Desktop workspace that adjusts vertically

Information

  • Patent Grant
  • 11147366
  • Patent Number
    11,147,366
  • Date Filed
    Friday, December 11, 2020
    4 years ago
  • Date Issued
    Tuesday, October 19, 2021
    3 years ago
Abstract
A desktop workspace that adjusts vertically includes a work surface platform, a base configured to sit on an existing platform, such as a desk, a height adjustable mechanism including at least one set of arms that connect at a pivot point(s) creating a scissoring motion to raise and lower the said work surface platform to various heights. A locking and unlocking mechanism may connect to the height adjustable mechanism. In some cases, the apparatus includes an adjustable mechanism to support items such as a keyboard. In some cases, the apparatus includes elements to raise items such as a monitor to an additional height.
Description
TECHNICAL FIELD

This disclosure relates to a desktop workspace platform that adjusts up and down vertically.


BACKGROUND

In recent years studies have been conducted to show the health benefits of not sitting or standing for prolonged periods of time. It has been shown that sitting for long periods of time, day after day, increases the rate of all-cause mortality. It has even been said that sitting is the new smoking. A healthier work environment could be achieved by standing a portion of your day that you typically spend sitting. A combination of standing and sitting can reduce your risk of obesity, diabetes, cardiovascular disease and cancer.


There are many different types of work surfaces today. Most of these are stationary, in that they do not adjust in height. In recent years, entire desks that adjust in height have become more common. Most people already have a stationary desk, so purchasing an entire new desk may be unreasonable for some.


SUMMARY

There are a few adjustable desk platforms that sit on an existing desk, however, designs of such products have left much room for improvement. Some notable areas for improvement include, but are not limited to; the need for straight vertical motion of the desktop platform where the work surface does not protrude out toward the operator when elevated, a motorized adjustable height mechanism or other motor assisted system, a holding or locking mechanism that does not limit the work surface to only preset heights, a higher maximum adjustable height to satisfy taller users, improved load distribution, improved design, improved appearance, increased load capacity, and a more compact design once in a lowered position.


A desktop workspace that adjusts vertically includes a work surface platform that acts as a work surface platform. A height adjustment mechanism allows the work surface platform to raise and lower to the desired height of the operator. This desktop workspace includes at least one set of arms as part of the height adjustment mechanism that utilizes a scissor motion to move the work surface platform up and down.


In one example, a desktop workspace that adjusts vertically is comprised of a work surface platform; a base configured to sit on an existing platform such as a desk; a height adjustable mechanism including at least one set of arms that connect at a pivot point creating a scissoring motion as part of the method to raise and lower the said work surface platform to various heights.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an example adjustable desk including a work surface platform, base, and height adjustment mechanism.



FIG. 1B is a perspective view of an example adjustable desk including a work surface platform, base, and height adjustment mechanism, with alternative sliding mechanisms.



FIG. 1C is a perspective view of an example adjustable desk with alternative sliding mechanisms that incorporate rolling wheels, and a keyboard tray mechanism.



FIG. 2 is a perspective view from another angle of an example adjustable desk including a work surface platform, base, and height adjustment mechanism.



FIG. 2B is a perspective view from another angle of an example adjustable desk including a work surface platform, base, and height adjustment mechanism, with alternative sliding mechanisms.



FIG. 2C is a perspective view from another angle of an example adjustable desk with alternative sliding mechanisms that incorporate rolling wheels and a keyboard tray mechanism.



FIG. 2D is a perspective view of an example adjustable desk with the alternative sliding mechanisms that incorporates rolling wheels and a keyboard tray mechanism as shown in FIG. 2C, but with gas springs rather than coil springs.



FIG. 3 is a side view of an example adjustable desk including a work surface platform, base, and height adjustment mechanism.



FIG. 3B is a side view of an example adjustable desk including a work surface platform, base, height adjustment mechanism, alternative sliding mechanisms, and a keyboard tray mechanism.



FIG. 4 is a perspective view of an example height adjustment mechanism from FIG. 1.



FIG. 5 is a perspective view of parts of an example adjustable desk including sliding mechanism locations and pivot points of this disclosure from FIG. 1.



FIG. 5B is a perspective view of parts of an example of a height adjustment mechanism of this disclosure from FIGS. 1 and 1B with alternative sliding mechanisms.



FIG. 5C is a perspective view of parts of an example of a height adjustment mechanism from FIGS. 1 and 1B with alternative sliding mechanisms.



