This application claims priority to French Patent Application No. 0105130 filed Apr. 13, 2001.
The invention relates to a method of assembling two micro-electronic wafers and the resulting structure. It finds applications in the fabrication of thin layer substrates and in transferring layers or components onto supports of any kind.
Increasingly, components must be integrated onto supports different from those used to produce them.
Components on plastics material substrates or on flexible substrates may be cited, for example. By component is meant any micro-electronic, opto-electronic or sensor (for example chemical, mechanical, thermal, biological or biochemical sensor) device that is completely or partly “processed”, i.e. completely or partly produced.
A layer transfer method can be used to integrate the components onto flexible supports.
There are many other examples of applications in which layer transfer techniques can provide a suitable solution for integrating components or layers onto a support that is a priori different from that used for their production. In the same line of thinking, layer transfer techniques are also very useful when it is required to isolate a thin layer, with or without components, from its original substrate, for example by separating or eliminating the latter. Still in the same line of thinking, turning over a thin layer and transferring it onto another support provides engineers with valuable freedom to design structures that would otherwise be impossible. Sampling and turning over thin films can be used to produce buried structures, for example, such as buried capacitors for dynamic random access memory (DRAM) where, in contradistinction to the usual situation, the capacitors are formed first and then transferred onto another silicon substrate before fabricating the remainder of the circuits on the new substrate. Another example relates to the production of transistor structures referred to as double gate structures. The first gate of the CMOS transistor is produced on a substrate using a conventional technology and then turned over and transferred to a second substrate to produce the second gate and finish the transistor, thereby leaving the first gate buried in the structure (see, for example, K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie and T. Sugii, “High-Speed and Low-Power n+-p+ Double-Gate SOI CMOS”, IEICE Trans. Electron., vol. E78-C, 1995, pp. 360-367).
The requirement to isolate a thin layer from its original substrate is encountered in the field of light-emitting diodes (LED), for example, for instance as reported in the documents W. S Wong et al., Journal of Electronic MATERIALS, page 1409, Vol. 28, No 12, 1999 and I. Pollentier et al., page 1056, SPIE Vol. 1361 Physical Concepts of Materials for Novel Opto-electronic Device Applications I (1990). One of the objects here is to improve the control of extraction of the emitted light. Another object relates to the fact that in this particular example the sapphire substrate used to produce the epitaxial stack is a posteriori bulky, in particular because it is electrically insulative, which prevents making electrical contacts. To be able to remove afterwards the sapphire substrate, which was advantageous for the phase of growing the material, would thus appear to be desirable.
An identical situation is encountered in the field of applications to telecommunications and microwaves, for example. In this situation, it is preferable for the components to be finally integrated onto a support having a high resistivity, typically at least several kohms.cm. However, a highly resistive substrate is not necessarily available at the same cost and with the same quality as the standard substrates usually employed. In the case of silicon, 200 and 300 mm silicon wafers of standard resistivity are available, whereas for resistivities greater than 1 kohm.cm, there is very little on offer in the 200 mm size and nothing at all in the 300 mm size. One solution consists in producing the components on an original structure including a standard substrate (for example of p-type silicon having a resistivity from 14 to 22 ohm.cm) and then, during the final process steps, transferring a thin layer containing the components onto a glass, quartz, sapphire, etc. insulative substrate.
From a technical point of view, the major benefit of these transfer operations is to decorrelate the properties of the layer in which the components are formed and those of the final support, and they are consequently beneficial in many other situations.
There may also be cited situations in which the original substrate that is beneficial for the production of the components is excessively costly. In the case of silicon carbide, for example, offering improved performance (higher temperatures of use, significantly improved maximum powers and frequencies of use, etc.), but whose cost compared to silicon is very high, it would be beneficial to transfer a thin layer of the costly original substrate (in this instance silicon carbide) onto the inexpensive final substrate (here silicon), and to recover the remainder of the costly original substrate for re-use, possibly after a recycling operation. The transfer operation can be carried out before, during or after the production of the components.
The above techniques can also prove beneficial in all fields in which obtaining a thin final substrate is important for the final application. Power applications in particular may be cited, whether for reasons associated with the evacuation of heat or because in some cases the current must flow through the thickness of the substrates with losses that are to a first approximation proportional to the thickness through which the current passes. Smart card applications for which a thin substrate is required for reasons of flexibility may also be cited. For these applications, the circuits are produced on thick or standard thickness original substrates, which has the advantage, firstly, of good mechanical resistance to the various process steps, and, secondly, of conforming to standards with regard to their use on certain production equipment. The final thinning is then achieved by detachment. This detachment can be accompanied by transfer to another support. In some cases the transfer to another support is not indispensable, especially if the final thickness aimed at during thinning is sufficient to produce self-supporting structures.
