The present disclosure relates generally to systems and methods for processing eye imagery and more particularly for estimating a detailed eye shape model, comprising the pupil, iris, or eyelid using cascaded shape regression.
The human iris of an eye can be used as a source of biometric information. Biometric information can provide authentication or identification of an individual. Biometric information can additionally or alternatively be used to determine a gaze direction for the eye.
Systems and methods for robust biometric applications using a detailed eye shape model are described. In one aspect, after receiving an eye image of an eye (e.g., from an eye-tracking camera on an augmented reality display device), an eye shape (e.g., a shape of an upper or lower eyelid, an iris, or a pupil) of the eye in the eye image is calculated using cascaded shape regression methods. Eye features related to the estimated eye shape can then be determined and used in biometric applications, such as gaze estimation or biometric identification or authentication (e.g., iris codes). The cascaded shape regression method can be trained on a set of annotated eye images that label, for example, the shape of the eyelids, pupil, and iris.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Neither this summary nor the following detailed description purports to define or limit the scope of the inventive subject matter.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Overview
Extracting biometric information from the eye generally includes a procedure for the segmentation of the iris within an eye image. Iris segmentation can involve operations including locating the iris boundaries, including finding the pupillary and limbic boundaries of the iris, localizing upper or lower eyelids if they occlude the iris, detecting and excluding occlusions of eyelashes, shadows, or reflections, and so forth. For example, the eye image can be included in an image of the face or may be an image of the periocular region. To perform iris segmentation, both the boundary of the pupil (the interior boundary of the iris) and the limbus (the exterior boundary of the iris) can be identified as separate segments of image data. In addition to this segmentation of the iris, the portion of the iris that is occluded by the eyelids (upper or lower) can be estimated. This estimation is performed because, during normal human activity, the entire iris of a person is rarely visible. In other words, the entire iris is not generally free from occlusions of the eyelids (e.g., during blinking).
Eyelids may be used by the eye to keep the eye moist, for example, by spreading tears and other secretions across the eye surface. Eyelids may also be used to protect the eye from foreign debris. As an example, the blink reflex protects the eye from acute trauma. As another example, even when the eye is actively viewing the world, the eyelids may protect the eye, for example, by moving automatically in response to changes in the pointing direction of the eye. Such movement by the eyelids can maximize protection of the eye surface while avoiding occlusion of the pupil. However, this movement presents further challenges when extracting biometric information with iris-based biometric measurements such as iris segmentation. For example, to use iris segmentation, the areas of the iris that are occluded by the eyelids may be estimated and masked from identity verification computations or images taken during eyelid blink may be discarded or given lower weight during analysis.
Extracting biometric information has presented challenges, such as estimating the portion of the iris occluded by eyelids. However, using the techniques described herein, the challenges presented in extracting biometric information can be mitigated by first estimating the eye shape. As used herein, the eye shape includes one or more of a shape (e.g., a boundary) of the pupil, iris, upper eyelid, or lower eyelid. This estimation of eye shape can be used as a starting point for iris segmentation. Once the eye shape is estimated, biometric applications may be performed more efficiently and more robustly. For instance, corneal reflections (e.g., glints) found in certain regions of the eye (e.g., the iris) may be used for gaze estimation. Glints in other regions of the eye (e.g., the sclera) are often not used in eye gaze estimation. By calculating a detailed eye shape model using the techniques described herein, glints in the desired regions (e.g., iris) can be located more quickly and efficiently by removing the need to search the entire eye (e.g., iris and sclera), thus producing a more efficient and robust gaze estimation.
To obtain biometric information, algorithms exist for tracking eye movements of a user of a computer. For example, a camera coupled to a monitor of the computer can provide images for identifying eye movements. However, the cameras used for eye tracking are some distance from the eyes of the user. For example, the camera may be placed at the top of a user's monitor coupled to the computer. As a result, the images of the eyes produced by the camera are, often, produced with poor resolution and at differing angles. Accordingly, extracting biometric information from a captured eye image may present challenges.
