The present application relates to field of footwear, and particularly, to footwear having detachable cleats provided on the sole.
Many shoes or other articles of footwear include cleats designed to provide traction or a gripping function for the shoe when standing, walking, or running on soft ground. Examples of such shoes that may have cleats include hiking shoes or other athletic shoes, such as baseball shoes, soccer shoes, football shoes, or golf shoes. The term “cleat” as used herein is intended to refer to any member arranged on the underside of footwear (such as, for example, on the sole of the footwear) in order to provide traction or gripping ability for the wearer of the footwear, Examples of cleats include, without limitation, spikes, studs, blades and other protrusions provided on such shoes.
If the shoes are to be used on different ground conditions, it is advantageous if the cleats are releasably attached to the sole to allow the shoes to be adapted to the different ground conditions. For example, shorter cleats may be desired on a relatively dry field, and longer cleats may be desired on a relatively muddy field. In addition to being able to adapt the shoe to a particular ground condition, replaceable cleats on a shoe are also desirable such that old and worn cleats may be easily replaced without the need for a new shoe.
Releasable cleats are typically attached to the soles of shoes using threaded posts that engage a receptacle on the sole of the shoe having complimentary threads. The cleats are rotated by the user until they are tightened on the shoe. However, the ending orientation of the spike is difficult to determine, as the cleat is typically rotated until it is tight against the sole of the shoe, without regard for the ending orientation of the cleat. Although the ending orientation of the cleat is sometimes unimportant, such as the case with relatively round/conical studs, other cleats are directional in nature and their orientation may indeed be important. Examples of directional cleats include, without limitation, blades for baseball or soccer cleats and various other cleats that are not substantially round or conical.
Another issue with some cleats is that the traditional threaded post arrangement often results in cleat pressure that may be felt on the interior of the shoe when the cleat is tightened against the sole of the shoe. In particular, the wearer of the shoe may be able to feel the end of the center threaded post pushing against the sole of the foot when walking or running. Of course, this may be uncomfortable for the wearer.
Accordingly, it would be advantageous to provide a shoe with detachable cleats that may be oriented in any of several different directions when secured to the shoe. It would also be advantageous if a single shoe could be used for different types of cleats, such as a single shoe accommodating football studs, golf spikes, baseball spikes or soccer cleats. In addition, it would be advantageous if such cleats could reduce or eliminate cleat pressure.
A cleat arrangement is configured for use with an article of footwear. In at least one embodiment, the cleat arrangement comprises a receptacle, a cleat, and a retaining ring. The receptacle is provided in the sole of the footwear. The cleat includes a projecting member and a retaining surface. The retaining surface is configured to fit within the receptacle with the projecting member extending from the receptacle. The retaining ring fits over the cleat and engages the retaining surface of the cleat positioned within the receptacle with the projecting member of the cleat extending through the retaining ring. The retaining ring releasably engages the receptacle such that the retaining ring holds the cleat within the receptacle.
In at least one embodiment, the cleat arrangement includes a directional locking surface, a receptacle, a cleat, and a retaining member. The directional locking surface is provided within the receptacle on a cleat platform. The cleat includes a complimentary locking surface that engages the directional locking surface when the cleat is positioned within the receptacle. The cleat may be oriented in one of at least two different orientations when the directional locking surface engages the complimentary surface on the cleat. The retaining member engages both the cleat and the receptacle to hold the cleat within the receptacle.
In at least one embodiment, the cleat arrangement includes a sole member, a receptacle, a cleat, and a retaining member. The receptacle is provided on the sole member with a cleat platform of the sole member extending into the receptacle. The cleat platform includes a directional locking surface configured to engage the cleat. The cleat includes a complimentary locking surface on one side and a projecting member on the opposite side. The complimentary locking surface of the cleat is configured to engage the directional locking surface of the cleat platform when the cleat is positioned within the receptacle. The cleat may be oriented in one of at least two different orientations when the directional locking surface of the sole engages the complimentary surface on the cleat. The retaining member fits over the cleat with the projecting member of the cleat extending through the retaining member. The retaining member includes threads that engage complimentary threads on the receptacle. When the retaining member is rotated relative to the receptacle, the threads of the retaining member engage the complimentary threads of the receptacle to tighten the retaining member in the receptacle and hold the cleat within the receptacle.
The above described features and advantages, as well as others, will become more readily apparent to those of ordinary skill in the art by reference to the following detailed description and accompanying drawings.