Various techniques can be used to transfer layers from one support to another. In some cases, the assembly of the layer and the support can be temporary. This is the case, for example, when using for the thin layer transfer handle substrates whose function is to provide a guaranteed hold during the transfer or during various treatments to which the layer is subjected before the transfer. On this subject see the document by T. Hamagushi et al., IEDM 1985, p. 688-691. A problem then arises in choosing the means employed to assemble the layer and the substrate. The adhesion means must in particular be sufficiently strong to fulfill their role and in particular to resist the stresses imposed by the treatments applied to the portion to be transferred. Also, it must be possible to separate the assembly in order to free the layer to be transferred. There are additional stresses (thermal, mechanical, etc.) on the adhesion means when components (micro-electronic, opto-electronic, mechanical, piezoelectric, superconductor, or magnetic components) must be produced completely or in part before transferring the thin layer when that layer is fastened to the handle substrate. The adhesion means must therefore be both strong to provide the assembly between the thin layer and the handle substrate, even during the component fabrication processes, and at the same time reversible to enable the final detachment of the handle substrate.
More generally, the problem that arises is that of assembling a wafer with another wafer, which wafers can be substrates, thin layers, or sufficiently thick to be self-supporting, composite or otherwise, composed of at least one or more semiconductor materials, partly, completely processed or unprocessed, the assembly having to be separated thereafter at the assembly interface. Before detachment, it must have been possible to produce components completely or partly on at least one of the two wafers or to carry out a step of epitaxial growth.
Various solutions have been envisaged.
The first solution consists in eliminating the support wafer by abrasion, but in this case the wafer is consumed (destroyed during the process). This is also the case if an etch stop layer is provided between the two wafers: the support wafer is consumed by a combination of abrasion and etching.
Other methods, based on the “lift-off” principle, also separate a thin layer previously bonded to an original support, again without the latter necessarily being consumed. These methods generally use selective chemical etching of a buried intermediate layer, possibly associated with mechanical forces. This type of method is very widely used to transfer III-V elements to different types of support (see C. Camperi et al., IEEE Transactions on photonics technology, vol. 3, 12 (1991), 1123). As explained in the paper by P. Demeester et al., Semicond. Sci. Technol. 8 (1993), 1124-1135, the transfer, which generally takes place after an epitaxial growth step, can be carried out before or after the production of the components (by “post-processing” or “pre-processing”, respectively). However, these techniques based on lifting off depend on the fact that it is difficult to obtain lift-off on a lateral scale exceeding 1 mm.
Another situation consists in exploiting the presence of a buried oxide in the case of a silicon on insulator (SOI) structure, however standard the latter may otherwise be (i.e. produced without seeking any particular detachability effect). If the structure is bonded sufficiently strongly to another substrate and a high stress is applied to the structure, uncontrolled fracture, preferentially achieved in the oxide, can lead to a cutting effect on the scale of the entire substrate. The document “PHILIPS Journal of Research”, vol. 49, No 1/2, 1995, shows an example of this on pages 53 to 55. Unfortunately, the fracture is difficult to control and necessitates high mechanical stresses to bring it about, which is not free of the risk of breaking of the substrate or damaging the components.
The document EP0703609 A1 discloses transferring a layer onto a final substrate by controlling the bonding energies. However, in the above document, there is a first bonding energy between a thin layer and a first substrate. The bonding energy of the adherent constant between the layer and the second substrate, the target substrate, or the manipulator is then controlled so that it is greater than the first bonding energy, between the layer and the first substrate.
The techniques used to increase a bonding energy between two wafers are widely known. They are used in the situations cited previously, but also in other situations. There is the production of SOI structures, for example.
If SOI structures are to be obtained, the surface preparation operations are intended finally to provide, and often with the aid of annealing carried out after bonding, high bonding energies typically from 1 to 2 J/m2. Conventionally, in the case of SiO2/SiO2 bonding with standard preparation operations, the bonding energy of the structure is a few tens of mJ/M2 at room temperature and 500 mJ/m2 after annealing at 400° C. for 30 minutes, (bonding energy determined by the blade method developed by Maszara (see: Maszara et al., J. Appl. Phys., 64 (10), p. 4943, 1988)). When the structure is annealed at a high temperature (1 100° C.), the bonding energy is generally of the order of 2 J/m2 (C. Maleville et al., Semiconductor wafer bonding, Science Technology and Application IV, PV 97-36, 46, The Electrochemical Society Proceedings Series, Pennington, N.J. (1998)). Other forms of preparation prior to bonding exist, for example exposure of the surfaces to be bonded to a plasma (for example an oxygen plasma), and can yield equivalent bonding energies without always necessitating such annealing (Y A, Li and R. W. Bower, Jpn. J: Appl. Phys., vol. 37, p. 737, 1998). Sealing with energies of this magnitude is incompatible with detachment.
