.0/10.0 microns and the W/L of transistor N4 may be 200.0/2.0 microns. Because the Vt of transistors N3, N4 are unequal, the gate tunneling current characteristics of transistors N3, N4 are different and, thus, the voltage across transistor N3 is not equal to the voltage across transistor N4. Consequently, second voltage V2 has a nonlinear relationship to regulated voltage VREG and, thus, second voltage V2 is not simply equal to one-half of regulated voltage VREG.
Additionally, because first device stack 16 and second device stack 18 are formed of very low current devices, it is easy to disturb voltage nodes V1, V2, respectively. Therefore, first device stack 16 and second device stack 18 may each include a corresponding isolation resistor R1, R2. Isolation resistor R1, which is electrically connected to voltage node V1, and isolation resistor R2, which is electrically connected to voltage node V2, provide resistive isolation between first device stack 16 and second device stack 18, respectively, and op-amp circuit 20, in order to inhibit noise that may alter the stack voltages. The resistance values of isolation resistors R1, R2 may range sufficiently high to provide good isolation, but not so high as to diminish the loop gain of op-amp circuit 20. In one example, the resistance values of isolation resistors R1, R2 may each be 10,000 ohms.
Op-amp circuit 20 may be a differential operational amplifier circuit arranged in a negative feedback configuration for sensing a difference between two voltages and then taking corrective action to either increase or decrease a voltage node. Op-amp circuit 20 may include a standard, high gain, operational amplifier OP-AMP device whose negative input is fed by first voltage V1 of first device stack 16 via isolation resistor R1 and whose positive input is fed by second voltage V2 of second device stack 18 via isolation resistor R2. An output of operational amplifier OP-AMP feeds the gates of transistors P1, P2. Transistor P2 serves as a decoupling capacitor between output of operational amplifier OP-AMP and the power supply voltage, e.g., voltage VDD, in order to ensure stability of operational amplifier OP-AMP and the negative feedback configuration. Transistor (P1), which is electrically connected between supply voltage VDD and regulated voltage node VREG, may be the gain stage of operational amplifier OP-AMP that is used to regulate regulated voltage VREG. In response to the output of operational amplifier OP-AMP, transistor P1 supplies current to regulated voltage node VREG, which is the upper rail voltage of first device stack 16 and second device stack 18. In this way, the negative feedback loop is closed.
In particular, operational amplifier OP-AMP senses the difference between the first and second voltage nodes V1, V2 of first and second device stacks 16, 18, respectively, and controls the gate of transistor P1 that supplies current to regulated voltage node VREG until first and second voltage V1, V2 are equal to one another, which is the point at which equilibrium is reached. Due to the linear nature of first device stack 16 and first voltage V1 and the non-linear nature of second device stack 18 and second voltage V2, there is only one non-zero value of regulated voltage VREG at which first and second voltages V1, V2 are equal to one another. Regulated voltage VREG may vary as a function of the ratio of oxide areas of transistors N3, N4 (N3/N4 device ratio). Therefore, with the oxide area of transistor N3 held constant, regulated voltage VREG may be varied by adjusting the oxide area of transistor N4 and, thereby, changing the N3/N4 device ratio.
Current-mirror circuit 22 may be formed of a current source 26 that feeds an n-type/p-type pair of transistors N5, P3. The output of transistor P3 is a regulated voltage level that may be used to regulate the current through a similar pFET device. Similarly, the output of current source 26 is a regulated voltage level that may be used to regulate the current through a similar nFET device, such as transistor N5. Additionally, current source 26 may provide a current source for operational amplifier OP-AMP of op-amp circuit 20.
TD voltage reference circuit 14 is a bi-stable circuit in that two stability points exist at which first voltage V1 is equal to second voltage V2 and results in a fixed and stable value of regulated voltage VREG. One stability point is V1=V2=0 volts (ground) and the other stability point is V1=V2>0 volts (non-ground), which is the desired stability point. In order to ensure that op-amp circuit 20 seeks the non-ground stability point for regulated voltage VREG while supply voltage VDD is initially ramping up, startup circuit 24 is used. The purpose of startup circuit 24 is to provide an initial non-ground voltage at regulated voltage node VREG at start up time, which allows operational amplifier OP-AMP and transistor P1 to operate with negative feedback in order to regulate regulated voltage VREG so as to seek a non-ground voltage value that allows first voltage V1 to equal second voltage V2.
In the present example, startup circuit 24 is formed of an arrangement of p-type transistors (pFETs) P4, P5, and P6 as well as an n-type transistor (nFET) N6, which are electrically connected as shown in
Intermediate node vs. reference node voltage plot 30 shows a plot of a V1 voltage ramp 32, which in every scenario is substantially equal to VREG/2 because it has a linear relationship to regulated voltage VREG. In a first example, intermediate node vs. reference node voltage plot 30 shows a plot of a first V2 voltage ramp 34 that intersects with V1 voltage ramp 32 at a point A only, at which each of first and second voltages V1, V2 equals 200 mV, which is the result of an N3/N4 device ratio of 11.92. More details of the circuit conditions that generate first V2 voltage ramp 34 are shown in Example No. 1 of Table 1 below.
