1. Field of the Invention
The present invention relates to a color image forming apparatus, and more particularly to a color image forming apparatus realized in a compact desktop size by reducing a total height while securing a sufficient length necessary for a sheet path between an image transfer point and an image fixing point. Also, the present invention relates to a method of making the above-mentioned color image forming apparatus.
2. Discussion of the Background
In recent years, an electrophotographic image forming apparatus has been increasingly demanded in a full-color version, such as a color printer, a color copying machine, and so forth. In response, quite a large number of full-color image forming apparatuses have been introduced to the market. In comparison with a monochrome image forming apparatus, a full-color image forming apparatus inevitably has larger dimensions, due to its structure, and achieves a relatively lower performance in image forming, e.g., a lower image forming speed. However, there is also a great demand for the full-color image forming apparatus to have a compact size, such as the monochrome printer, capable of being placed on a desk and to be able to perform at a relatively high image forming speed.
In the full-color image forming apparatus, there are two adoptable color recording methods; a single drum type and a tandem drum type. The single-drum-type image forming apparatus has a typical configuration in which a plurality of development units are arranged around a single photosensitive drum. The development units contain different color toners and sequentially transfer the color toners to the surface of the photosensitive drum so as to form a composite color image. The composite color image is then transferred onto a recording sheet. On the other hand, the tandem-drum-type image forming apparatus has a plurality of photosensitive drums arranged in line and forms single-color toner images with different color toners on the corresponding photosensitive drums. Then, the single-color toner images are sequentially transferred onto a recording sheet so as to form a composite color toner image.
The single-drum type has advantages in size and cost, in comparison with the tandem-drum type, but also has difficulty in enhancing the image forming speed due to the need to repeat image forming, which is normally repeated four times. On the contrary, the tandem-type has disadvantages in size and cost, but has an advantage in the enhancement of the image forming speed.
Under the aforementioned circumstances, increasing attention has been focused on full-color image forming apparatus based on the tandem drum type, to attain high speed image forming like the monochrome printer.
There are two different types of tandem-drum image forming apparatuses, as shown in
In the tandem-drum-type image forming apparatus of
From the above explanation, a full-color image forming apparatus preferably has the tandem-drum-type from the viewpoint of high speed, and preferably adopts the indirect image transfer method from the viewpoint of downsizing.
In the full-color image forming apparatus using the tandem-drum mechanism and the indirect image transfer method, a vertically-extended sheet transfer mechanism can be employed to minimize a sheet travel distance, along the sheet transfer path, from a sheet inlet of the sheet supply unit to the fixing unit. In this instance, the speed of image forming can be enhanced by reducing the amount of the sheet travel distance. Further, with this structure, the occurrence of a deficiency such as a sheet jamming may be suppressed. In such an apparatus using the vertically-extended sheet transfer mechanism, the second image transfer unit 55 is necessarily positioned next to one end of the intermediate transfer belt 54 (e.g., next to the right of the intermediate transfer belt 54), as shown in
In this instance, if four image forming mechanisms 50 including the photosensitive drums 51a are arranged in line on and along the upper running surface of the intermediate transfer belt 54, an overlaid composite color image is created on the intermediate transfer belt 54 when a black color toner (Bk) is transferred onto the intermediate transfer belt 54. The black color toner (Bk) is the last toner transferred in the image forming sequence and, therefore, the overlaid composite color image is brought close to the secondary image transfer unit 55 only after a half turn of the intermediate transfer belt 54. This makes the first copy time relatively long. The first copy time is one of the speed indicators for image forming apparatuses, and indicates a speed for copying a first page.
To improve the first copy time in the above-mentioned image forming apparatus, the four image forming mechanisms 50 are arranged on and along the lower running surface of the intermediate transfer belt 54, instead of on and along the upper running surface thereof, as shown in
As described above, based on the presently available techniques, a desk-top and high speed full-color image forming apparatus may be realized, most preferably by using the tandem-drum image forming mechanism, the indirect image transfer method, and the vertical sheet conveying path.