Some variants are known as bonded SOI (BSOI) and bond and etch back SOI (BESOI). In addition to molecular adhesion bonding, these variants are based on physical removal of the original substrate by polishing techniques and/or chemical etching techniques. In this case the substrate is consumed.
The inventors have shown that by modifying the hydrophilic properties and the roughness of the surfaces, different mechanical strengths can be obtained, greater than or less than the mechanical strengths conventionally obtained. For example, as indicated in the paper by O. Rayssac et al. (Proceedings of the 2nd International Conference on Materials for Micro-electronics, IOM Communications, p. 183, 1998), hydrofluoric acid etching increases the roughness of a silicon oxide layer. The paper states that an 8 000 Å rms etch increases the roughness by approximately 0.2 nm to 0.625 nm. It has been verified that SiO2/SiO2 bonding with an rms roughnesses of 0.625 nm and 0.625 nm for the facing surfaces yields a maximum bonding energy value of the order of 500 mJ/m2 after annealing at 1 100° C., i.e. much lower than in the standard situation.
The invention therefore consists in a technique of assembling by molecular adhesion bonding two wafers, the resulting structure being intended to be separated at the assembly interface. The detachment or lifting off of the structure is generally carried out after components or sensors have been completely or partly produced on the layer or after a step of epitaxial growth on one of the wafers.
The invention also consists in a structure comprising two wafers joined together by an interface or an intermediate layer having a level of mechanical strength that is easy to control, so that said structure is compatible with the complete or partial production of components (for example the deposition of an epitaxial stack), but also so that said structure can be separated. The literature generally refers to such structures as “detachable structures” or “detachable substrates”.
To this end the invention proposes to produce an interface by molecular adhesion bonding of one face of one wafer and one face of another wafer, with a prior treatment step applied to at least one of the faces to bonded to control the level of mechanical strength of the interface. The molecular adhesion bonding can be carried out with or without an intermediate layer (oxide, nitride).
In a situation corresponding rather to detachment at the levels of portions of the wafer (dies, components or sets and subsets of dies, etc.), the preparation of the wafer preferably includes a step whereby at least one fragment of said layer is delimited before the detachment step.
To control the mechanical strength of the interface, a step of preparing at least one of the two faces to be assembled is necessary in order to control the roughness and/or the hydrophilic properties thereof.
In terms of product, the invention proposes an assembly comprising two wafers joined together at a bonding interface whose mechanical strength is at a controlled level, in particular through controlling the surface roughness and/or the hydrophilic properties.
According to preferred features, possibly in combination:
Aspects, features and advantages of the invention will emerge from the following description, which is given by way of illustrated and non-limiting example and with reference to the appended drawings, in which:
The preferred examples selected for the detailed description primarily relate to silicon, which is generally available in the form of round substrates, for example of 200 mm diameter. These methods transfer readily to other systems characterized in particular by materials other than silicon, in a nonlimiting manner and without departing from the scope of the invention.
Some embodiments of the method according to the invention tend to encourage lifting of the layer off its substrate at the overall level, i.e. on the scale of the whole of the substrate, while others tend to lift off delimited fragments.
For producing a detachable SOI substrate, examples of SiO2/SiO2 and Si/SiO2 bonding are considered. In the case of layers of different kinds (Si3N4 is another conventional example, but there are also silicides), and by analogy with what is described hereinafter, it suffices to use appropriate chemical treatment (for example NH4OH/H2O2/H2O (also known as SC1) for Si and H3PO4 or HF for Si3N4).
A number of techniques can be employed to produce a structure like that shown in
With reference to specific aspects related to bonding for the production of detachable substrates, in the case of SiO2/SiO2 (or even Si/SiO2) bonding, the oxide layer can be prepared in several ways (deposition, thermal oxidation of the silicon) and can have a thickness that varies according to the application. For this example, a 1 μm thick thermal oxide is chosen. The following structure is therefore obtained: a silicon substrate covered with 1 μm of oxide.
