The present application relates generally to radio communications devices and, more particularly, to a radio communications device having a detachable external antenna. Such devices can be used for various purposes including, e.g., providing connectivity to networks using WiMAX and other telecommunications protocols.
A radio communications device in accordance with one or more embodiments includes a base unit having an enclosure and a radio system inside the enclosure. The device also includes an antenna unit detachably connected to the enclosure of the base unit. The antenna unit includes one or more antennas, each having an electrical radio frequency (RF) connection to the radio system via a non-conductive coupling through the enclosure.
An antenna unit in accordance with one or more embodiments is provided for use in a radio communications device. The radio communications device includes a base unit having an enclosure and a radio system inside the enclosure. The antenna unit comprises a dielectric support having one or more antennas thereon. The support is detachably connectable to the enclosure of the base unit. Each antenna includes a coupling feature configured to provide an electrical RF connection to the radio system via a non-conductive coupling through the enclosure when the antenna unit is attached to the base unit.
Like or identical reference numbers are used to identify common or similar elements.
Various embodiments disclosed herein are directed to radio communications devices having detachable external antennas. Such devices can be used for various purposes including providing connectivity to networks using WiMAX and other telecommunications protocols.
The electronics 14 are housed within a plastic enclosure 16 of the base 10. The antenna section 12 can be removably affixed to the base enclosure 16 by various connection techniques including, e.g., mechanical fasteners, interference fits, snap or groove features integrated into the base enclosure 16 and antenna section 12, adhesives, and magnets. The electrical RF connection between the radio and the antennas in the antenna section is made via a capacitive coupling through the wall of the enclosure 16. Accordingly, no metallic or galvanic connection is needed from the radio electronics 14 or PCB 15 through the enclosure wall to the antenna section 12.
As shown in
In the exemplary embodiment, the conductor pattern defines two antennas 20 separated by a reflector element 22. The antennas 20 are end-fed collinear dipole arrays comprising three half-wave dipole sections connected by inductive delay sections. Various other antenna configurations are also possible. The bottom end of each antenna 20 includes a small plate 24 that serves as a coupling feature. The reflector 22 increases the directivity and isolation between the two antennas 20, and also includes a decorative ring feature 26. Various other functional and decorative features (including, e.g., other patterns and logos) are also possible.
The conductor pattern is applied to one surface of the supporting piece 18. The conductive pattern may be applied to the supporting piece 18 by a number of methods including, but not limited to, screen or pad printing, copper plating techniques, direct sputtering or deposition techniques, or by bonding a flexible printed circuit sheet or decal containing the desired pattern to the support.
The coupling feature 24 on each antenna 20 aligns with a similar corresponding feature 30 on the inside of the base enclosure 16 as illustrated in
In accordance with one or more alternate embodiments, the non-conductive coupling for transmission of RF signals to each antenna in the antenna section may be an inductive coupling at radio frequency.
One advantage of having an antenna section that is detachable from a base radio unit is that it is possible for a user to easily replace either item if needed, e.g., in the event either the base or the antenna section is damaged or requires upgrading.
Using a capacitive, non-conductive coupling for transmission of RF signals to each antenna allows for a simpler assembly process that can avoid use of soldering or cable attachment. Additionally, the capacitive coupling can eliminate the need for metal-to-metal contact and thereby reduces wear between the parts, allowing the coupling to be able to withstand many more install and remove cycles. In addition, by avoiding metal-to-metal contact, the performance of the device can be more consistent over the life of the product. Furthermore, avoiding metal-to-metal contact reduces the possibility of corrosion and oxidation, particularly if the coupling features are embedded in or covered with plastic.
In accordance with one or more further embodiments, the dielectric support 18 of the antenna section 12 is transparent or translucent, and can be edge lighted, either from the base or one or more sides. In some embodiments, the antennas 20 are made to contrast the support. In other embodiments, the antennas 20 can leak light and appear self luminous if made transparent, translucent, or from a mesh conductor. Other visual effects may be created using a light scattering decal or by an etched logo or pattern on the plastic support. Thus, the antenna section 12 can be made to form an attractive display that is both functional as an antenna and as a luminous display.
Having thus described illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present disclosure to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments.
Additionally, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions.
Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.
This application claims priority from U.S. Provisional Patent Application No. 61/419,075, filed on Dec. 2, 2010, entitled DETACHABLE ANTENNA FOR RADIO COMMUNICATIONS DEVICE, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5940038 | Brown | Aug 1999 | A |
6847330 | Rada et al. | Jan 2005 | B2 |
7579993 | Lev et al. | Aug 2009 | B2 |
20050037709 | Hwang | Feb 2005 | A1 |
20050219140 | Browne et al. | Oct 2005 | A1 |
20080165066 | Tiscareno et al. | Jul 2008 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT/US2011/062777, dated Jul. 11, 2012. |
Number | Date | Country | |
---|---|---|---|
20120306715 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61419075 | Dec 2010 | US |