This application claims the benefit of an Australian provisional application number 2011902573, filed Jun. 30, 2011. The entire disclosure of the prior application is hereby incorporated by reference.
The present invention relates to an assembly for translating linear movement to rotary motion, and in particular to an improved relationship between a linearly reciprocal member such as a yoke structure and associated piston, and a rotatable shaft such as a crank shaft. The invention could be used in any application where motion is to be translated from rotary to linear or vice versa, such as in compressors for example.
The internal combustion engine has now been with us for many decades and has become a most familiar design wherein the reciprocating piston uses connecting rods to connect the piston to the crank pins of the crank shaft to translate linear reciprocating motion of the pistons to rotary motion of the crank shaft.
For the most part, a connecting rod is articulable at both ends where it attaches to the piston and crank pin. This piston is connected to the connecting rod by a wrist pin that passes through the piston and the connecting rod. For the most part, these kinds of designs for such internal combustion engines are known as slider crank engines. Nonetheless, time has proven that these types of internal combustion engines do have significant disadvantages and limitations.
There has been a push, particularly now that fossil fuels are becoming scarce and there is a greater community emphasis to protect the environment by way of exhaust coming from conventional internal combustion energy, to improve upon the conventional slider crank engine.
The Scotch yoke has been used in certain engine designs seeking to utilize cyclic dynamics over the slider crank engines. For the most part, traditional Scotch yoke engines connect two horizontally opposed pistons by non-articulable connecting rods to a shuttle having a slot which accommodates the crank pin of a crank shaft. Guide services constrain the motion of the shuttle to a linear path and the crank pin slides within the slot as the crank shaft rotates through its range, converting the linear reciprocating piston movement to rotary crank shaft motion.
As the person skilled in the art will realise, the slot within the shuttle must be at least as wide as the crank pin diameter and at least as long as the diameter of the crank pin travel. Further, as the piston rod is part of a piston plate or the like which is restricted to linear reciprocated motion, any movement of the crank shaft will automatically see the piston extended or retracted away from any settable momentary position, including the sparking position.
A present trend in engine design is to increase engine rpm using the conventional piston rod with a Scotch yoke structure. The use of convention scotch yokes is not always possible for the most part as the piston stroke is short and the time available for drawing air into the combustion chamber is very short. This causes combustion at less than the ideal 15 to 1 air/fuel ratio for the fuel which in turn, leaves unburnt fuel to be exhausted as pollutants into the atmosphere. With the exhausted unburnt fuel goes wasted energy which should have been converted to power to drive the piston.
What effectively is happening in both currently available slider crank engines as well as Scotch yoke based designs is that there is inefficient coupling between the piston rod and the crank shaft. In con-rod engines, a greater torque can be achieved at specific crank angles by increasing the length of the stroke, that is, the height of the connecting rod and thus the height of the engine. This however is not practical in many applications and there are various associated disadvantages.
The skilled addressee would realise that a Scotch yoke transmits its force to a centre line location of a crank pin (a conventional crank) at a 90° crank angle for its maximum torque. Therefore, the linear travel of a Scotch yoke is always consistent, whether or not it has been modified for dwell, and its maximum leverage is always at 90°. The crank shaft typically has a sliding/rolling element associated therewith that slides/rolls on the yoke for the entire 360 degree rotation of the crank shaft. Scotch yokes therefore have very limited application.
The present inventor has recognised the need for an improved means of translating linear to rotary motion, and vice versa, and in combustion engine applications an improved relationship between yoke and crank, and yoke and piston, ensuring that torque is maximised at a much greater force than for example a scotch yoke.
International Patent Application No. PCT/AU2011/000398, owned by the present Applicant and incorporated by reference herein, provides an example of a cam yoke type engagement which overcomes some of the aforementioned problems by providing a mode of operation that is interchangeable between a crank mode and a cam mode in one revolution of the crank shaft to achieve increased leverage (pressure transferred to a greater leverage point) and a piston dwell time for improved combustion. That invention involved the use of a bearing or wheel member rotatable about an end of a crank arm associated with the crank shaft, and engageable with an inner surface of a linearly moveable yoke structure with which a piston is associated. The inner surface includes a shoulder portion which serves to momentarily interrupt the transformation of linear motion of the piston into rotary motion of the crank, the bearing thus undergoing a function change from a crank mode to a cam mode.