In a second example, intermediate node vs. reference node voltage plot 30 shows a plot of a second V2 voltage ramp 36 that intersects with V1 voltage ramp 32 at a point B only, at which each of first and second voltages V1, V2 equals 300 mV, which is the result of an N3/N4 device ratio of 7.09. More details of the circuit conditions that generate second V2 voltage ramp 36 are shown in Example No. 2 of Table 1 below.
In a third example, intermediate node vs. reference node voltage plot 30 shows a plot of a third V2 voltage ramp 38 that intersects with V1 voltage ramp 32 at a point C only, at which each of first and second voltages V1, V2 equals 400 mV, which is the result of an N3/N4 device ratio of 3.64. More details of the circuit conditions that generate third V2 voltage ramp 38 are shown in Example No. 3 of Table 1 below.
In a fourth example, intermediate node vs. reference node voltage plot 30 shows a plot of a fourth V2 voltage ramp 40 that intersects with V1 voltage ramp 32 at a point D only, at which each of first and second voltages V1, V2 equals 500 mV, which is the result of an N3/N4 device ratio of 2.52. More details of the circuit conditions that generate fourth V2 voltage ramp 40 are shown in Example No. 4 of Table 1 below.
In a fifth example, intermediate node vs. reference node voltage plot 30 shows a plot of a fifth V2 voltage ramp 42 that intersects with V1 voltage ramp 32 at a point E only, at which each of first and second voltages V1, V2 equals 600 mV, which is the result of an N3/N4 device ratio of 2.09. More details of the circuit conditions that generate fifth V2 voltage ramp 42 are shown in Example No. 5 of Table 1 below.
In a sixth example, intermediate node vs. reference node voltage plot 30 shows a plot of a sixth V2 voltage ramp 44 that intersects with V1 voltage ramp 32 at a point F only, at which each of first and second voltages V1, V2 equals 700 mV, which is the result of an N3/N4 device ratio of 1.85. More details of the circuit conditions that generate sixth V2 voltage ramp 44 are shown in Example No. 6 of Table 1 below.
Intermediate node vs. reference node voltage plot 30 of
It is demonstrated in Table 1 that as N3/N4 device ratio is decreased, the intermediate second voltage V2 becomes larger. This can be explained by the difference in tunneling current of a normal-Vt device versus that of a low-Vt device at a given gate voltage. A gate current vs. gate voltage plot 45 of
The voltage reference circuit of
Additional examples of circuit conditions that produce voltages V1, V2, and VREG of TD voltage reference circuit 14 are shown in Table 2. Further to the example, a plot of Example No. 4 of Table 2 is shown in
Referring again to
A tunneling reference circuit, such as TD voltage reference circuit 14 of
Design process 710 may include using a variety of inputs; for example, inputs from library elements 730 which may house a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.), design specifications 740, characterization data 750, verification data 760, design rules 770, and test data files 785 (which may include test patterns and other testing information). Design process 710 may further include, for example, standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc. One of ordinary skill in the art of integrated circuit design can appreciate the extent of possible electronic design automation tools and applications used in design process 710 without deviating from the scope and spirit of the invention. The design structure of the invention is not limited to any specific design flow.
Ultimately, design process 710 preferably translates circuit 10, along with the rest of the integrated circuit design (if applicable), into a final design structure 790 (e.g., information stored in a GDS storage medium). Final design structure 790 may comprise information such as, for example, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, test data, data for routing through the manufacturing line, and any other data required by a semiconductor manufacturer to produce circuit 10. Final design structure 790 may then proceed to a stage 795 where, for example, final design structure 790: proceeds to tape-out, is released to manufacturing, is sent to another design house or is sent back to the customer.
Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions and additions may be made to that which is specifically disclosed herein without departing from the spirit and scope of the present invention.
This application is a continuation in part of pending U.S. patent application Ser. No. 11/623,114 filed Jan. 15, 2007, titled: “Voltage reference circuit for low voltage applications in an integrated circuit”, issued as U.S. Pat. No. 7,498,869, which is hereby incorporated by reference in its entirety and assigned to the present assignee.
Number | Name | Date | Kind |
---|---|---|---|
5703807 | Smayling et al. | Dec 1997 | A |
5936392 | Taylor | Aug 1999 | A |
6172555 | Gusinov | Jan 2001 | B1 |
6756839 | Hall et al. | Jun 2004 | B2 |
7061308 | Abadeer et al. | Jun 2006 | B2 |
7479820 | Okamoto et al. | Jan 2009 | B2 |
20060170487 | Abadeer et al. | Aug 2006 | A1 |
20070257723 | Short et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080169867 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11623114 | Jan 2007 | US |
Child | 11851138 | US |