This is followed by hydrofluoric acid etching to roughen the surface of the oxide, the roughening required increasing with the thickness of oxide removed. For each application, the roughness can be optimized, in particular as a function of the method of producing the components (or of epitaxial growth), which must be used after bonding with no delamination during the production of components and the method adopted for the final detachment. Typically, hydrofluoric acid etching to remove a thickness of oxide of the order of a few tens to a few hundred nanometers is a good starting compromise. The hydrofluoric acid etching increases the roughness of the oxide layer(s) (12) and/or (13). This can be combined with selective wet or dry cleaning to obtain hydrophilic properties specific to the oxide layer. The resulting effect is one of weaker bonding than the standard bonding.
Another option for controlling the bonding energy of the detachable interface is to use thermal annealing after the bonding operation. A temperature difference of around 100° in the annealing effected after bonding can, especially in the range of temperatures beyond 800° C., lead to significant variation of the bonding energy. This option can be used in combination with roughening of at least one intermediate layer (12) and/or (13), or on its own (i.e. without any roughening step at all). An option that is highly beneficial, but must not in any way be regarded as limiting on the invention, of implementation for bonding is not to anneal the whole of the structure shown in
Roughening and deposition of oxide have been cited in the situation in which they are carried out on the substrate (11). An alternative is to carry out these operations on the side of the thin layer (14), or even on both sides.
Apart from the production of the detachable substrate itself, using techniques based on molecular bonding, there are several means as to its use and to the means to implement it.
The benefit of the detachable substrate, depending on the thickness of the unprocessed active layer or of the processed active layer (i.e. its thickness when it has been processed to produce all or part of a component), is that it allows detachment of the active layer to obtain either a self-supporting layer (a relatively thick layer, whether the thickness is already present in the detachable substrate as manufactured or obtained during deposition steps subsequent to its fabrication, as is the case in an epitaxial growth step) or a surface layer, which is generally thinner, transferred onto a target support, whether the latter is the final support or merely a temporary support which is itself intended to be detached.
There are various ways to transfer the surface layer to the target substrate.
First of all, transfer can be effected by molecular adhesion bonding of what is to become the thin layer to be transferred to another substrate.
The benefit of detachable substrates is being able at will to “mount” and “demount” thin layers on substrates, allowing, by overturning the layer, total or partial production of components on both faces of the layer.
By way of illustration, a detachment method is described next in the context of producing a new SOI structure that is referred to herein as the second SOI structure. This kind of method, a priori less direct than the techniques previously mentioned, nevertheless has a number of benefits. The example chosen here relates to the production of a second SOI substrate with a buried oxide layer 500 Å thick, which thickness is difficult to obtain using this kind of method directly.
The first structure is obtained by one of the methods previously described, yielding a detachable substrate corresponding to
Another way to facilitate the onset of detachment is to eliminate at least part of an outer ring of the substrate. Wet or dry chemical etching techniques or other mechanical polishing, laser cutting, etc. techniques can be employed for this, localized to the ring (which yields the
Note that the 500 Å thick buried oxide layer 15 formed previously on the layer 14 could have been formed on the substrate 16 before bonding rather than on the layer 14. Another variant divides the 500 Å thickness into two portions, with one portion on the substrate 16, for example 250 Å thick, and the other portion on the layer 14, also 250 Å thick in this example.
Note that if the two molecular adhesion bonded interfaces are both of the oxide/oxide type, stabilization of the second bond at high temperature can be carried out in such a way as to guarantee that preferential hydrofluoric acid etching occurs at the first interface. In this method, the creation of a weak first interface achieves preferential detachment of the complete stack at the first bonding interface.
Another example of the use of the method according to the invention relates to the production of double-gate transistor structures (see
The same process can be used in many other applications. If the first SOI structure (see
Another example of detachment is briefly described here in the case of producing circuits on thin substrates (
The parameters for preparing the detachment interface have to be adapted to the technological operations that have to be carried out on the detachable substrate prior to detachment, in particular thermal and chemical treatments, and according to the nature of the mechanical stresses. For example, if the detachable substrate consists of a surface layer of germanium having an SiO2—SiO2 bonding interface that has to withstand an epitaxial growth temperature of 550° C. (which is typical in the case of growing GaInAs to constitute a solar cell for use in space), then the rms roughness must advantageously be 0.4 nm for the substrate to be detachable.