The Applicant's prior international application thus proposes an assembly which improves combustion and introduces a leverage effect to increase maximum torque at a much greater force than a conventional scotch yoke. However, while the Applicant's own prior art serves its purpose and provides a unique advantage over conventional assemblies of this type, the present invention seeks to provide a further improved assembly by addressing issues such as, but limited to the following:
It is therefore an object of the present invention to overcome at least some of the aforementioned problems or to provide the public with a useful alternative.
It is to be understood at the outset that any reference to a “cam effect” herein should not to be interpreted as being the same phenomenon as the earlier mentioned “cam mode” of the bearing in the Applicant's prior art patent application.
Further objects and advantages of this invention will become apparent from a complete reading of the following specification.
The present invention relates to an improved relationship between a rotatable shaft and a linearly reciprocal member such that the linear motion of the shaft results in maximum energy being transferred to the shaft for rotation thereof. While the invention embodied herein relates to internal combustion engines, it is to be understood that the invention could equally well be applied to any application involving the translation of linear to rotary motion or vice versa.
It should become apparent from a reading of this specification that the assembly provides for greater leverage than either scotch yoke or con-rod engine types in that the interaction between crank and piston is, in part, cam-related. The present invention provides a linear movement mechanism that is rigid, meaning the piston movement is linear and integral with the movement of the yoke structure, and which is able to transform energy to a greater leverage point than conventional engines at the same stroke length. As a result, a leverage effect is established and pressure transferred to the crank is maximised.
Accordingly, in one form of the invention, although this need not be the only nor indeed the broadest form of the invention, there is provided an assembly for translating linear motion of a linearly moveable member to rotary motion of a rotatable shaft, said assembly characterised by:
a yoke structure associated with said linearly moveable member, said yoke structure including an inner surface;
a leverage means associated with the rotatable shaft, the leverage means including at least one arced surface adapted to contact the yoke structure inner surface, the leverage means surface and yoke structure inner surface being dimensioned such that for at least a period of each revolution of the shaft, a constant contact force is transferred from the linearly moveable member to the shaft in a rocking motion between the two surfaces.
It is this rocking motion or “cam effect”, as opposed to sliding or rolling, between the two components through a particular range of angles which distinguishes the assembly from conventional scotch yoke type assemblies and which results in an improved interaction between these components and a much greater torque range.
Preferably there are two contact points between the said leverage means and yoke structure surface at substantially all times throughout the shaft rotation.
In preference said constant contact force is transferred between an arced surface of the leverage means and a linear surface of the yoke structure inner surface.
Thus, the assembly of the invention incorporates a rotatable shaft that is engageable with an inner surface of a yoke structure, the shaft including what is referred to herein as a leverage means including an outer peripheral edge adapted to contact the inner surface of a yoke structure along at least two arced surfaces associated with the leverage means at any one time throughout the rotation of the shaft. The components are dimensioned such that during at least a range of angles, there is a “rocking motion” interaction between an arced surface of the leverage means and the inner surface of the yoke (analogous to the motion of a rocking horse rocking with the floor) which importantly causes a constant contact force to be transferred from the yoke structure to the shaft. This effect is referred to herein as a “cam effect”.
In one form of the invention, the leverage means includes what is referred to herein is a “cam follower member” and an associated larger rolling element, wherein the cam follower member includes an arced surface adapted to contact an inner linear surface of the yoke structure, such interaction causing said “cam effect” during at least a range of shaft rotation angles, the larger rolling element including an arced surface adapted to contact an rounded inner surface of the yoke structure disposed adjacent said linear surface.
In a further form of the invention, the leverage means includes a “cam follower member” having an outer peripheral edge adapted to contact an inner surface of the yoke structure along two arced surfaces of the cam follower member at substantially all times throughout the shaft rotation, such interaction causing said “cam effect” during at least a range of shaft rotation angles.
Preferably the cam follower member and yoke structure inner surface are dimensioned such that said “cam effect” occurs between at least 90 and 180 degree rotation of the shaft.