FIG. 5D is a perspective view of parts of an example of a height adjustment mechanism and locking mechanism from FIG. 1C.



FIG. 6 is a perspective view of an example adjustable desk wherein the work surface platform is in a partially raised state.



FIG. 6B is a perspective view of an example adjustable desk where the work surface platform is in a partially raised state with an example keyboard tray mechanism.



FIG. 7 is a perspective view of an example adjustable desk in a very compact state, with the work surface platform in a completely lowered position.



FIG. 7B is a perspective view of an example adjustable desk in a very compact state, with the work surface platform in a completely lowered position, with alternative sliding mechanisms.



FIG. 8 is a perspective view of example elements intended to additionally raise the height of monitors or other items.



FIG. 9 is a perspective view of an example adjustable desk with monitor raising elements resting on top of the work surface platform.



FIG. 10 is a perspective view of parts of an example of a keyboard tray mechanism.



FIG. 10B is a perspective view of an example adjustable desk with an alternative keyboard tray mechanism attached.



FIG. 10C is a perspective view of an example adjustable desk with keyboard tray mechanism attached and in a closed position.





DETAILED DESCRIPTION

The Desktop Workspace That Adjusts Vertically, also referred to as the “desktop workspace” in this document, includes a device and a method to raise and lower a platform that is part of the device. An exemplary use of the device is a work surface such as a desk, which can be moved to a desired vertical position. For example, the platform could hold objects such as a laptop, monitor, tablet, keyboard, mouse, and other desk items such as a stapler. The Desktop Workspace That Adjusts Vertically may include ancillary devices such as a monitor raiser, an external keyboard holder, mouse holder, cable organizer, or other devices. The platform raises vertically without protruding out along the horizontal plane, keeping the individual using the device from having to step backward to use the work surface platform when it is in a raised position. This configuration allows the operator to utilize the work surface platform at various heights. The examples and description suggest the device is used for supporting typical desktop objects, but the scope of this disclosure is intended to support other objects and to be used in other applications.


The Desktop Workspace That Adjusts Vertically can be placed on an existing surface to provide a variable height working area that is adjusted by the operator. The Desktop Workspace That Adjusts Vertically includes at least one set of two arms that connect along their lengths at a pivot point, allowing a scissoring motion, which is part of the method for raising and lowering the work surface platform. When raised, the work surface platform raises in a substantially straight motion so that it stays in-line with the base. An element or mechanism such as a spring or motor is configured to provide a force to assist in the elevation of the work surface platform. A locking mechanism is configured to secure the work surface platform at a given height.


The Desktop Workspace That Adjusts Vertically includes a height adjustment mechanism configured to assist in raising the work surface platform parallel to the surface it sits on, without moving back and forth or left to right; keeping the individual using the device from having to move backward to use the work surface platform when it is in a raised position. The height adjustment mechanism(s) may include items such as springs, gas springs, shock absorbers, an electric motor(s), or a linear actuator(s).


The Desktop Workspace That Adjusts Vertically is directed to help individuals from sitting or standing for prolonged periods of time while they work. Studies have shown that sitting or standing for long periods of time can be detrimental to one's health.


The Desktop Workspace That Adjusts Vertically is designed to assist individuals to be more alert and productive as they work. Studies show that moving from a sitting to standing position and vice versa help the human body to be more awake and alert.



FIGS. 1, 1B, 1C, 2, 2B, 2C, 6, 7, 7B, 9, and 10C show examples of The Desktop Workspace That Adjusts Vertically an assembled state. As shown, the desktop workspace includes a work surface platform 10, a base 12, and a height adjustment mechanism 14 residing between the work surface platform 10 and base 12. The examples show that platform 10 is a work surface platform that supports desk items; for example, monitors, tablets, Computers, notebooks, and other objects. The height adjustment example 14 includes at least one set of two arms 16 & 18. Arms 16 & 18 are connected at some point along their shafts at pivot point 28. These pivoting arms connect at pivot points 24 and 26 on one end and slide along a sliding mechanism 20 or 22 at pivot and sliding point 30 or 32. The arms pivot at 28, arm 16 slides along 20 and arm 18 slides along 22, creating a scissor motion to allow the work surface platform 10 to move up and down. This example with the pivoting arms moving in the scissor motion is the basis of the height adjustment mechanism 14. Base 12 is the base that the height adjustment mechanism 14 connects to. Base 12 consists of one piece of material or multiple pieces of material. FIG. 1 portrays base 12 as one piece, while FIG. 1B portrays base 12 as two pieces, and FIG. 1C portrays base 12 as one piece with portions removed.


