1. Technical Field
The present disclosure relates to attachment systems for staple line buttress materials. More particularly, the present disclosure relates to systems and methods of temporarily attaching staple line buttress materials to an anvil and staple containing cartridge of a surgical stapling instrument.
2. Background of Related Art
Surgical stapling instruments, or “stapling devices”, are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. Such devices generally include a pair of jaws or finger-like structures between which the body tissue to be joined is placed. When the stapling device is actuated, or “fired”, longitudinally moving firing bars contact staple drive members in one of the jaws. The staple drive members push the surgical staples through the body tissue and into an anvil in the opposite jaw which crimps the staples closed. If tissue is to be removed or separated, a knife blade can be provided in the jaws of the device to cut the tissue between the lines of staples.
When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or “buttress” material, between the staple and the underlying tissue. In this method, a layer of buttress material is placed against the tissue and the tissue is stapled in conventional manner. In more recent methods, the buttress material is positioned on the stapling instrument itself prior to stapling the tissue. An exemplary example of this is disclosed in U.S. Pat. No. 5,542,594 to McKean et al. In McKean et al., a tube of buttress material is slipped over the jaw of the stapler. The stapler is then actuated to staple the subject tissue and secure the buttress material between the tissue and staple line to reinforce the tissue and staple line.
When positioning the buttress material on the jaws of the surgical stapler, it is desirable to releasably retain the buttress material against the jaws. Thus, it is desirable to provide retainers for releasably retaining the buttress material against the jaws of the surgical instrument.
There is disclosed a surgical stapler for deploying staples in tissue, the surgical stapler has a pair of jaws for engaging tissue, including a stapler cartridge and an anvil, where at least one of the jaws defines a plurality of recesses. A staple line buttress material is positioned on one of the jaws and a plurality of retainers pass through the staple line buttress material. Each of the retainers is disposed within one of the recesses in the jaws so as to releasably retain the staple line buttress material on the at least one jaw.
In one embodiment, the retainer is a staple having a backspan and a pair of legs extending from the backspan and the recesses in the at least one jaw defines a pair of holes, the legs of the staple pass through the holes such that tips of the legs are crimped over the staple line buttress material.
In another embodiment, the legs of the staple are inserted through the staple line buttress material such that the legs of the staple are partially positioned within the recesses and the backspan of the staple secures the staple line buttress material to the at least one jaw. In a more specific embodiment, the legs of the staple are crimped within the recesses.
In certain embodiments, the staple line buttress material includes a plurality of slots and the recesses are also formed as slots. The retainers are clips passing through the slots in the staple line buttress material and the jaw. In one embodiment, the retainer is a clip having an a plate and an angled lip extending from the plate, the angled lip engaging the staple line buttress material. The clip has an angled edge along one side, the angled edge being engagable with a driver of the surgical stapler.
In a further embodiment, the clip is an I-beam having a center portion and upper and lower beams extending from ends of the center portion. An underside of the upper beam engages the staple line buttress material and ends of the lower beam frictionally engage surfaces defining the recesses.
In certain embodiments, the retainer is absorbable within the body of a patient.
There is also disclosed a method of applying staple line buttress material to a surgical staple line. The method includes providing a surgical stapler having a pair of jaws including a staple containing cartridge and an anvil, the surgical stapler having a buttress material releasably disposed on at least one of the jaws and a plurality of retainers passing through the staple line buttress material and into recesses formed in the at least one jaw.
In the disclosed method the surgical stapler is actuated to drive staples contained in the staple containing cartridge through the buttress material and tissue captured between the jaws and into the anvil so as to staple the buttress material to the tissue. In one embodiment of the method, the retainers are retained within the at least one jaw after the buttress material has been stapled to the tissue. In an alternative embodiment of the disclosed method, the retainers are retained on the buttress material after the buttress material has been stapled to the tissue.
In one embodiment of the disclosed method the retainers are reverse staples frictionally retained within the recesses while in an alternative embodiment of the disclosed method the retainers are clips passing through the buttress material. A surface of the clips engage the buttress material.
Various embodiments of the presently disclosed systems for attaching staple line buttress materials to a surgical stapling instrument are disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed detachable buttress material retention systems for use with surgical stapling instruments will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term ‘proximal” refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term “distal” refers to that part or component further away from the user.