In preference the cam follower member and yoke structure inner surface are dimensioned such that the shaft rotates between 0 and 90 degrees without any such rotary movement being translated on rectilinear motion of the yoke structure. Thus, when applied to a combustion engine, the present invention improves combustion efficiency by also introducing a dwell time at top dead centre.
In preference the cam follower member and yoke structure inner surface are dimensioned such that the shaft rotates between 180 and 270 degrees without any such rotary movement being translated on rectilinear motion of the yoke structure. Thus, when applied to a combustion engine, the present invention improves combustion efficiency by also introducing a dwell time at bottom dead centre.
Preferably said cam follower member includes at least a semi-circular edge having a centre point which defines a centre line through the member, and two quarter circle edges below the centre line having centre points disposed along said centre line on either side of the semi-circular edge centre point, the member being associated with the shaft such that the shaft centre point extends along the same axis as one of the quarter circle centre points.
The assembly is adjustable for leverage by adjusting, by an equal percentage, the radius of each of the quarter and semi-circles associated with the cam follower member. Furthermore, the stroke of the linearly moveable member is also adjustable by adjusting the distance between the shaft centre point and the centre point of the distal quarter circle.
In a still further preferred form of the invention, the shaft is a desmodronic shaft including a rolling element rotatable about the centre point of the arced surface associated with the cam follower member which contacts said yoke structure inner surface during said “cam effect”, the rolling element being of equal radius to said arced surface, said arced surface including a sawn off tip to allow for said rolling element to contact said yoke structure when said tip would otherwise have made contact with said inner surface. The use of an anti-friction or rolling element is particularly important between 0 and 90 degree rotation of the shaft to reduce chatter that would otherwise occur between the contacting surfaces.
The constant contact “cam effect” thus transfers the piston force from the yoke structure to the crank shaft without “sliding” as per conventional scotch yokes but in a rocking motion through a range of angles of rotation. This allows a much greater torque range than any conventional/scotch yoke designed engine. In using a cam follower member and yoke structure embodied herein, both the leverage and dwell aspects of the invention can be varied to suit a manufacturer's requirements as will become apparent.
The present invention is an improvement on the assembly disclosed in the international application mentioned in the preamble in that the means of interaction, referred to herein as the leverage means, includes or comprises of a cam follower member which interacts along its perimeter with an inner surface of the yoke structure. It will become apparent that an assembly incorporating such a leverage means addresses at least some of the problems identified in the preamble of the invention.
Preferably the assembly is an internal combustion engine, wherein said linearly moveable member is a yoke assembly having at least one piston associated therewith, and said rotatable shaft is a crank shaft. Advantageously, said shaft is a desmodronic crank shaft.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several implementations of the invention and, together with the description, serve to explain the advantages and principles of the invention. In the drawings:
The following detailed description of the invention refers to the accompanying drawings. Although the description includes exemplary embodiments, other embodiments are possible, and changes may be made to the embodiments described without departing from the spirit and scope of the invention. Wherever possible, the same reference numbers will be used throughout the embodiments and the following description to refer to the same and like parts.
The present invention relates to an assembly 10, which may form part of an internal combustion engine (not shown), including a crank shaft 12, a leverage means 14 associated with or built into the crank shaft, and at least one linear yoke assembly 16 including a yoke structure 18 with which the leverage means interacts to translate the linear motion of a piston 20, for example, associated with the yoke structure to rotary motion of the crank or, in broad terms, shaft 12.
It will be appreciated from a viewing of
The assembly shown in
In each embodiment described herein, the leverage means 14 comprises of, or at least includes, at least one cam follower member 22 which is rotatable with the crank shaft 12 and configured such that at least one arced surface thereof contacts with an inner surface associated with the linear yoke structure 18 during rotation. This ensures total contact between the crank and the yoke at substantially all times throughout the combustion cycle, and creates the earlier described “cam effect”.
It will become apparent that use of such a cam follower member 22 provides a simplified means of modifying the assembly to suit different requirements/applications. Through use of the member 22 and an appropriately modified yoke structure 18 with which it makes contact, the assembly 10 can be configured for single or double dwell, so combustion efficiency can also be made optimal. The member is also easy to manufacture and is not complex in that it does not involve a large number of individual moving parts or heavy load supporting bearings.