Base 12 is connected to pivot point 26 and sliding mechanism 20. Sliding mechanisms 20 and 22 could also be directly connected to the arm(s) in the form of a slider or wheel, as portrayed in FIG. 1C. The example in FIGS. 1 and 2 shows the present sliding mechanisms 20 and 22 as a groove cut through the wall of the supporting material. FIGS. 1B and 2B show another design of the present sliding mechanisms 20 and 22 as channel or track. FIGS. 1C and 2C show yet another design of the present sliding mechanisms 20 and 22 as a rolling device such as a wheel or bearing. All three are methods to illustrate that there is more than one possible way to accomplish the intended sliding motion. Arm 16 attaches to the sliding mechanism 20 at point 32. Arm 16 moves back and forth along sliding mechanism 20 as part of the scissor motion used to obtain change in height of the work surface platform 10. The sliding action that sliding mechanisms 20 and 22 assist could be accomplished through means other than the illustrated examples, for example, a track system, roller wheel system, or some other means could be used to allow arm 16 and 18 to move in a back and forth motion. This disclosure is not intended to limit the means of the sliding motion, but to establish the fact that the sliding motion is part of the function of the adjustable height mechanism. The mentioned sliding motion is part of the overall scissor motion that is created by the design to vertically raise the work surface platform 10.


Pivot point 26 is the element that attaches the base 12 to arm 18. The examples in FIGS. 1 and 2 shows pivot 26 as being part of the wall of the base, and FIGS. 1B, 1C, 2B, and 2C shows pivot 26 as being a bracket or similar connected to base 12; pivot 26 could be located further in towards the center of base 12 and could be created as a stand-alone element such as a bracket or similar device. Pivot 26 is to be understood as a connection between base 12 and arm 18, and to be a pivot point that allows arm 18 to rotate as part of the scissor motion of height adjustment mechanism 14.


In some examples, the desktop workspace could exclude base 12. In such examples, height adjustment mechanism 14 connects directly to the desk or surface that the desktop workspace that adjusts vertically is sitting on. The lower portion of arm 18 connects directly to the surface with a pivot point similar to element 26. The lower portion of arm 16 connects to the surface and be guided to slide in a similar motion with an independent sliding mechanism such as, but not limited to, a track, channel, wheel, rail, or slot.



FIG. 4 shows an example of part of height adjustment mechanism 14, which assists in the vertical motion achieved to move the work surface platform 10 up and down in a smooth motion. Height adjustment 14 is designed so that it creates a vertical motion without any lateral or protruding motion side to side. Said another way, the scissor motion that height adjustment 14 creates allows work surface platform 10 to stay in alignment with base 12 as it raises or lowers. This alignment is intended, however some examples could include a method that does not align element 10 and 12 as raised and lowered.


Height adjustment mechanism 14 consists of one or more pairs of pivot arms 16 & 18, which have a pivoting point 28 at some point along their axis. Height adjustment mechanism 14 could also include a design where arms 16 & 18 do not actually connect at pivot point 28, but still provide a similar motion. Arm 16 connects at pivot element 24, and at point 32 which slide along sliding element 20. Similarly, arm 18 connects at pivot element 26 and at pivot point 30, which slides along sliding element 22. Height adjustment mechanism 14 also includes components that make the disclosure more rigid, such as cross beam supports labeled as element 68 in FIGS. 1C and 2C. Pivot arms, pivot points, and sliding elements are designed to fit compactly together when the desktop workspace is in a lowered position, as can be seen in FIGS. 7, 7B, and 10C. All elements align side-by-side in such a manner that when fully lowered the desktop workspace is very compact, looks sleek, and takes up minimal vertical space. The desktop workspace accomplishes such a compact state by having element 20 and 24 outside arm 16, which is outside arm 18, which is outside element 22. This arrangement of elements allows the elements' to not overlap when desktop workspace that adjusts vertically is in a fully lowered position providing a substantially compact state. The desktop workspace is not limited to specific elements or locations of elements to achieve the height adjustment motion that results in a compact design where elements do not overlap.


The illustrated examples of FIGS. 1 and 1B suggests that pivot points 26 and 24 are located in the back of desktop workspace, and that sliding mechanisms 20 and 22 are located in the front. The illustrated examples of FIG. 1C suggests that pivot points 26 and 24 are located in the front of the desktop workspace and that sliding mechanisms 20 and 22 are located in the back. Some examples include a design where the pivot points and sliding mechanisms are at opposite sides, or some combination of both.