It should be noted that in an electrophotographic image forming apparatus, the sheet conveying path between the image transfer point and the fixing point needs to have a distance to a certain extent determined by the size of the sheets applied or the like. The reason for this is explained with reference to
In
In this case, the recording sheet under the image transfer process is forcibly pulled forward by the fixing unit 61 and, as a result, image displacement is caused. To avoid this, the line speed b is generally designed to be faster than the line speed a. However, when the line speed b is faster than the line speed a, the recording sheet may have slack or a bend that causes the toner image on the recording sheet to contact a part of the machine. As a result, the toner image on the recording sheet is disturbed.
Therefore, the sheet passage between the image transfer unit 55 and the fixing unit 61 should have a length h that can accommodate slack or a bend of the recording sheet. Based on this structure, a vertical distance (i.e., a height h sin β; see
In a full color image forming apparatus employing tandem-drum-type image forming and indirect image transfer, as well as a vertical sheet conveying path, it is considerably difficult to decrease the total height of such apparatus while securing a reasonably sufficient distance between the image transfer point and the fixing point. If the full color image forming apparatus is a desk-top machine, it is generally required to have a smaller profile in every dimension. However, the most critical dimension is the height, since it directly affects the ability of the user to access the recording sheets in the ejection tray, to remove the jammed sheets, to exchange the toner cartridge, and so forth. The difficulty lies in the relationship between securing the certain distance between the image transfer point and the fixing point, and in reducing the machine height, which are contradictory objectives.
In view of the foregoing, it is an object of the present invention to provide a novel color image forming apparatus which realizes a compact desktop profile while securing a sufficient length between a secondary image-transfer point and a fixing point.
Another object of the present invention is to provide a novel method of making a color image forming apparatus which realizes a compact desktop profile while securing a sufficient length between a secondary image-transfer point and a fixing point.
To achieve the above-mentioned objects and other objects, in one example, the present invention provides a novel color image forming apparatus including an image generating mechanism and a sheet supply mechanism. The image generating mechanism includes an image forming mechanism, an optical writing mechanism, an intermediate image-transfer member, a fixing mechanism, a sheet ejecting mechanism, a toner container, and an electric circuit. The image forming mechanism forms an image and includes a plurality of image creating mechanisms, each of which forms an image and includes a photosensitive member. The optical writing mechanism optically writes an image on the photosensitive member of each of the plurality of image creating mechanisms. The intermediate image-transfer member has an image transfer bed, moving in a predetermined direction in a lower part of the intermediate image-transfer member, to receive a plurality of the images from the respective photosensitive members, such that the plurality of the images are sequentially overlaid to form a multi-overlaid image.
The fixing mechanism fixes the multi-overlaid image on a recording sheet. The sheet ejecting mechanism ejects the recording sheet having the fixed multi-overlaid image thereon. The container replenishes toner to the image forming mechanism. The electric circuit includes a plurality of circuit blocks and supplies power and necessary signals to the apparatus. The sheet supply mechanism supplies recording sheets through a sheet inlet thereof to the image generating mechanism. In this apparatus, the intermediate image-transfer member is arranged with a predetermined angle relative to a horizontal line, such that a rear side of the intermediate image-transfer member away from the recording sheet is lifted and a front side of the intermediate image-transfer member closer to the recording sheet is lowered.
Further, the plurality of image creating mechanisms are aligned in parallel and are arranged along and parallel to the image transfer bed of the intermediate image-transfer member, such that one of the plurality of image creating mechanisms firstly forming an image faces the rear side of the image transfer bed and another one of the plurality of image creating mechanisms lastly forming an image faces the front side of the image transfer bed.
The present invention also provides a novel method of making a color image forming apparatus.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description, when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner. Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, particularly to
As shown in
Each of the four image forming mechanisms 8Y, 8C, 8M, and 8Bk includes a photosensitive drum 10 serving as a latent image carrying member brought in contact with the intermediate transfer belt 7. Each image forming mechanism further includes a charging unit 11, a development unit 12, a cleaning unit 13, which are arranged around the photosensitive drum 10, and a transfer unit 14. The transfer unit 14 serves as a primary transfer mechanism and is arranged inside the intermediate transfer belt 7 at a position where the photosensitive drum 10 contacts the intermediate transfer belt 7.