The reference numerals used to indicate the assembly 10, the leverage means 14, yoke assembly 16, and the yoke structure 18 are distinguished between each of the three embodiments described herein using reference letters a, b, and c. For example, the assembly of the first embodiment is referenced 10a, while the leverage means of the second embodiment is referenced 14b, and so on. It should be noted that for simplicity, some components such as the actual cylinder chambers to which the respective pistons would extend and retract therein have been removed so that the important and inventive aspects of this invention can be discussed more clearly.
In particular, the leverage means 14a includes two parallel and laterally spaced cam follower members 22 including arced surfaces adapted to contact respective inner surfaces 24 of the yoke structure 18a, the surfaces 24 being inner surfaces of the yoke structure located at the “base” of the yoke assembly 16a, that is, on the opposite end of the piston 20. The leverage means 14a further includes a large diameter rolling element or bearing 26 extending between the two cam follower members and adapted to contact an arced inner surface 28 of the yoke structure. Disposed inside the larger diameter rolling element 26 is a smaller diameter bearing 30 through which the crank shaft 12 and a connecting pin 32 connecting the two cam follower members 22 extends. The skilled addressee would realise that when the crank shaft 12 rotates, the smaller diameter bearing 30 rotates, together with the crank shaft, inside the larger diameter rolling element 26, as do the two cam follower members 22 and the pin 32 connecting the two members.
The arced inner surface 28 of the yoke structure is provided by a substantially J-shaped insert 34 whose curved edge forms an adjacent edge to the respective inner surfaces 24. The insert 34 is made preferably of spring steel for taking the stress off the larger bearing 26. The inner surfaces 24 are provided by linear rods 36 which form the “base” of the yoke structure.
The leverage means 14a, which includes the cam follower members 22 and rolling element 26, and the inner surfaces of the yoke structure 18a are configured to ensure that there is at least one piston dwell time for each rotation of the crank, and that there is a cam effect during at least a period of the rotation. This is achieved in the embodiment shown through use of a cam follower member 22 having a rigid structure including a centre line with three centre points 38, 40 and 42 disposed there along which each define the centre of radius of three arced outer surfaces of the member 22. This can perhaps best be seen in
The first centre point 38 is the centre of radius of a first arced surface 44 which forms a quarter circle at a base corner of the member 22. The second centre point 40 is the centre of radius of a second arced surface 46 which forms a second quarter circle at the opposed base corner of the member. The third centre point 42 is the centre of radius of a third arced surface 48 which forms a semi-circle and the complete upper portion of the member 22 above the centre line. The first and second surfaces 44 and 46 are quarter circles of equal radius, preferably half the radius of the semi-circle surface 48, and are preferably joined by a fourth linear outer surface 50.
It can be appreciated from a viewing of
In this first embodiment, the inner surfaces of the yoke structure are configured for dwell between 0 and 90 degree crank rotation. During at least a period of this dwell time, the outer bearing 26 rolls on the J-shaped insert until the “cam effect” is established between the cam follower member 22 and yoke surface 24, in particular, between arced surface 46 of the member 22 and the linear surface 24. The cam effect results in a constant contact force being applied from the yoke structure to the crank shaft through at least shaft rotation angles 90 through 180 degrees. Leverage is thus gained by the elongated shape of the cam follower member and is proportional to the distance between the centre point of the crank 38 and the second centre point 40. One advantage of the present invention when used in a combustion engine environment is that the decrease in combustion pressure which occurs as the piston travels is counterbalanced by the increase in leverage.
The distance between the first and second centre points 38 and 40 of each cam follower member 22 defines the stroke length of the piston. The skilled addressee would thus realise the ease at which the assembly 10a of the present invention can be modified to suit different applications requiring different torque ranges. One only needs to increase the radius of each of the quarter circle surfaces 44 and 46, and then the radius of the semi-circle surface 48 to compensate for the increased length of the member, in order to increase the torque capacity. Because the distance between the centre points 38 and 40 remains the same, the stroke length remains the same, meaning that the assembly can be modified for different torque ranges without the need to modify the stroke and hence height of the engine or assembly.