In the context of a wearable head mounted display (HMD), cameras may be closer to the user's eyes than a camera coupled to a user's monitor. For example, cameras may be mounted on the wearable HMD, which itself is placed on a user's head. The proximity of the eyes to such a camera can result in higher resolution eye imagery. Accordingly, it is possible for computer vision techniques to extract visual features from the user's eyes, particularly at the iris (e.g., an iris feature) or in the sclera surrounding the iris (e.g., a scleral feature). For example, when viewed by a camera near the eye, the iris of an eye will show detailed structures. Such iris features are particularly pronounced when observed under infrared (IR) illumination and can be used for biometric applications, such as gaze estimation or biometric identification. These iris features are unique from user to user and, in the manner of a fingerprint, can be used to identify the user uniquely. Eye features can include blood vessels in the sclera of the eye (outside the iris), which may also appear particularly pronounced when viewed under red or infrared light. Eye features may further include glints and the center of the pupil.
With the techniques disclosed herein, detailed eye shape estimation is used to produce a more robust method of detecting eye features used in biometric applications (e.g., gaze estimation and biometric identification). The use of gaze estimation has significant implications on the future of computer interfaces. Gaze estimation is currently employed in active interfaces (e.g., an interface that receives instructions through eye movements) and passive interfaces (e.g., a virtual reality device that modifies the display based on gaze position). Detecting eye features using conventional eye shape estimation techniques is challenging because of image noise, ambient light, and large variations in appearance when the eye is half-closed or blinking. Therefore, a method of producing a more robust algorithm for determining eye features used in biometric applications, such as gaze estimation or biometric identification, would be advantageous. The following disclosure describes such a method.
The present disclosure will describe a detailed eye shape model calculated using cascaded shape regression techniques, as well as ways that the detailed eye shape model may be used for robust biometric applications. Recently, shape regression has become the state-of-the-art approach for accurate and efficient shape alignment. It has been successfully used in face, hand and ear shape estimation. Regression techniques are advantageous because, for example, they are capable of capturing large variances in appearance; they enforce shape constraint between landmarks (e.g., iris between eyelids, pupil inside iris); and they are computationally efficient.
As used herein, video is used in its ordinary sense and includes, but is not limited to, a recording of a sequence of visual images. Each image in a video is sometimes referred to as an image frame or simply a frame. A video can include a plurality of sequential frames or non-sequential frames, either with or without an audio channel. A video can include a plurality of frames, which are ordered in time or which are not ordered in time. Accordingly, an image in a video can be referred to as an eye image frame or eye image.
Example of an Eye Image
The eye 100 can include eye features 115 in the iris or the sclera (or both) that can be used for biometric applications, such as eye tracking.
Each eye feature 115 can be associated with a descriptor that is a numerical representation of an area surrounding the eye feature 115. A descriptor can also be referred to as an iris feature representation. As yet another example, such eye features may be derived from scale-invariant feature transforms (SIFT), speeded up robust features (SURF), features from accelerated segment test (FAST), oriented FAST and rotated BRIEF (ORB), KAZE, Accelerated KAZE (AKAZE), etc. Accordingly, eye features 115 may be derived from algorithms and techniques from the field of computer vision known. Such eye features 115 can be referred to as keypoints. In some of the example embodiments described below, the eye features will be described in terms of iris features. This is not a limitation and any type of eye feature (e.g., a scleral feature) can be used, additionally or alternatively, in other implementations.
As the eye 100 moves to look toward different objects, the eye gaze (sometimes also referred to herein as eye pose) will change relative to the natural resting direction 180. The current eye gaze can be measured with reference the natural resting eye gaze direction 180. The current gaze of the eye 100 may be expressed as three angular parameters indicating the current eye pose direction relative to the natural resting direction 180 of the eye. For purposes of illustration, and with reference to an example coordinate system shown in
An eye image can be obtained from a video using any appropriate process, for example, using a video processing algorithm that can extract an image from one or more sequential frames. The pose of the eye can be determined from the eye image using a variety of eye-tracking techniques. For example, an eye pose can be determined by considering the lensing effects of the cornea on light sources that are provided or by calculating a shape of the pupil or iris (relative to a circular shape representing a forward-looking eye).