As can be seen in FIGS. 2, 2B, 2C, 4, 5B, and 5C pivoting arms, are attached to a cross beam 34. Cross beam 34 assists in stabilizing the invention and assist all elements of the height adjustment mechanism to move in concert when a force is applied. The force can be applied from various methods and on various points of cross beam 34, pivot arms 16 & 18, pivot elements 26 & 24, or sliding mechanisms 20 or 22. Some examples include a design where element 34 does not span across the mechanism connecting all or some of the arms.



FIG. 4 shows the force being applied by element 36 to cross beam 34. Element 36 can apply a pushing and pulling force to cross beam 36, which causes pivot arms 16 and 18 to move in a scissor motion. The example is intended to suggest that element 36, which applies force to height adjustment mechanism 14, can be a variety of different mechanisms, elements, or represent manual human force. For example, the force that element 36 provides could come from; a linear actuator, AC or DC motor, human force, gravity, springs, other objects with kinetic energy, or another source of force. For example, FIG. 4 illustrates element 36 as a linear actuator, while FIG. 5C illustrates element 36 as a pair of springs.


The combination of height adjustment mechanism 14 and a force represented by element 36, create the scissor motion that moves the work surface platform vertically up and down. Examples portrayed in FIGS. 4, and 5 show the scissor motion of height adjustment mechanism 14.


Examples can utilize element 36 or similar element in a different location; for example, the element could attach directly to arms 16 or 18, or to one of the pivot points, instead of to element 34. Some examples may not include element 34 or the like, where such a crossbeam or connection is not deemed necessary.


Examples in FIGS. 4, and 5 include arrows that show some of the possible motions of mechanism 14. Pivot arms are connected to one another at pivot point 28. As one end of arm 16 moves along sliding mechanism 20, the other end of the arm moves up or down vertically. When arm 18 pivots at point 26, the other end of the arm slides along sliding mechanism 22, which can be seen in FIGS. 2, 2B, and 2C and moves up and down vertically.


The height adjustment mechanism moves vertically and is held or locked into position at various heights. Examples of the height adjustment mechanism use various methods to lock or hold in place. For example, element 36 acts as the locking device, or the locking device can be included in sliding mechanism(s) 20 & 22, or the locking device can be included in pivot point(s) 26 and 24, or the locking mechanism could entail another element not mentioned. FIG. 5D portrays a locking device that could include element 34 or other element engaging with element 44. Pins or other element, portrayed as element 48, engage with teeth or other element, portrayed as element 46 to lock the height adjustment mechanism in a desired position. The locking element can include, but not limited to, a linear actuator, a motor, applied pressure, locking teeth, or some other method to prevent arms 16 and 18 from moving, so that work surface platform 10 does not change vertical height. Applications utilizing a linear actuator or similar can allow the operator to adjust the height without the limitations of preset heights that some locking mechanisms only provide. Instead of preset heights created by an element with features such as preset holes, the linear actuator or something similar would allow the operator to set the height limit by stopping the linear actuator or similar at any point the operator chooses. The desktop workspace includes a locking mechanism that maintains the vertical position of surface 10; the examples are not limited to specific elements to achieve the height locking function.


Examples include a means to unlock the device so that the work surface platform 10 can change height. Examples can include, but not limited to, a button(s) to control a motor or the like, a handle that the user pulls on to unlock the device, or another device that unlocks the locking device. FIG. 5D portrays an example of a locking mechanism where element 44 acts as a handle that once pressure is applied to can both lock and unlock the height adjustment mechanism by engaging or disengaging the teeth, element 46 or similar to pin, element 48 or similar. Unlocking elements are suggested, however, examples are not limited to specific elements to achieve the unlocking function.


The example shows sliding element(s) 22 and pivot element(s) 24 connect the height adjustment mechanism 14 to the work surface platform 10. The example allows for the work surface platform to be raised and lowered, as well as locked into the desired position of the individual using the desktop workspace. This allows the user to utilize the desktop workspace that adjusts vertically while in a seated position or a standing position.



FIG. 8 portrays the current design of elements 40 and 42, which could be used to elevate a monitor, laptop, or other items to a level higher than that of work surface platform 10. Additionally raising a monitor can create a more comfortable and healthier work space for the operator by bringing their screen(s) to a position closer to eye level. FIG. 9 shows elements 40 and 42 sitting on work surface platform 10. Elements 40 and 42 are presently designed to be able to sit anywhere on surface 10. Examples are not intended to limit the design of elements 40 and 42. Elements 40 and 42 are intended to represent a method in which a monitor(s) can be elevated to height higher than if it were sitting on work surface platform 10. It is to be understood that element 40 or 42 could be designed differently and still accomplish its function to raise the height of a monitor(s) or other items.