Referring now to
Staple clinching anvil 20 is provided with a layer of anvil buttress material 24 and staple cartridge 22 is provided with a layer of cartridge buttress material 26 in the manners described in more detail hereinbelow. A plurality of anvil buttress retainers in the form of clips or reverse staples 28 are provide to releasably secure anvil buttress material to staple clinching anvil 20. Likewise, a plurality of cartridge buttress retainers in the form of detachable clips or reverse staples 30 are provided to releasable secure cartridge buttress material 26 to staple cartridge 22. Anvil buttress material 24 and cartridge buttress material 26 are provided to reinforce and seal staple lines applied to tissue by surgical stapler 10.
Surgical stapler 10 includes a trigger 32 movably mounted on handle 12. Actuation of trigger 32 initially operates to move anvil 20 from the open to the closed position relative to staple cartridge 22 and subsequently actuate surgical stapler 10 to apply lines of staples to tissue. In order to properly orient jaw assembly 16 relative to the tissue to be stapled, surgical stapler 10 is additionally provided with a rotation knob 34 mounted on handle 12. Rotation of rotation knob 34 relative to handle 12 rotates elongate tubular member 14 and jaw assembly 16 relative to handle 12 so as to properly orient jaw assembly 16 relative to the tissue to be stapled.
Referring to
Anvil 20, anvil buttress material 24 and anvil buttress retainers or reverse staples 28 combine to form an anvil buttress attachment system 40 allowing anvil buttress material 24 to be supported on and releasably affixed to anvil 20. Similarly, staple cartridge 22, cartridge buttress material 26 and cartridge buttress retainers or reverse staples 30 combine to form a cartridge buttress attachment system 42 allowing cartridge buttress material 26 to be supported on and releasably affixed to staple cartridge 22. Anvil buttress attachment system 40 and cartridge buttress attachment system 42 are particularly configured to allow the respective buttress materials to be localized on inwardly facing surfaces of anvil 20 and staple cartridge 22 in order to facilitate passage of surgical stapler 10 into the body of a patient without risk of tearing or wrinkling of the respective buttress materials as surgical stapler 10 is inserted into and manipulated within the body of a patient.
Referring to
Referring still to
Some non-limiting examples of materials from which the buttress material may be made include but are not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof.
In embodiments, natural biological polymers are used in forming the buttress material. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, chitan, chitosan, and combinations thereof. In addition, the natural biological polymers may be combined with any of the other polymeric materials described herein to produce the buttress material.
The buttress material may be porous or non-porous, or combinations of porous and non-porous layers. Where the buttress material is non-porous, buttress material may retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. Thus, in embodiments, the buttress material possesses anti-adhesion properties. Techniques for forming non-porous layers from such materials are within the purview of those skilled in the art and include, for example, casting, molding and the like.
In embodiments, the buttress material is porous and possesses hemostatic properties. Where the buttress material is porous, it has openings or pores over at least a portion of a surface thereof. Suitable materials for forming the porous layer include, but are not limited to foams (e.g., open or closed cell foams). In embodiments, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. In other embodiments, the pores do not interconnect across the entire thickness of the porous layer. In yet other embodiments, the pores do not extend across the entire thickness of the porous layer, but rather are present at a portion of the surface thereof. In embodiments, the openings or pores are located on a portion of the surface of the porous layer, with other portions of the porous layer having a non-porous texture. Those skilled in the art reading the present disclosure will envision other pore distribution patterns and configurations for the porous layer.
Where the buttress material is porous, the pores may be formed using any method suitable to forming a foam or sponge including, but not limited to the lyophilization or freeze-drying of a composition. Suitable techniques for making foams are within the purview of those skilled in the art. Porous buttress materials can be at least 0.2 cm thick, in embodiments from about 0.3 to about 1.5 cm thick. Porous buttress materials can have a density of not more than about 75 mg/cm2 and, in embodiments below about 20 mg/cm2. The size of the pores in the porous buttress materials can be from about 20 μm to about 300 μm, in embodiments from about 100 μm to about 200 μm.
The buttress material may also include a reinforcement member. The reinforcement member may be associated with a porous or non-porous layer or may be positioned between a non-porous layer and a porous layer of the buttress material. Alternatively, the reinforcement member may be positioned entirely within one or more of the individual layers (i.e., embedded within the porous layer, the non-porous layer, or both) of the buttress material. It is also envisioned that the reinforcement member may be positioned at the surface of one of the layers making up the buttress material and, in embodiments, may be positioned at an exterior surface of the buttress material.