In this example, the four image forming mechanisms 8Y, 8C, 8M, and 8Bk have an identical structure, but colors of development agents contained in their development units 12 are separated into yellow, cyan, magenta, and black colors per the development unit 12. Under the four image forming mechanisms 8Y, 8C, 8M, and 8Bk, an optical writing unit 15 is arranged. The optical writing unit 15 generates a light-modulated laser beam to irradiate the surface of the photosensitive drum 10 between the charging unit 11 and the development unit 12. In this example, the optical writing unit 15 is a single unit shared by the four image forming mechanisms 8Y, 8C, 8M, and 8Bk so as to gain a cost benefit. As an alternative, it is also possible to provide four independent optical writing units for the four image forming mechanisms 8Y, 8C, 8M, and 8Bk.
When an image forming operation is started, the photosensitive drums 10 of the four image forming mechanisms 8Y, 8C, 8M, and 8Bk are clockwise rotated by a driving mechanism (not shown) and the surfaces of the photosensitive drums 10 are charged evenly at a predetermined polarity. The charged surfaces are irradiated by the laser beams emitted from the optical writing unit 15, so that electrostatic latent images are formed on the surfaces of the photosensitive drums 10. In this process, the laser beams respectively transfer image information onto the surfaces of the photosensitive drums 10 for the above-mentioned electrostatic latent images. The image information is of four kinds of single color image information obtained by separating a desired full-color image into information of yellow, cyan, magenta, and black colors. When each of the thus-formed electrostatic latent images passes by the corresponding development unit 12, the latent image is developed by the development agent contained in the development unit 12 into a visual corresponding toner image.
One of the rollers 4, 5, and 6 of the intermediate transfer belt 7 is counterclockwise rotated by a driving mechanism (not shown) and the intermediate transfer belt 7 is moved in a direction indicated by an arrow. The remaining rollers follow the rotation. The moving intermediate transfer belt 7 receives thereon a yellow toner image formed by the image forming mechanism 8Y having the development unit 12 for the yellow color and transferred by the transfer unit 14. Subsequently, a cyan toner image, formed by the image forming mechanism 8C having the development unit 12 for the cyan color and transferred by the transfer unit 14, is superimposed onto the yellow toner image. Likewise, magenta and black toner images formed by the image forming mechanisms 8M and 8Bk, respectively, having the development units 12 for the magenta and black colors, respectively, and transferred by the corresponding transfer units 14, are sequentially superimposed onto the toner image made of the yellow and cyan colors. Consequently, a full color toner image made of the yellow, cyan, magenta, and black colors is formed on the surface of the moving intermediate transfer belt 7.
A secondary transfer unit 20 is arranged to face the roller 6 relative to the intermediate transfer belt 7, and a belt cleaning unit 21 for cleaning the surface of the intermediate transfer belt 7 is arranged to face the roller 4 relative to the intermediate transfer belt 7.
The residual toner remaining on the surface of the photosensitive drum 10 after the toner image transfer process is removed by the cleaning unit 13 from the surface of the photosensitive drum 10. Subsequently, the surface of the photosensitive drum 10 is discharged by a discharging mechanism (not shown), so that a surface potential of the photosensitive drum 10 is initialized as a preparation for the next image forming operation.
During the above-described operations, a recording sheet made of paper or a plastic resin is supplied from the sheet supply mechanism 2 to the image forming station 3 through a sheet inlet 2a of the sheet supply mechanism 2. The recording sheet inserted into the image forming station 3 is conveyed to a secondary transfer point formed between the secondary transfer unit 20 and the roller 6, via a pair of registration rollers 24. At this time, the secondary transfer unit 20 is applied by a transfer voltage having a reverse polarity relative to the charge polarity of the toner image formed on surface of the intermediate transfer belt 7, so that the full color toner image on the intermediate transfer belt 7 is transferred onto the recording sheet.