FIGS. 10, and 10B show an example of part of keyboard tray mechanism 50, which provides a platform for the user to place items such as a keyboard, mouse, or other items on. Keyboard mechanism 50 is configured move to a position that is in an outward and lowered position with respect to surface 10. Such a position can provide a more ergonomic location of the keyboard and mouse for the user. Some examples include a design where the keyboard tray can be removed, adjusted, or designed so that it extends out when is in use and is compactly stored under surface 10 when not in use.



FIGS. 10 and 10C show an example of Keyboard tray 50 where it is configured to move underneath and flush with surface 10 to allow this disclosure to maintain its compact state once in a closed position. Bracket 52 connects to channel plate component 54, which connects to bracket 56, which connect to slider 58, which connect to keyboard platform 60. When the user applies an inward and upward force to platform 60, channeled plate component 54 and slider 58 allow the keyboard tray mechanism to move to a position that is compactly positioned underneath platform 10 as portrayed in FIG. 10C. Conversely, when an outward and downward force is applied to platform 10, elements 52, 54, 56, and 58 allow mechanism 50 to be in an out and down position as portrayed in FIGS. 1C and 2C. Said more specifically, plate 54 contains channels or grooves that guide brackets 52 and 54 connect to with pins, screws, or similar. When the user pulls or pushes up, down, in, or out on the platform 60, the channels or grooves in plate 54 along with the sliding motion of slider 58 guide the platform to either rest in an outward state for typing or tucked away under the work surface platform 10.



FIG. 10B shows an example of keyboard tray mechanism 50 that attach to platform 10. Bracket 62 attaches to platform 10 at element 64 and keyboard platform 60 at element 66. Element 64 and 66 consists of a channel, bracket, or other means to attach bracket 62 to both platform 10 and platform 60.


Elements for keyboard tray mechanism 50 are suggested, however, examples are not limited to specific elements to achieve the function of the keyboard tray mechanism.


The intention of the different examples discussed is not intended to limit the scope of this disclosure. The description and terminology is not intended to limit the scope and applicability of this disclosure. It should be understood that other terminology, parts, components, and layouts could be used that would still embody the intentions of this disclosure. Individuals skilled in the art will recognize that examples described have suitable alternatives. It is also noted that the examples are not limited to specific construction materials, and that various suitable materials exist for the elements of this disclosure.