Another example of use concerns the production of circuits for smart cards, where the flexibility of the support becomes critical, firstly because of the increase in the size of the circuits, and secondly because the trend is to require cards with ever higher resistance to deformation. A monocrystalline silicon support whose thickness is greater than around 50 μm is too fragile in this context, because its thickness is too high if it is subjected to a bending force, as can happen regularly with a smart card.
Note that, for the production of dies, there can be provided (see
To lift off the detachable substrate (here at the bonding interface 12′/13′), it may appear difficult to produce purely chemical lift-off because adhesives and substrates transparent to UV (in practice made of quartz and glass) are not totally inert to the chemical products (hydrofluoric acid, solvents, etc.). On the other hand, a purely mechanical action may be sufficient to lift off the structure at the interface 12′/13′ if the bonding energy at the detachment interface is made lower than the strength of the adhesive and the various layers constituting the integrated circuits (this can be achieved relatively easily). It is then possible to use the substrate 11′ several times. To facilitate detachment, it may be advantageous to eliminate an outer ring of the substrate. Apart from limited chemical etching of the outer ring of the substrate, it is further possible to eliminate the ring by making a circular cut in the structure after adhesive bonding. The cutting can advantageously be effected by a laser (see
As a general rule, the residue of the first substrate is obtained, the support of the substrate referred to until now as “detachable” (
Unlike the preceding examples, the second substrate 16′ can instead be merely an intermediate substrate in a much longer process. The structure shown in
The use of adhesive films known to the person skilled in the art can be envisaged for the adhesive bonding, in particular for the operations of cutting silicon wafers and encapsulating integrated circuits or packaging or back-ending (“Blu Tak”, Teflon® adhesive film, etc.). If the adhesive film is double-sided, it may be as well to stick an intermediate substrate to the rear face of the film, to act as a substrate or support for stiffening the assembly at cutting time.
The lift-off techniques that can be envisaged include the application of traction and/or shear and/or bending forces. It may be as well to combine the application of force with chemical etching of the interface, or other means, such as ultrasound. If the interface to be lifted off is of the oxide type, etching the low energy interface is facilitated at the bonding interface and this encourages the transfer of the processed layer to the intermediate substrate. Under these conditions, it is advantageous for the processed layers to be protected (for example by an additional deposit of nitride in the case of hydrofluoric acid etching).
The means for applying stresses can be mechanical (in particular by inserting a blade at the bonding interface), and/or use a lift-off tool (see WO 00/26000), and/or a jet, or involve inserting a gas flow, as described in the document FR 2796491, and/or a liquid (see EP 0925888, EP 0989593). In the case of a gas flow (or even a liquid flow, for example a flow of hydrofluoric acid if the interface is of oxide), the detachable substrate can advantageously be prepared beforehand (for example by chemical etching) to feed the fluid locally to the bonding interface. This facilitates preferential lifting off at the multilayer structure bonding interface, where the lifting off must take place, by protecting the various layers of the structure incorporating the components. Thus it is possible to lift off the bonding interface even when the adhesion between the internal component layers is weak.
The intermediate substrate, which is sometimes referred to as a “handle”, can then be cut, totally or in part (to form notches or cutting precursors), into elements corresponding to the electronic components, which can be transferred to different supports. The transfer can be collective, in which case all of the components, even if they are interconnected only by a support, are transferred at the same time in the same technological operation, or component by component (or die by die), if the latter are transferred one after the other. The supports can be of plastics material, as in the case of a smart card, and in this case an adhesive is advantageously used for the transfer. The elements can also be transferred onto a wafer incorporating other electronic or opto-electronic devices, in which case the transfer can again use a molecular adhesion technique (see
Then, by applying stress or localized heating (for example using a laser), the thin layer, previously bonded to its final support, can be separated (element by element, or globally) from its handle by means of mechanical forces.
As opposed to embodiments of the method according to the invention that tend to encourage detachment of the layer from its substrate at the global level, i.e. on the scale of the whole of the substrate, others tend to delimit fragments, the shape of which is clearly related to the dies or components to be produced from the active layer. One interesting variant consists in using conventional component cutting techniques (sawing, laser cutting, etc.) to cut or delimit trenches, at least partially around dies, fragments, etc. Another beneficial variant is based on the use of chemical etching associated with a photolithography operation to produce identical trenches and/or to remove the connecting region at the contour of the dies. For example, after preparing molecular adhesion bonding over a large area, only layers 3 and 4 are cut (
Of course, the embodiments previously described are not limited to the single case of monocrystalline silicon, and can be extended to many materials, such as other semiconductor materials (Ge, SiGe, SiC, GaN and other equivalent nitrides, AsGa, InP, etc.), ferro-electric and piezo-electric materials (LiNbO3, LiTaO3), and magnetic materials, whether components are produced before detachment or not.