Similarly, if one wished to adjust the stroke, the distance between centre points 38 and 40 can easily be adjusted. The skilled addressee would realise that any adjustment of the cam follower member would require comparable re-dimensioning of the yoke structure inner surface.
In summary, the assembly 10a provides for a single dwell of the pistons from 0 through 90 degree rotation of the crank shaft, and then the transfer of a constant contact force from the linear yoke structure to the leverage means without sliding, as per a conventional scotch yoke type arrangement, but rather in a rocking motion which as mentioned in the preamble can be considered analogous to the motion of a rocking horse “rocking” for example. It is this “cam effect” that allows a much greater torque range than any conventional or scotch yoke designed engine. The remainder of piston travel after 90 degrees comprises movement from top dead centre to bottom dead centre from 90 to 180 degrees, and from bottom dead centre back to top dead centre from 180 to 360 degrees.
The use of the leverage means, specifically the cam follower member 22 and its interaction with the yoke structure, provides advantages over the prior art including a reduction in the total number of parts, simplified manufacturing and assembly in that the leverage member is a single rigid member, and full adjustability in that slight variations in the design of the leverage means will result in a change in leverage and dwell times to meet the requirements of any application.
The assembly 10b of this second embodiment provides for less components than the first embodiment in that the inner surface of the yoke structure 18b replaces the need for an external rolling element, with only one cam follower member 22 required to engage the inner surface. Furthermore, this configuration introduces a double dwell of the piston for each revolution of the crank as will be described in more detail below.
The inner peripheral edge 54 of the yoke is dimensioned to ensure that contact is maintained between one of surfaces 44 and 46 of the cam follower member 22 with the inner yoke edge 54, and in addition, surface 48 with edge 54. In the embodiment shown, the inner yoke edge 54 includes two parallel surfaces 56 and 58 that are spaced a distance which corresponds with the length of the cam follower member 22, as shown in the TDC position of
Some specific radii are provided in
Therefore, while the piston 20 dwells again from 0 through 90 degree crank rotation, the remainder of travel is different to that of the first embodiment in that its travel after 90 degrees comprises movement from top dead centre to bottom dead centre from 90 to 180 degrees, a second dwell time from 180 through 270 degree crank rotation, and from bottom dead centre back to top dead centre from 270 to 360 degrees.
Turning now to
A further notable difference in this third embodiment is the sawn off portion 74 on the tip of the cam follower member at the junction between surfaces 46 and 48. The flat spot 74 allows for contact between the roller 70 and the inner peripheral edge 54 of the yoke at times when the tip of the member 14c, that is, the junction between surfaces 46 and 48, would otherwise have contacted the inner surface of the yoke, for example, throughout the dwell period of 0 through 90 degrees. The roller 70 thus serves to reduce friction and chatter between these surfaces at appropriate times throughout the 360 degree rotation of the crank.
In consideration of the drawings and above description, a person skilled in the art should appreciate how the assembly 10 of the invention works and provides various advantages over hitherto known assemblies which convert linear to rotary motion and vice versa. When applied to an internal combustion engine, where the linearly moveable member is a yoke piston structure and the rotatable shaft is a crank shaft, the skilled addressee would understand that, through using the assembly of the invention, each cylinder of the engine would have a piston in its uppermost position at the point of firing for a period of time rather than simply a point of time so that piston can remain at that uppermost position to ensure all the hydrocarbon fuel in the air/fuel intake is burnt rather than leaving any unburnt fuel to be exhausted. In a further form of the invention, the assembly can also be configured for double dwell where there is a second dwell time at the lowermost position of the piston.
Hence, as best seen in
This ability to create a dwelling time for the piston is but one benefit of the present invention. The configuration of the cam follower member 22 and its interaction with the yoke structure 18 results in leverage being maximised, for dwell and leverage to be fully adjustable by simple adjustment of the dimensions of these components, and in a preferred form of the invention utilising a rolling element which reduces friction and chatter.
Further advantages and improvements may very well be made to the present invention without deviating from its scope. Although the invention has been shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope and spirit of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent devices and apparatus.
In the claims, except where the context requires otherwise due to express language or necessary implication, the word “comprising” is used in the sense of “including”, i.e. the features specified may be associated with further features in various embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
AU2001902573 | Jun 2011 | AU | national |