Claims
  • 1. A desktop workspace that adjusts vertically, comprising: a work surface platform forming an upper work surface;a keyboard platform that protrudes out, down, and parallel to the work surface platform;a base configured to sit on an existing platform; anda height adjustment mechanism connecting the work surface platform and the base, the height adjustment mechanism including: two sets of arms that connect at scissoring pivot points creating a scissoring motion when raising and lowering the work surface platform to various heights;base pivot points fixed relative to the base and connecting the base and the two sets of arms;platform pivot points fixed relative to the work surface platform and connecting the work surface platform and the two sets of arms;a sliding mechanism on an end of an arm of the two sets of arms between the end of the arm and either the work surface platform or the base;a linear actuator between the work surface platform and the base, the linear actuator including a housing and a motor-controlled shaft that extends and retracts from the housing, the linear actuator configured to apply a pushing and pulling force to the two sets of arms to drive the scissoring motion; andan element that connects the two sets of arms to one another, the linear actuator being connected to the element,wherein the linear actuator is completely covered by a profile of the work surface platform when viewed from above the upper work surface relative to the base, the profile of the work surface platform being defined by an outer perimeter of the upper work surface.
  • 2. The desktop workspace of claim 1, wherein the element is attached on the same sides of the two sets of arms as the sliding mechanism relative to the scissoring pivot points.
  • 3. The desktop workspace of claim 1, wherein the two sets of arms, the base pivot points, and the platform pivot points align side-by-side when the desktop workspace is in a fully lowered position.
  • 4. The desktop workspace of claim 1, wherein the sliding mechanism is a first sliding mechanism, the desktop workspace further comprising a second sliding mechanism, wherein either the first sliding mechanism or the second sliding mechanism is attached or slides along the work surface platform, and the other of the first sliding mechanism and the second sliding mechanism is attached to or slides along the base.
  • 5. The desktop workspace of claim 1, wherein the linear actuator functions as a height adjustment locking mechanism that holds the work surface platform at various vertical heights above the base.
  • 6. The desktop workspace of claim 5, wherein the linear actuator allows an operator to set a height limit by stopping the linear actuator at any point the operator chooses, rather than at preset heights.
  • 7. The desktop workspace of claim 5, wherein the height adjustment locking mechanism includes a button to control the linear actuator.
  • 8. The desktop workspace of claim 1, wherein the scissoring motion when raising and lowering the work surface platform to various heights of the height adjustment mechanism moves the work surface platform in a straight vertical direction relative to the base.
  • 9. The desktop workspace of claim 1, wherein the base pivot points and the platform pivot points are located on the same side of the desktop workspace.
  • 10. The desktop workspace of claim 1, wherein the shaft extends and retracts from only one side of the housing.
  • 11. The desktop workspace of claim 1, wherein the sliding mechanism includes a wheel mounted on the end of the arm of the two sets of arms.
  • 12. The desktop workspace of claim 11, wherein the sliding mechanism is a first sliding mechanism, the desktop workspace further comprising a second sliding mechanism, wherein either the first sliding mechanism or the second sliding mechanism is attached or slides along the work surface platform, and the other of the first sliding mechanism and the second sliding mechanism is attached to or slides along the base.
  • 13. The desktop workspace of claim 1, further comprising a button to control the linear actuator.
  • 14. The desktop workspace of claim 1, further comprising a keyboard tray mechanism configured to hold the keyboard platform in the position that protrudes out, down, and parallel to the work surface platform.
  • 15. The desktop workspace of claim 14, wherein the keyboard tray mechanism is configured to allow the keyboard platform to be stored under the work surface platform and to extend out in the protruding position.