As already mentioned, for the situation of a detachable substrate consisting of a surface layer of germanium having an SiO2—SiO2 bonding interface that has to be subjected to an epitaxial growth temperature of 550° C. (as is typical in the case of growing GaInAs to constitute a solar cell for use in space), then the rms roughness should advantageously be 0.4 nm for the substrate to be detachable.
Another example (
Note that, according to the invention, an alternative to roughening or modifying the hydrophilic properties is to use low temperatures for annealing the bonding interface, instead of the traditional temperatures of 1 100 to 1 200° C. in the case of bonding where the surfaces are not necessarily roughened. The annealing temperatures are advantageously optimized to obtain a bonding energy sufficient for the components but sufficiently low to allow detachment at the required time.
In accordance with one aspect of the invention that is original in its own right, there is, after production of the interface, and an optional technological production step (production of homogeneous or non-homogeneous structures, complete or partial production of components, epitaxial growth, etc.) lifting off with chemical etching and/or application of mechanical forces, for example by jets of air or other fluids, localized to the bonding interface of the detachable substrate.
The inventors have thus demonstrated that roughening or modification of the hydrophilic properties of the surfaces can produce detachable bonding interfaces, even after annealing at high temperatures, up to 1 100° C. By judiciously combining the roughening preparation before bonding with suitable thermal annealing treatments, it has been shown that detachable SOI substrates can withstand, without untimely detachment at the assembly interface, most of the steps of a process for the production of CMOS transistors (including in particular heat treatment steps at high temperatures, typically 1 100° C., as well as steps of depositing constrained layers, for example of nitride), and could a posteriori be separated at the bonding interface by the intentional application of controlled mechanical stresses. This has also been demonstrated for other applications, relating, for example, to the execution of an epitaxial deposition step before separating the substrate.
Number | Date | Country | Kind |
---|---|---|---|
01 05130 | Apr 2001 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR02/01268 | 4/11/2002 | WO | 00 | 6/10/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/084722 | 10/24/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3901423 | Hillberry et al. | Aug 1975 | A |
3915757 | Engel | Oct 1975 | A |
3957107 | Altoz et al. | May 1976 | A |
3993909 | Drews et al. | Nov 1976 | A |
4006340 | Gorinas | Feb 1977 | A |
4028149 | Deines et al. | Jun 1977 | A |
4039416 | White | Aug 1977 | A |
4074139 | Pankove | Feb 1978 | A |
4107350 | Berg et al. | Aug 1978 | A |
4108751 | King | Aug 1978 | A |
4121334 | Wallis | Oct 1978 | A |
4170662 | Weiss et al. | Oct 1979 | A |
4179324 | Kirkpatrick | Dec 1979 | A |
4244348 | Wilkes | Jan 1981 | A |
4252837 | Auton | Feb 1981 | A |
4254590 | Eisele et al. | Mar 1981 | A |
4274004 | Kanai | Jun 1981 | A |
4342631 | White et al. | Aug 1982 | A |
4346123 | Kaufmann | Aug 1982 | A |
4361600 | Brown | Nov 1982 | A |
4368083 | Bruel et al. | Jan 1983 | A |