Some suitable non-limiting examples of reinforcement members include fabrics, meshes, monofilaments, multifilament braids, chopped fibers (sometimes referred to in the art as staple fibers) and combinations thereof. Where the reinforcement member is a mesh, it may be prepared using any technique known to those skilled in the art, such as knitting, weaving, tatting, knipling or the like. Where monofilaments or multifilament braids are used as the reinforcement member, the monofilaments or multifilament braids may be oriented in any desired manner. For example, the monofilaments or multifilament braids may be randomly positioned with respect to each other within the buttress material. As another example, the monofilaments or multifilament braids may be oriented in a common direction within the buttress material. Where chopped fibers are used as the reinforcement member, the chopped fibers may be oriented in any desired manner. For example, the chopped fibers may be randomly oriented or may be oriented in a common direction. The chopped fibers can thus form a non-woven material, such as a mat or a felt. The chopped fibers may be joined together (e.g., by heat fusing) or they may be unattached to each other. The chopped fibers may be of any suitable length. For example, the chopped may be from 0.1 mm to 100 mm in length, in embodiments, 0.4 mm to 50 mm in length. In an illustrative embodiment, the buttress material has randomly oriented chopped fibers that have not been previously fused together embedded within in the buttress material.
It is envisioned that the reinforcement member may be formed from any bioabsorbable, non-bioabsorbable, natural, or synthetic material previously described herein and combinations thereof. Where monofilaments or multifilament braids are used as the reinforcement member, any commercially available suture material may advantageously be employed as the reinforcement member.
In embodiments, at least one bioactive agent may be combined with the buttress material and/or any of the individual components (the porous layer, the non-porous layer and/or the reinforcement member) used to construct the buttress material. In these embodiments, the buttress material can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent”, as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use. Consequently, bioactive agents may or may not have pharmacological activity per se, e.g., a dye, or fragrance. Alternatively a bioactive agent could be any agent which provides a therapeutic or prophylactic effect, a compound that affects or participates in tissue growth, cell growth, cell differentiation, an anti-adhesive compound, a compound that may be able to invoke a biological action such as an immune response, or could play any other role in one or more biological processes.
Examples of classes of bioactive agents which may be utilized in accordance with the present disclosure include anti-adhesives, antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.
Anti-adhesive or anti-adhesion agents can be used to prevent adhesions from forming between the buttress material and the surrounding tissues opposite the target tissue. Some examples of these agents include, but are not limited to poly(vinyl pyrrolidone), carboxymethyl cellulose, hyaluronic acid, polyethylene oxide, poly vinyl alcohols and combinations thereof.
Suitable antimicrobial agents which may be included as a bioactive agent in the buttress material of the present disclosure include triclosan, also known as 2,4,4′-trichloro-2′-hydroxydiphenyl ether, chlorhexidine and its salts, including chlorhexidine acetate, chlorhexidine gluconate, chlorhexidine hydrochloride, and chlorhexidine sulfate, silver and its salts, including silver acetate, silver benzoate, silver carbonate, silver citrate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine, polymyxin, tetracycline, aminoglycosides, such as tobramycin and gentamicin, rifampicin, bacitracin, neomycin, chloramphenicol, miconazole, quinolones such as oxolinic acid, norfloxacin, nalidixic acid, pefloxacin, enoxacin and ciprofloxacin, penicillins such as oxacillin and pipracil, nonoxynol 9, fusidic acid, cephalosporins, and combinations thereof. In addition, antimicrobial proteins and peptides such as bovine lactoferrin and lactoferricin B may be included as a bioactive agent in the bioactive coating of the present disclosure.
Other bioactive agents which may be included as a bioactive agent in the buttress material in accordance with the present disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g. oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins and cytotoxic drugs; estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.
Other examples of suitable bioactive agents which may be included in the coating composition include viruses and cells, peptides, polypeptides and proteins, analogs, muteins, and active fragments thereof, such as immunoglobulins, antibodies, cytokines (e.g. lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (IL-2, IL-3, IL-4, IL-6), interferons (β-IFN, (α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone), vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., nerve growth factor, insulin-like growth factor); protein inhibitors, protein antagonists, and protein agonists; nucleic acids, such as antisense molecules, DNA and RNA; oligonucleotides; polynucleotides; and ribozymes.