The recording sheet receiving the full color image is further conveyed to a fixing unit 22. The toner is then melted and fixed by heat and pressure to the recording sheet by the fixing unit 22. Then, the recording sheet with the fixed toner image is ejected to an output tray 23 through a pair of ejection rollers 23a. The surface of the intermediate transfer belt 7 is cleaned off by the belt cleaning unit 21 so that the residual toner remaining on the intermediate transfer belt 7 is removed therefrom after the secondary toner image transfer operation.
The above-described operation is the one in which a full color image is formed on the recording sheet using the four image forming mechanisms 8Y, 8C, 8M, and 8Bk. As an alternative, it is also possible to form a single color image or two- or three-colored image selectively using the four image forming mechanisms 8Y, 8C, 8M, and 8Bk.
The color laser printer 100 having, as shown in
It should be noted that in the color laser printer 100, the moving image forming bed of the intermediate transfer belt 7 formed between the rollers 4 and 5 is tilted with a predetermined angle θ relative to the horizontal line, and the four image forming mechanisms 8Y, 8C, 8M, and 8Bk are arranged in parallel to the moving image forming bed. The slant of the moving image forming bed is made to the right in the drawing, that is, the image forming mechanism located at a more downstream position in the moving direction of the intermediate transfer belt 7 is at a lower horizontal level.
The color laser printer 100 of
If the moving image forming bed of the intermediate transfer belt 7 is horizontally arranged in a way as shown in
The above-mentioned electrical components of the color laser printer 100 include a high voltage power supply unit 30, a control unit 31, and an engine controller 33. The high voltage power supply unit 30 supplies a high voltage power required by the above-described image forming processes. The control unit 31 controls the conversion of image signals sent from a host computer into internal control signals. The engine controller 32 controls the entire operations of the color laser printer 100. Thus, in the color laser printer 100, most of the electrical components are arranged underneath the optical writing unit 15 and, therefore, the downsizing of the color laser printer 100 is achieved. Amongst the electrical components, a power supply unit 33 is vertically arranged at the back of the main body.
In the color laser printer 100, four toner cartridges 36a, 36b, 36c, and 36d having a cylindrical shape contain the yellow (M), cyan (C), magenta (M), and black (Bk) color toners, respectively. The four toner cartridges 36a, 36b, 36c, and 36d are arranged in this order in parallel to each other, along a line having the angle θ relative to the horizontal line, that is, parallel to the moving image forming bed, as illustrated in
The above-mentioned four toner cartridges 36a-36d are accommodated inside the main body 1 under an upper cover 37.
In the color laser printer 100, the layout of the image forming station 3 is expressed by using mathematical formulas with the following definitions of points, lengths, angles, and so on for the associated components, as illustrated in
Further, HS(x,y) represents a sheet ejection point at which the recording sheets having full-color images are ejected by the pair of ejection rollers 23a. TT(x,y) represents a fixing point which is a center point of a fixing nip region formed in the fixing unit 22. TS(x,y) represents a secondary image transfer point at which the secondary image transfer is performed by the secondary transfer unit 20. RE(x,y) represents a registration point at which the registration is performed by the pair of the registration rollers 24. BR(x,y) represents a sheet separation point at which the recording sheet, yet having no image thereon, is separated from other recording sheets remaining in the sheet supply mechanism 2 and is transferred into the image forming station 3 through the sheet inlet 2a.
T1(x,y) represents the highest point of the highest positioned toner cartridge 36a. T2(x,y) represents the lowest point of the highest positioned toner cartridge 36a. T3(x,y) represents the highest point of the lowest positioned toner cartridge 36d. T4(x,y) represents the lowest point of the lowest positioned toner cartridge 36d. T5(x,y) represents a point of the toner cartridges 36a-36d having the shortest distance to the fixing point TT(x,y).
Also, various angles of lines in relation to the horizontal line HL are defined as follows. As described above, the character θ represents the angle of the moving image forming bed formed by the intermediate transfer belt 7 relative to the horizontal line HL. A character φ represents an angle of a line between the secondary image transfer point TS(x,y) and a point of the intermediate transfer belt 7 at which a side edge line of a unit of the four image forming mechanisms 8Y, 8C, 8M, and 8Bk, extended in a direction perpendicular to the intermediate transfer belt 7, intersects the intermediate transfer belt 7. A character γ represents an angle of a line formed between the secondary transfer point TS(x,y) and the sheet separation point BR(x,y) relative to the horizontal line HL. A character β represents an angle of a line formed between the fixing point TT(x,y) and the secondary image transfer point TS(x,y).