With general reference to
The sole member 22 may be an inner sole or an outer sole of a shoe, such as an athletic shoe. If the sole member 22 is an inner sole, the outer sole of the shoe will include a hole configured to pass portions the cleat retaining portions of the inner sole. In particular, the hole in the outer sole provides for passage of the receptacle 24 and that portion of the inner sole that holds the receptacle to the exterior of the shoe. The sole member 22 may be made from any of numerous different materials known in the art for sole members. For example, if the sole member is an inner sole, the sole member may comprise a relatively rigid plastic material covered by a cushioning layer. If the sole member 22 is an outer sole, the sole member may be comprised of a relatively rigid plastic material or a rubber-like plastic material. It will be recognized that different materials may be used for the sole 22, depending upon the particular design and intended use of the shoe.
In the embodiment of
With continued reference to
The cylindrical portion 40 of the receptacle 24 is configured to fit within the cavity 30 of the sole member 22. In the embodiment of
The cleat 26 of the arrangement 20 includes a main body 50 with an upper flange 52 forming a shoulder 54 with the main body 50. As explained in further detail below, the flange 52 and shoulder 54 provide a retaining surface to assist in securing the cleat 26 in the receptacle 24. A projecting member 56, such as, for example, a spike, stud, blade or other projection, extends downward from the main body 50 of the cleat 26. In the embodiment of
With continued reference to
When the cleat 26 is positioned in the receptacle 24, the contoured surface 58 of the cleat 26 engages the contoured surface 34 of the sole member 22. In such engagement, the two surfaces 58, 34 are closely engaged with surface 58 complimentary to surface 34 such that surface 58 fits into surface 34 (or vice-versa). This complimentary arrangement locks the cleat 26 in a certain orientation relative to the sole member 22, and prevents the cleat 26 from rotating or spinning relative to the sole member 22. For example, the close engagement between the two contoured surfaces 58, 34 results in an arrangement where the cleat 26 can not rotate about a central axis 49 (see
In the embodiment of
With continued reference to
While the retaining member 28 has been described as having threads to engage the receptacle 24, other embodiments of the detachable cleat arrangement may involve different mechanisms to secure the retaining member 28 within the receptacle. For example, in one embodiment, the retaining member 28 may be snap-fit into the receptacle in order to lock the cleat 26 in the receptacle 24.
It will be appreciated that numerous other arrangements other than an eight-pointed star arrangement may be utilized as the complimentary contoured surfaces. For example,
In addition to the above, the disclosed embodiment discloses a cleat design that reduces or even eliminates cleat pressure experienced by the person wearing the cleat. As discussed previously, cleat pressure typically occurs through the center metal threaded post. The disclosed embodiment may reduce or even eliminate cleat pressure, as the forces that retain the cleat in the sole are provided on the outside area of the retaining ring, which provides a greater surface area for attachment of the cleat to the shoe, and also moves the fastening mechanism away from the inner sole of the shoe.
The members forming the cleat arrangement 20 described herein may advantageously be made from any of various different materials. Examples of such materials include plastic materials, metal materials, and components manufactured from a combination of different materials. For example, the members may be formed of steel, TPU, PBAX, or a combination of different materials formed from a multi-shot injection molding system. Accordingly, the cleat arrangement described herein is not limited to components manufactured from any particular materials.
Although the detachable cleat has been described with respect to certain preferred embodiments, it will be appreciated by those of skill in the art that other implementations and adaptations are possible. Moreover, there are advantages to individual advancements described herein that may be obtained without incorporating other aspects described above. Therefore, the spirit and scope of any eventual claims should not be limited to the description of the preferred embodiments contained herein.
This application claims the benefit of earlier filed U.S. Provisional Application No. 60/993,179, filed Sep. 10, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3566489 | Morley | Mar 1971 | A |
4633600 | Dassler et al. | Jan 1987 | A |
5289647 | Mercer | Mar 1994 | A |
5655317 | Grant | Aug 1997 | A |
5956871 | Korsen | Sep 1999 | A |
5957642 | Pratt | Sep 1999 | A |
5960568 | Bell et al. | Oct 1999 | A |
6021590 | Morimoto et al. | Feb 2000 | A |
6154984 | Adam | Dec 2000 | A |
6823613 | Kelly et al. | Nov 2004 | B2 |
7047675 | Briant et al. | May 2006 | B2 |
7076894 | Santos et al. | Jul 2006 | B2 |
7107708 | Kelly et al. | Sep 2006 | B2 |
7412784 | Bobbett | Aug 2008 | B1 |
20050217149 | Ho | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090077833 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60993179 | Sep 2007 | US |