Referring now to
As noted above, anvil 20 is provided with rows of staple clinching pockets 48. In this embodiment, pairs of holes 60 are drilled in anvil 20 to allow legs 52 and 54 of reverse staples 28 to pass therethrough. Pairs of holes 60 are positioned in line with rows of staple clinching pockets 48 and take the place of one or more sets of staple clinching pockets 48 within the rows as shown. In a specific embodiment, pairs of holes 60 are located in the outer most rows of staple clinching pockets 48 to secure anvil buttress material 24 along its outer edges.
Referring now to
Referring now to
Staple cartridge 22 generally includes a plastic body portion 70 and an outer channel 72. Staple cartridge 22 is supported on elongate tubular member 14 by outer channel 72. Body portion 70 includes a plurality of rows of staple containing pockets 74 provided to contain staples used to staple tissue as described below. A knife channel 78 is positioned between rows of staple containing pockets 74 for passage of a knife used to cut the stapled tissue along with cartridge buttress material 26.
Rows of staple containing pockets 74 include longitudinally spaced, empty or dummy pockets 78 for receipt of reverse staples 30 in order to secure cartridge buttress material 26 to staple cartridge 22.
As shown in
Referring to
Referring now to
Referring now to
While not specifically shown, upon full actuation of surgical stapler 10, a knife blade associated with surgical stapler 10 and carried by driver 36 cuts tissue T, as well as anvil buttress material 24 and cartridge buttress material 26 between the rows of now clinched staples 102.
As shown in
The resulting tissue T, divided and stapled closed with staples 102, is best illustrated in
Referring now to
Referring for the moment to
In an alternative embodiment shown in
A still further embodiment of a retention clip 160 is illustrated in
Referring now to
With reference to
Referring now to
As best shown in
Referring for the moment to
The resultant stapled tissue sections T are best illustrated in
Referring now to
Referring for the moment to
With continued reference to
With reference to
The resultant tissue T, divided and stapled closed with staples 102 is shown in
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the disclosed retainers and methods are interchangeable for use in either the staple containing cartridge or anvil. Further, the disclosed methods and retention systems are not limited to stapling apparatus but may find application in other instruments and situations requiring material to be reseably retained on the surface of a surgical instrument. Additionally, the disclosed retainers can function as both buttress material retention devices and tissue connecting devices, i.e., “tissue staples” simultaneously. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a Continuation Application U.S. patent application Ser. No. 13/946,311, filed Jul. 19, 2013, which is a Continuation Application of U.S. patent application Ser. No. 12/915,519, filed Oct. 29, 2010, now U.S. Pat. No. 8,512,402, which is a Divisional Application claiming the benefit of and priority to U.S. application Ser. No. 11/821,330, filed on Jun. 22, 2007, now U.S. Pat. No. 7,845,533, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3124136 | Usher | Mar 1964 | A |
3364200 | Ashton et al. | Jan 1968 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3939068 | Wendt et al. | Feb 1976 | A |
3948666 | Kitanishi et al. | Apr 1976 | A |
4064062 | Yurko | Dec 1977 | A |
4166800 | Fong | Sep 1979 | A |
4282236 | Broom | Aug 1981 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4416698 | McCorsley, III | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4452245 | Usher | Jun 1984 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4626253 | Broadnax, Jr. | Dec 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5057334 | Vail | Oct 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5410016 | Hubbell et al. | Apr 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5484913 | Stilwell et al. | Jan 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5543441 | Rhee et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5550187 | Rhee et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5819350 | Wang | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6093557 | Pui et al. | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6156677 | Reed et al. | Dec 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6179862 | Sawhney | Jan 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6309569 | Farrar et al. | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6399362 | Pui et al. | Jun 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6500777 | Wiseman et al. | Dec 2002 | B1 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6514534 | Sawhney | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6566406 | Pathak et al. | May 2003 | B1 |
6590095 | Schleicher et al. | Jul 2003 | B1 |