  • 16. The desktop workspace of claim 14, wherein the keyboard tray mechanism comprises plates with channels, brackets, and sliding elements to mechanically allow the keyboard platform to both protrude out, below, and parallel to the work surface platform and to move to a location underneath the work surface platform.
  • 17. A desktop workspace that adjusts vertically, comprising: a work surface platform forming an upper work surface;a keyboard platform that protrudes out, down, and parallel to the work surface platform;a base configured to sit on an existing platform; anda height adjustment mechanism connecting the work surface platform and the base, the height adjustment mechanism including: two sets of arms that connect at scissoring pivot points creating a scissoring motion when raising and lowering the work surface platform to various heights;base pivot points fixed relative to the base and connecting the base and the two sets of arms;platform pivot points fixed relative to the work surface platform and connecting the work surface platform and the two sets of arms;a sliding mechanism on an end of an arm of the two sets of arms between the end of the arm and either the work surface platform or the base;a linear actuator between the work surface platform and the base, the linear actuator including a stationary housing, an end attached to the two sets of arms, and a motor that linearly actuates the end relative to the stationary housing to drive the scissoring motion; andan element that connects the two sets of arms to one another, the linear actuator being connected to the element,wherein the linear actuator is completely covered by a profile of the work surface platform when viewed from above the upper work surface relative to the base, the profile of the work surface platform being defined by an outer perimeter of the upper work surface.
  • 18. The desktop workspace of claim 17, wherein the element is attached on the same sides of the arms as the sliding mechanism relative to the scissoring pivot points.
  • 19. The desktop workspace of claim 17, wherein the sliding mechanism includes a wheel mounted on the end of the arm of the two sets of arms.
  • 20. The desktop workspace of claim 17, further comprising a keyboard tray mechanism configured to hold the keyboard platform in the position that protrudes out, down, and parallel to the work surface platform, wherein the keyboard tray mechanism is configured to allow the keyboard platform to be stored under the work surface platform and to extend out in the protruding position.
  • 21. The desktop workspace of claim 17, further comprising a button to control the linear actuator.
  • 22. A desktop workspace that adjusts vertically, comprising: a work surface platform forming an upper work surface;a keyboard platform that protrudes out, down, and parallel to the work surface platform;a base configured to sit on an existing platform; anda height adjustment mechanism connecting the work surface platform and the base, the height adjustment mechanism including: two sets of arms that connect at scissoring pivot points creating a scissoring motion when raising and lowering the work surface platform to various heights;base pivot points fixed relative to the base and connecting the base and the two sets of arms;platform pivot points fixed relative to the work surface platform and connecting the work surface platform and the two sets of arms;a sliding mechanism on an end of an arm of the two sets of arms between the end of the arm and either the work surface platform or the base;a linear actuator between the work surface platform and the base, the linear actuator including a stationary housing, an end attached to the two sets of arms, and a motor that linearly actuates the end relative to the stationary housing to drive the scissoring motion; andan element that connects the two sets of arms to one another, the linear actuator being connected to the element.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 16/785,647, titled DESKTOP WORKSPACE THAT ADJUSTS VERTICALLY, filed Feb. 9, 2020, which is a continuation application of U.S. patent application Ser. No. 16/372,334, titled DESKTOP WORKSPACE THAT ADJUSTS VERTICALLY, issued as U.S. Pat. No. 10,575,630 on Mar. 3, 2020, which is a divisional application of Ser. No. 15/628,558, titled DESKTOP WORKSPACE THAT ADJUSTS VERTICALLY, issued as U.S. Pat. No. 10,244,861 on Apr. 2, 2019, which is a divisional application of U.S. patent application Ser. No. 15/004,926, titled DESKTOP WORKSPACE THAT ADJUSTS VERTICALLY, filed Jan. 23, 2016, now abandoned, which claims the benefit of U.S. Provisional Patent Application No. 62/107,380, titled DESKTOP WORKSPACE THAT ADJUSTS VERTICALLY, filed Jan. 24, 2015. The entire contents of each of these related applications is incorporated by reference herein.