Various lengths are defined as follows. A term d1 represents a distance between the moving image forming bed of the intermediate transfer belt 7 and a bottom side of the optical writing unit 15, sandwiching the four image forming mechanisms 8Y, 8C, 8M, and 8Bk. A term d2 represents a vertical distance in the direction Y between the sheet separation point BR(x,y) and a bottom corner edge of the optical writing unit 15 closer to the sheet supply mechanism 2. A term d3 represents a distance between the secondary image transfer point TS(x,y) and the point of the intermediate transfer belt 7 at which the side edge line of the unit of the four image forming mechanisms 8Y, 8C, 8M, and 8Bk, extended in the direction perpendicular to the intermediate transfer belt 7, intersects the intermediate transfer belt 7.
A term D represents a vertical distance in the direction Y between the secondary image transfer point TS(x,y) and the sheet separation point BR(x,y). A term HI represents a distance between the point T5(x,y) and the fixing point TT(x,y), which is referred to as a toner fixation prevention distance. A term HIx represents a horizontal distance in the direction X between the point T5(x,y) and the fixing point TT(x,y), which is an element in the direction X of the toner fixation prevention distance. A term HIy represents a vertical distance in the direction Y between the point T5(x,y) and the fixing point TT(x,y), which is an element in the direction Y of the toner fixation prevention distance. A term h represents a distance between the fixing point TT(x,y) and the secondary image transfer point TS(x,y). A term N (see
In the color laser printer 100, the toner cartridge 36a is arranged at the highest position among the essential components. With the above definitions, the value of the highest point T1 of the toner cartridge 36a variable in the direction Y is expressed, as shown in
T1(y)=R1+(N+R1)sinθ+HIy+h sinθ+D.
In the right side of the above-mentioned equation, a block of the terms {R1+(N+R1)sin θ+HIy} represents a vertical distance in the direction Y between the highest point T1 of the toner cartridge 36a and the fixing point TT(x,y). The term h sin θ represents a vertical distance in the direction Y between the fixing point TT(x,y) and the secondary image transfer point TS(x,y). The term D represents, as defined above, the vertical distance in the direction Y between the secondary image transfer point TS(x,y) and the sheet separation point BR(x,y).
Here, the vertical distance D is expressed, as shown in
D=d2+d1 cosθ+d3 sinφ.
Further, in the color laser printer 100, since the fixing unit 22 is arranged at the rightmost position in the drawing and the fixing point TT(x,y) has the greatest value in the direction X, a horizontal greatest distance TT(x) of the fixing point TT(x) is expressed, as shown in
TT(x)=BR(x)+D/tanγ+h cosβ.
Based on the above equations, the color laser printer 100 preferably has the layout fulfilling a relationship T1(y)≦TT(x). In addition, the color laser printer 100 preferably has the layout fulfilling a relationship TT(y)≦T3(y) and more preferably the layout fulfilling a relationship T4(y)≦TT(y)≦T3(y). Further, the layout of the color laser printer 100 preferably fulfills a relationship HS(y)≦T1(y) and more preferably a relationship T2(y)≦TT(y)≦T3(y).
In addition, the angle θ formed between the moving image forming bed and the horizontal line fulfills the following equation;
sinθ={T1(y)−HIy−h sinβ−D−R1}/(N+R1).
The thus-defined angle θ is preferably set to a value within the range of 5 degrees to 25 degrees.
Next, a discussion is made for a comparison between the color laser printer 100 of
It should be clear from the illustrations of
More specifically, each of the toner cartridges 36a-36d is arranged over the intermediate transfer belt 7, with the same angle θ as the tilt angle of the moving image forming bed of the intermediate transfer belt 7, and in parallel to the adjacent toner cartridge with substantially the same space as the space provided between adjacent two of the image forming mechanisms 8Y, 8C, 8M, and 8Bk.