4412868 | Brown et al. | Nov 1983 | A |
4452644 | Bruel et al. | Jun 1984 | A |
4468309 | White | Aug 1984 | A |
4471003 | Cann | Sep 1984 | A |
4486247 | Ecer et al. | Dec 1984 | A |
4490190 | Speri | Dec 1984 | A |
4500563 | Ellenberger et al. | Feb 1985 | A |
4508056 | Bruel et al. | Apr 1985 | A |
4536657 | Bruel | Aug 1985 | A |
4539050 | Kramler et al. | Sep 1985 | A |
4542863 | Larson | Sep 1985 | A |
4566403 | Fournier | Jan 1986 | A |
4567505 | Pease | Jan 1986 | A |
4568563 | Jackson et al. | Feb 1986 | A |
4585945 | Bruel et al. | Apr 1986 | A |
4630093 | Yamaguchi et al. | Dec 1986 | A |
4684535 | Heinecke et al. | Aug 1987 | A |
4704302 | Bruel et al. | Nov 1987 | A |
4717683 | Parrillo et al. | Jan 1988 | A |
4764394 | Conrad | Aug 1988 | A |
4837172 | Mizuno et al. | Jun 1989 | A |
4846928 | Dolins et al. | Jul 1989 | A |
4847792 | Barna et al. | Jul 1989 | A |
4853250 | Boulos et al. | Aug 1989 | A |
4887005 | Rough et al. | Dec 1989 | A |
4894709 | Phillips et al. | Jan 1990 | A |
4904610 | Shyr | Feb 1990 | A |
4920396 | Shinohara et al. | Apr 1990 | A |
4929566 | Beitman | May 1990 | A |
4931405 | Kamijo et al. | Jun 1990 | A |
4948458 | Ogle | Aug 1990 | A |
4952273 | Popov | Aug 1990 | A |
4956698 | Wang | Sep 1990 | A |
4960073 | Suzuki et al. | Oct 1990 | A |
4975126 | Margail et al. | Dec 1990 | A |
4982090 | Wittmaack | Jan 1991 | A |
4996077 | Moslehi et al. | Feb 1991 | A |
5013681 | Godbey et al. | May 1991 | A |
5015353 | Hubler et al. | May 1991 | A |
5034343 | Rouse et al. | Jul 1991 | A |
5036023 | Dautremont-Smith et al. | Jul 1991 | A |
5110748 | Sarma | May 1992 | A |
5120666 | Gotou | Jun 1992 | A |
5138422 | Fujii et al. | Aug 1992 | A |
5198371 | Li | Mar 1993 | A |
5200805 | Parsons et al. | Apr 1993 | A |
5232870 | Ito et al. | Aug 1993 | A |
5234535 | Beyer et al. | Aug 1993 | A |
5242863 | Xiang-Zheng et al. | Sep 1993 | A |
5250446 | Osawa et al. | Oct 1993 | A |
5256581 | Foerstner et al. | Oct 1993 | A |
5259247 | Bantien | Nov 1993 | A |
5300788 | Fan et al. | Apr 1994 | A |
5310446 | Konishi et al. | May 1994 | A |
5400458 | Rambosek | Mar 1995 | A |
5405802 | Yamagata et al. | Apr 1995 | A |
5413951 | Ohori et al. | May 1995 | A |
5494835 | Bruel | Feb 1996 | A |
5524339 | Gorowitz et al. | Jun 1996 | A |
5559043 | Bruel | Sep 1996 | A |
5567654 | Beilstein, Jr. et al. | Oct 1996 | A |
5611316 | Oshima et al. | Mar 1997 | A |
5618739 | Takahashi et al. | Apr 1997 | A |
5622896 | Knotter et al. | Apr 1997 | A |
5633174 | Li | May 1997 | A |
5661333 | Bruel et al. | Aug 1997 | A |
5714395 | Bruel | Feb 1998 | A |
5804086 | Bruel | Sep 1998 | A |
5811348 | Matsushita et al. | Sep 1998 | A |
5817368 | Hashimoto | Oct 1998 | A |
5854123 | Sato et al. | Dec 1998 | A |
5863830 | Bruel et al. | Jan 1999 | A |
5863832 | Doyle et al. | Jan 1999 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5882987 | Srikrishnan | Mar 1999 | A |
5897331 | Sopori | Apr 1999 | A |
5909627 | Egloff | Jun 1999 | A |
5920764 | Hanson et al. | Jul 1999 | A |
5953622 | Lee et al. | Sep 1999 | A |
5966620 | Sakaguchi et al. | Oct 1999 | A |
5981400 | Lo | Nov 1999 | A |
5985412 | Gosele | Nov 1999 | A |
5993677 | Biasse et al. | Nov 1999 | A |
5994207 | Henley et al. | Nov 1999 | A |
6010591 | Gösele | Jan 2000 | A |
6013563 | Henley et al. | Jan 2000 | A |
6013954 | Hamajima | Jan 2000 | A |
6020252 | Aspar et al. | Feb 2000 | A |