6592579 | Arndt et al. | Jul 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6627749 | Kumar | Sep 2003 | B1 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6656200 | Li et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6673093 | Sawhney | Jan 2004 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6703047 | Sawhney et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6746869 | Pui et al. | Jun 2004 | B2 |
6764720 | Pui et al. | Jul 2004 | B2 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6818018 | Sawhney | Nov 2004 | B1 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7009034 | Pathak et al. | Mar 2006 | B2 |
7060087 | DiMatteo et al. | Jun 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7247338 | Pui et al. | Jul 2007 | B2 |
7279322 | Pui et al. | Oct 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7347850 | Sawhney | Mar 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7498063 | Pui et al. | Mar 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7595392 | Kumar et al. | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7611494 | Campbell et al. | Nov 2009 | B2 |
7635073 | Heinrich | Dec 2009 | B2 |
7649089 | Kumar et al. | Jan 2010 | B2 |
7662801 | Kumar et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7722642 | Williamson, IV et al. | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crews et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7951248 | Fallis et al. | May 2011 | B1 |
7967179 | Olson et al. | Jun 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8033483 | Fortier et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8152777 | Campbell et al. | Apr 2012 | B2 |
8157149 | Olson et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8408440 | Olson et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453909 | Olson et al. | Jun 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8616430 | (Prommersberger) Stopek et al. | Dec 2013 | B2 |
8631989 | Aranyi et al. | Jan 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8757466 | Olson et al. | Jun 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | (Prommersberger) Stopek | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
20020028243 | Masters | Mar 2002 | A1 |
20020086990 | Kumar et al. | Jul 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020165563 | Grant et al. | Nov 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030078209 | Schmidt | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030120284 | Palacios et al. | Jun 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050131225 | Kumar et al. | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050154093 | Kwon et al. | Jul 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060008505 | Brandon | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060093672 | Kumar et al. | May 2006 | A1 |
20060121266 | Fandel et al. | Jun 2006 | A1 |
20060135992 | Bettuchi et al. | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070054880 | Saferstein et al. | Mar 2007 | A1 |
20070114262 | Mastri et al. | May 2007 | A1 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070213522 | Harris et al. | Sep 2007 | A1 |
20070237741 | Figuly et al. | Oct 2007 | A1 |
20070237742 | Figuly et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080164440 | Maase et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080194805 | Vignon et al. | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080214695 | Pathak et al. | Sep 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080230583 | Heinrich | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090220560 | Wan et al. | Sep 2009 | A1 |
20090263441 | McKay | Oct 2009 | A1 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Racenet et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100065660 | Hull et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100096481 | Hull et al. | Apr 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100203151 | Hiraoka | Aug 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110082427 | Golzarian et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110089375 | Chan et al. | Apr 2011 | A1 |
20110215132 | Aranyi et al. | Sep 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120156289 | Blaskovich et al. | Jun 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105553 | (Tarinelli) Racenet et al. | May 2013 | A1 |
20130112732 | Aranyi et al. | May 2013 | A1 |
20130112733 | Aranyi et al. | May 2013 | A1 |
20130146641 | Shelton, IV et al. | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130161374 | Swayze et al. | Jun 2013 | A1 |
20130193186 | (Tarinelli) Racenet et al. | Aug 2013 | A1 |
20130193192 | Casasanta, Jr. et al. | Aug 2013 | A1 |
20130209659 | Racenet et al. | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi et al. | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130306707 | Viola et al. | Nov 2013 | A1 |
20130310873 | Stopek (nee Prommersberger) et al. | Nov 2013 | A1 |
20130327807 | Olson et al. | Dec 2013 | A1 |
20140012317 | Orban et al. | Jan 2014 | A1 |