US Referenced Citations (118)
Number Name Date Kind
1318564 Jenkins Oct 1919 A
2937003 Croll May 1960 A
3295800 Karl-Erik et al. Jan 1967 A
3826457 Huot de Longchamp Jul 1974 A
4221280 Richards Sep 1980 A
4449262 Jahsman et al. May 1984 A
4549720 Bergenwall Oct 1985 A
4558648 Franklin et al. Dec 1985 A
4577821 Edmo Mar 1986 A
4702454 Izumida Oct 1987 A
4741512 Elkuch et al. May 1988 A
4753419 Johansson Jun 1988 A
4843978 Schmidt et al. Jul 1989 A
D302893 Wakefield Aug 1989 S
4941641 Granzow et al. Jul 1990 A
4967672 Leather Nov 1990 A
4995130 Hahn et al. Feb 1991 A
5037163 Hatcher Aug 1991 A
5211367 Musculus May 1993 A
5251864 Itou Oct 1993 A
5257767 McConnell Nov 1993 A
5294087 Drabczyk Mar 1994 A
5400720 Stevens Mar 1995 A
5588377 Fahmian Dec 1996 A
5626323 Lechman et al. May 1997 A
5765797 Greene et al. Jun 1998 A
5829948 Becklund Nov 1998 A
5926876 Haigh Jul 1999 A
5957426 Brodersen Sep 1999 A
6076785 Oddsen, Jr. Jun 2000 A
6098961 Gionet Aug 2000 A
6269753 Roddan Aug 2001 B1
6516478 Cook et al. Feb 2003 B2
6533229 Hung Mar 2003 B1
6533479 Kochanski Mar 2003 B2
6672430 Boucher et al. Jan 2004 B2
6701853 Hwang Mar 2004 B1
6702372 Tholkes et al. Mar 2004 B2
6722618 Wu Apr 2004 B1
6742768 Alba Jun 2004 B2
6792876 Lin Sep 2004 B2
7048236 Benden et al. May 2006 B2
7204193 Scherrer et al. Apr 2007 B2
7207629 Goetz et al. Apr 2007 B2
7575205 Kirchhoff Aug 2009 B2
7677518 Chouinard Mar 2010 B2
7841570 Mileos et al. Nov 2010 B2
7845665 Borisoff Dec 2010 B2
7950338 Smed May 2011 B2
8015638 Shimada et al. Sep 2011 B2
8132518 Lee et al. Mar 2012 B2
8303062 Zanelli Nov 2012 B2
8469152 Olsen et al. Jun 2013 B2
8490933 Papic et al. Jul 2013 B2
8544391 Knox et al. Oct 2013 B2
8671853 Flaherty Mar 2014 B2
8684339 Deml et al. Apr 2014 B2
8931750 Kohl et al. Jan 2015 B2
8950343 Huang Feb 2015 B2
9049923 Delagey Jun 2015 B1
9055810 Flaherty Jun 2015 B2
9232855 Ergun et al. Jan 2016 B2
9326598 West May 2016 B1
9480332 Han Nov 2016 B2
9504316 Streicher et al. Nov 2016 B1
9554644 Flaherty et al. Jan 2017 B2
9681746 Chen Jun 2017 B1
9809136 Haller et al. Nov 2017 B2
9815672 Baudermann Nov 2017 B2
9955780 Koch May 2018 B2
9981571 Garing May 2018 B2
9993068 Lin et al. Jun 2018 B2
10018298 Goldish et al. Jul 2018 B2
10023355 Taylor et al. Jul 2018 B2
D830739 Min Oct 2018 S
10123613 Hall et al. Nov 2018 B2
10244861 Poniatowski Apr 2019 B1
10258148 Donner et al. Apr 2019 B1
10258149 Zhong Apr 2019 B2
10306977 Wong Jun 2019 B2
D854775 Chang et al. Jul 2019 S
10413055 Laudadio Sep 2019 B2
10499730 Kim et al. Dec 2019 B2
10517390 Xiang et al. Dec 2019 B2
10524565 Ergun et al. Jan 2020 B2
10542817 Swartz et al. Jan 2020 B2
10544019 Kochie et al. Jan 2020 B2
10568416 Poniatowski Feb 2020 B1
10575630 Poniatowski Mar 2020 B1
D901959 Chang Nov 2020 S
10869549 Xiang et al. Dec 2020 B2
10893748 Poniatowski Jan 2021 B1
20030213415 Ross et al. Nov 2003 A1
20050029849 Goetz Feb 2005 A1
20050120922 Brooks Jun 2005 A1
20070080564 Chen Apr 2007 A1
20070266912 Swain Nov 2007 A1
20080000393 Wilson Jan 2008 A1
20090145336 Kenny Jun 2009 A1
20090146389 Borisoff Jun 2009 A1
20100242174 Morrison, Sr. Sep 2010 A1
20120097822 Hammarskiöld Apr 2012 A1
20120188302 Zanelli Jul 2012 A1
20130193392 McGinn Aug 2013 A1
20140144352 Roberts May 2014 A1
20150216296 Mitchell Aug 2015 A1
20150274038 Garing Oct 2015 A1
20150289641 Ergun Oct 2015 A1
20160258573 Goldish Sep 2016 A1
20160338486 Martin Nov 2016 A1
20160353880 Sigal et al. Dec 2016 A1
20170071332 Herring Mar 2017 A1
20170174486 Kochie Jun 2017 A1
20170196351 Failing Jul 2017 A1
20170354245 Martin et al. Dec 2017 A1
20180177289 Chen Jun 2018 A1
20200029685 Du et al. Jan 2020 A1
20200107633 Kang Apr 2020 A1
Foreign Referenced Citations (17)
Number Date Country
202874336 Apr 2013 CN
107048694 Aug 2017 CN
2851555 Nov 1983 DE
8606822 Aug 1991 DE
29515642 Jan 1996 DE
19526596 Jan 1997 DE
102013008020 Nov 2014 DE
202016101126 Jun 2016 DE
0613852 Nov 1997 EP
2745733 Jun 2014 EP
3092918 Nov 2016 EP
2637165 Apr 1990 FR
2894794 Jun 2007 FR
8304168 Dec 1983 WO
1991017906 Nov 1991 WO
2019001506 Jan 2019 WO
2019001507 Jan 2019 WO
Non-Patent Literature Citations (7)
Entry
CN107912868; abstract and Figure; Cui K (Year: 2018).
CN107048694; abstract and figure;Dai et al (Year: 2017).
CN110840072I abstract and figure (Year: 2020).
English translation for FR2637165 (Year: 1990).
Adjustable Desk: VARIDESK, http://www.varidesk.com, United States of America, Mar. 30, 2013.
Ergotron, http://www.ergotron.com, United States of America, Sep. 29, 2014.
Levine, James A. “Sitting down is Killing you! Heart disease, obesity, depression and crumbling bones—a terrifying new book by a top doctor reveals they are all linked to the hours we spend in chairs” Daily Mail Online, Jul. 26, 2014, 9 pages [online], [retrieved on Jun. 30, 2017]. Retrieved from the Internet at: http://www.dailymail.co.uk/news/article-2706317.
Provisional Applications (1)
Number Date Country
62107380 Jan 2015 US
Divisions (3)
Number Date Country
Parent 16785647 Feb 2020 US
Child 17118602 US
Parent 15628558 Jun 2017 US
Child 16372334 US
Parent 15004926 Jan 2016 US
Child 15628558 US
Continuations (1)
Number Date Country
Parent 16372334 Apr 2019 US
Child 16785647 US