6033974 | Henley et al. | Mar 2000 | A |
6048411 | Henley et al. | Apr 2000 | A |
6054363 | Sakaguchi et al. | Apr 2000 | A |
6054370 | Doyle | Apr 2000 | A |
6057212 | Chan et al. | May 2000 | A |
6071795 | Cheung et al. | Jun 2000 | A |
6096433 | Kikuchi et al. | Aug 2000 | A |
6103597 | Aspar et al. | Aug 2000 | A |
6103599 | Henley et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6127199 | Inoue | Oct 2000 | A |
6146979 | Henley et al. | Nov 2000 | A |
6150239 | Goesele et al. | Nov 2000 | A |
6159323 | Joly | Dec 2000 | A |
6190998 | Bruel et al. | Feb 2001 | B1 |
6198159 | Hosoma et al. | Mar 2001 | B1 |
6200878 | Yamagata et al. | Mar 2001 | B1 |
6204079 | Aspar et al. | Mar 2001 | B1 |
6316333 | Bruel et al. | Nov 2001 | B1 |
6362082 | Doyle et al. | Mar 2002 | B1 |
6417075 | Haberger et al. | Jul 2002 | B1 |
6429104 | Auberton-Herve | Aug 2002 | B1 |
6513564 | Bryan et al. | Feb 2003 | B2 |
6534380 | Yamauchi et al. | Mar 2003 | B1 |
6645831 | Shaheen et al. | Nov 2003 | B1 |
6645833 | Brendel | Nov 2003 | B2 |
6653207 | Ohya et al. | Nov 2003 | B2 |
6727549 | Doyle | Apr 2004 | B1 |
6756285 | Moriceau et al. | Jun 2004 | B1 |
6756286 | Moriceau et al. | Jun 2004 | B1 |
6764936 | Daneman et al. | Jul 2004 | B2 |
20040209441 | Maleville et al. | Oct 2004 | A1 |
20040222500 | Aspar et al. | Nov 2004 | A1 |
20050029224 | Aspar et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0 355 913 | Feb 1990 | EP |
0 410 679 | Jan 1991 | EP |
0 504 714 | Sep 1992 | EP |
0 533 551 | Mar 1993 | EP |
0 293 049 | Sep 1993 | EP |
0 660 140 | Jun 1995 | EP |
0 665 588 | Aug 1995 | EP |
0 703 609 | Mar 1996 | EP |
0 754 953 | Jan 1997 | EP |
0 793 263 | Sep 1997 | EP |
0 801 419 | Oct 1997 | EP |
0 807 970 | Nov 1997 | EP |
0849788 | Jun 1998 | EP |
0 889 509 | Jan 1999 | EP |
0 898 307 | Feb 1999 | EP |
0 917 193 | May 1999 | EP |
0 938 129 | Aug 1999 | EP |
0 902 843 | Mar 2000 | EP |
0 989 593 | Mar 2000 | EP |
0 994 503 | Apr 2000 | EP |
1 050 901 | Nov 2000 | EP |
1 059 663 | Dec 2000 | EP |
2 671 472 | Jul 1992 | FR |
2 681 472 | Mar 1993 | FR |
2 558 263 | Jul 1995 | FR |
2 725 074 | Mar 1996 | FR |
95 08882 | Jun 1996 | FR |
2 736 934 | Jan 1997 | FR |
2 767 604 | Aug 1997 | FR |
2 748 850 | Nov 1997 | FR |
2 748 851 | Nov 1997 | FR |
2 771 852 | Dec 1997 | FR |
2 758 907 | Jul 1998 | FR |
2 767 416 | Feb 1999 | FR |
2 773 261 | Jul 1999 | FR |
2 774 510 | Aug 1999 | FR |
2 781 925 | Feb 2000 | FR |
2 796 491 | Jan 2001 | FR |
2 797 347 | Feb 2001 | FR |
2 211 991 | Jul 1989 | GB |
53-104156 | Sep 1978 | JP |
58 31519 | Feb 1983 | JP |
59-54217 | Mar 1984 | JP |
62265717 | Nov 1987 | JP |
101004013 | Jan 1989 | JP |
08017777 | Jan 1990 | JP |
04199504 | Jul 1992 | JP |
4199504 | Jul 1992 | JP |
07-254690 | Oct 1995 | JP |
7-302889 | Nov 1995 | JP |
8133878 | May 1996 | JP |
09-213594 | Aug 1997 | JP |
09-307719 | Nov 1997 | JP |
10163166 | Jun 1998 | JP |
10233352 | Sep 1998 | JP |
11045862 | Feb 1999 | JP |
11074208 | Mar 1999 | JP |
11087668 | Mar 1999 | JP |
11-145436 | May 1999 | JP |
11317577 | Nov 1999 | JP |
128757 | Jun 2000 | RU |
WO 9520824 | Aug 1995 | WO |
WO 9908316 | Feb 1999 | WO |
WO 9935674 | Jul 1999 | WO |
WO 9939378 | Aug 1999 | WO |
WO 0048238 | Aug 2000 | WO |
WO 0063965 | Oct 2000 | WO |
WO 0111930 | Feb 2001 | WO |
WO 0143168 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040222500 A1 | Nov 2004 | US |