20140021242 | Hodgkinson et al. | Jan 2014 | A1 |
20140027490 | Marczyk et al. | Jan 2014 | A1 |
20140034704 | Ingmanson et al. | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140061280 | Ingmanson et al. | Mar 2014 | A1 |
20140097224 | Prior | Apr 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140138423 | Whitfield et al. | May 2014 | A1 |
20140151431 | Hodgkinson et al. | Jun 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140158742 | Stopek (nee Prommersberger) et al. | Jun 2014 | A1 |
20140166721 | Stevenson et al. | Jun 2014 | A1 |
20140197224 | Penna | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140217147 | Milliman | Aug 2014 | A1 |
20140217148 | Penna | Aug 2014 | A1 |
20140239046 | Milliman | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20140252062 | Mozdzierz | Sep 2014 | A1 |
20150001276 | Hodgkinson et al. | Jan 2015 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150097018 | Hodgkinson | Apr 2015 | A1 |
20150115015 | Prescott et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2 667 434 | May 2008 | CA |
19924311 | Nov 2000 | DE |
0 327 022 | Aug 1989 | EP |
0 594 148 | Apr 1994 | EP |
0 667 119 | Aug 1995 | EP |
1 064 883 | Jan 2001 | EP |
1 256 317 | Nov 2002 | EP |
1 256 318 | Nov 2002 | EP |
1 520 525 | Apr 2005 | EP |
1 621 141 | Feb 2006 | EP |
1 702 570 | Sep 2006 | EP |
1 759 640 | Mar 2007 | EP |
1 815 804 | Aug 2007 | EP |
1 825 820 | Aug 2007 | EP |
1 929 958 | Jun 2008 | EP |
1 994 890 | Nov 2008 | EP |
2 005 894 | Dec 2008 | EP |
2 005 895 | Dec 2008 | EP |
2 008 595 | Dec 2008 | EP |
2 090 231 | Aug 2009 | EP |
2 090 244 | Aug 2009 | EP |
2 090 252 | Aug 2009 | EP |
2 198 787 | Jun 2010 | EP |
2 236 098 | Oct 2010 | EP |
2 236 099 | Oct 2010 | EP |
2 292 276 | Mar 2011 | EP |
2 311 386 | Apr 2011 | EP |
2 436 348 | Apr 2012 | EP |
2 462 880 | Jun 2012 | EP |
2 517 637 | Oct 2012 | EP |
2 586 380 | May 2013 | EP |
2 604 195 | Jun 2013 | EP |
2 604 197 | Jun 2013 | EP |
2 620 105 | Jul 2013 | EP |
2 620 106 | Jul 2013 | EP |
2 630 922 | Aug 2013 | EP |
2 644 125 | Oct 2013 | EP |
2 762 091 | Aug 2014 | EP |
2000-166933 | Jun 2000 | JP |
2002-202213 | Jul 2002 | JP |
2007-124166 | May 2007 | JP |
9005489 | May 1990 | WO |
9516221 | Jun 1995 | WO |
9622055 | Jul 1996 | WO |
9701989 | Jan 1997 | WO |
9713463 | Apr 1997 | WO |
9817180 | Apr 1998 | WO |
9945849 | Sep 1999 | WO |
03082126 | Oct 2003 | WO |
03088845 | Oct 2003 | WO |
03094743 | Nov 2003 | WO |
03105698 | Dec 2003 | WO |
2005079675 | Sep 2005 | WO |
2006023578 | Mar 2006 | WO |
2006044490 | Apr 2006 | WO |
2006083748 | Aug 2006 | WO |
2007121579 | Nov 2007 | WO |
2008057281 | May 2008 | WO |
2008109125 | Sep 2008 | WO |
2010075298 | Jul 2010 | WO |
2011143183 | Nov 2011 | WO |
2012044848 | Apr 2012 | WO |
Entry |
---|
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp). |
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp). |
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and mailed Jan. 11, 2007; (10 pp). |
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and mailed Mar. 23, 2007; (8 pp). |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and mailed May 15, 2008; (1 p). |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and mailed Jun. 26, 2008; (2 pp). |
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and mailed Jul. 23, 2008; (5 pp). |
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and mailed Mar. 24, 2010; (6 pp). |
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and mailed Jun. 28, 2010; (7 pp). |
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and mailed Jul. 20, 2010; (3 pp). |
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and mailed Oct. 12, 2010; (3 pp). |
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and mailed Feb. 15, 2011; (3 pp). |
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and mailed Apr. 4, 2011; (4 pp). |
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and mailed Mar. 1, 2012; (4 pp). |
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and mailed Apr. 24, 2012; (7 pp). |
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and mailed May 3, 2012; (10 pp). |
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and mailed Jul. 13, 2012; (8 pp). |
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and mailed Jul. 24, 2012; (9 pp). |
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and mailed Aug. 6, 2012; (8 pp). |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; (10 pp). |
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; (8 pp). |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013l; (7 pp). |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp). |
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp). |
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp). |
Number | Date | Country | |
---|---|---|---|
Parent | 11821330 | Jun 2007 | US |
Child | 12915519 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13946311 | Jul 2013 | US |
Child | 14812532 | US | |
Parent | 12915519 | Oct 2010 | US |
Child | 13946311 | US |