With the above-described structure, preconditions for the conveyance of the color toners are almost evenly set among the four toner paths from the toner cartridges 36a-36d to the development units 12 of the image forming mechanisms 8Y, 8C, 8M, and 8Bk. This facilitates setting and controlling of the toner conveyance when the toner conveyance is operated with a single driving mechanism.
When one of the toner cartridges 36a-36d becomes empty, the cartridge needs to be exchanged with a new cartridge. Each of the toner cartridges 36a-36d is exchanged by lifting the upper cover 37 upward as indicated by an arrow in
In addition, the above-described structure of the color laser printer 100 minimizes the total length of the sheet path from the sheet supply mechanism 2 to the ejection mechanism, and easily provides a substantially straight path from the registration roller 24 to the fixing unit 22. The straight path generally prevents a sheet jamming. Furthermore, the total sheet path can easily be accessed by opening the front cover of the color laser printer 100, so that when a sheet jamming occurs, the jammed sheet can easily be removed from the front side with the front cover opened.
As an alternative, one or more toner cartridges can be made with a greater radius than others. For example, a toner cartridge 36e has a greater radius than the other toner cartridges 36a-36c, as illustrated in
In addition, the shape of the toner cartridges 36a-36d is not limited to a cylinder and can be of any shape, such as a prism shape. For example, toner cartridges 36f have a prism shape, as illustrated in
Numerous additional modifications and variations are possible in light of the above teachings. It should therefore be understood that within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2002-266629 | Sep 2002 | JP | national |
This application is a divisional Application of, and claims the benefit of priority under 35 U.S.C. § 120 from, U.S. application Ser. No. 11/087,694, filed Mar. 24, 2005, now U.S. Pat. No. 7,263,309, which is a Continuation Application of U.S. application Ser. No. 10/660,571, filed Sep. 12, 2003, now U.S. Pat. No. 6,898,407, issued May 24, 2005, which claims the benefit of priority under 35 U.S.C. § 119 from Japanese Patent Application No. 2002-266629, filed Sep. 12, 2002. The entire contents of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5210573 | Fukuchi et al. | May 1993 | A |
5508789 | Castelli et al. | Apr 1996 | A |
6324374 | Sasamoto et al. | Nov 2001 | B1 |
6470161 | Fujishiro et al. | Oct 2002 | B2 |
6493532 | Nakahara et al. | Dec 2002 | B2 |
6501913 | Hattori et al. | Dec 2002 | B2 |
6507720 | Kabumoto et al. | Jan 2003 | B2 |
6546219 | Sato et al. | Apr 2003 | B2 |
6567643 | Yasui et al. | May 2003 | B2 |
6591077 | Yanagisawa et al. | Jul 2003 | B2 |
6628908 | Matsumoto et al. | Sep 2003 | B2 |
6628916 | Yasui et al. | Sep 2003 | B2 |
6636709 | Furukawa et al. | Oct 2003 | B2 |
6647223 | Ishii | Nov 2003 | B2 |
6647233 | Hiroki | Nov 2003 | B2 |
6907215 | Yasukawa et al. | Jun 2005 | B2 |
7020415 | Abe | Mar 2006 | B2 |
20010055499 | Sato | Dec 2001 | A1 |
20020080219 | Yamaguchi et al. | Jun 2002 | A1 |
20030235440 | Takada | Dec 2003 | A1 |
20040228664 | Yamada | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1 098 228 | May 2001 | EP |
1 202 131 | May 2002 | EP |
1 376 257 | Jan 2004 | EP |
11-95519 | Apr 1999 | JP |
2000-264492 | Sep 2000 | JP |
2001-100488 | Apr 2001 | JP |
2001-265096 | Sep 2001 | JP |
2002-166593 | Jun 2002 | JP |
2002-214868 | Jul 2002 | JP |
2002-214974 | Jul 2002 | JP |
2004-53818 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070242976 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11087694 | Mar 2005 | US |
Child | 11770255 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10660571 | Sep 2003 | US |
Child | 11087694 | US |