Example of a Wearable Display System Using Eye Shape Estimation
In some embodiments, display systems can be wearable, which may advantageously provide a more immersive virtual reality (VR), augmented reality (AR), or mixed reality (MR) experience, where digitally reproduced images or portions thereof are presented to a wearer in a manner wherein they seem to be, or may be perceived as, real.
Without being limited by theory, it is believed that the human eye typically can interpret a finite number of depth planes to provide depth perception. Consequently, a highly believable simulation of perceived depth may be achieved by providing, to the eye, different presentations of an image corresponding to each of these limited number of depth planes. For example, displays containing a stack of waveguides may be configured to be worn positioned in front of the eyes of a user, or viewer. The stack of waveguides may be utilized to provide three-dimensional perception to the eye/brain by using a plurality of waveguides to direct light from an image injection device (e.g., discrete displays or output ends of a multiplexed display which pipe image information via one or more optical fibers) to the viewer's eye at particular angles (and amounts of divergence) corresponding to the depth plane associated with a particular waveguide.
In some embodiments, two stacks of waveguides, one for each eye of a viewer, may be utilized to provide different images to each eye. As one example, an augmented reality scene may be such that a wearer of an AR technology sees a real-world park-like setting featuring people, trees, buildings in the background, and a concrete platform. In addition to these items, the wearer of the AR technology may also perceive that he “sees” a robot statue standing upon the real-world platform, and a cartoon-like avatar character flying by which seems to be a personification of a bumble bee, even though the robot statue and the bumble bee do not exist in the real world. The stack(s) of waveguides may be used to generate a light field corresponding to an input image and in some implementations, the wearable display comprises a wearable light field display. Examples of wearable display device and waveguide stacks for providing light field images are described in U.S. Patent Publication No. 2015/0016777, which is hereby incorporated by reference herein in its entirety for all it contains.
As shown in
Referring again to
In some embodiments, the remote processing module 228 may comprise one or more processors configured to analyze and process data and/or image information such as video information captured by an image capture device. The video data may be stored locally in the local processing and data module 224 and/or in the remote data repository 232. In some embodiments, the remote data repository 232 may comprise a digital data storage facility, which may be available through the internet or other networking configuration in a “cloud” resource configuration. In some embodiments, all data is stored and all computations are performed in the local processing and data module 224, allowing fully autonomous use from a remote module. In some implementations, the local processing and data module 224 and/or the remote processing module 228 are programmed to perform embodiments of estimating a detailed eye shape model as described herein. For example, the local processing and data module 224 or the remote processing module 228 can be programmed to perform embodiments of routine 300 described with reference to
An image capture device can capture video for a particular application (e.g., video of the wearer's eye for an eye-tracking application or video of a wearer's hand or finger for a gesture identification application). The video can be analyzed using the eye shape estimation techniques by one or both of the processing modules 224, 228. With this analysis, processing modules 224, 228 can perform eye shape estimation for robust biometric applications. As an example, the local processing and data module 224 and/or the remote processing module 228 can be programmed to store obtained eye images from the eye tracking cameras 252a, 252b attached to the frame 212. In addition, the local processing and data module 224 and/or the remote processing module 228 can be programmed to process the eye images using the eye shape estimation techniques described herein (e.g., the routine 300) to extract biometric information of the wearer 204 of the wearable display system 200. In some cases, off-loading at least some of the biometric information to a remote processing module (e.g., in the “cloud”) may improve efficiency or speed of the computations. Various parameters for eye gaze identification (e.g., weights, bias terms, random subset sampling factors, number, and size of filters (e.g., Sobel derivative operator), etc.) can be stored in data modules 224 or 228.
The results of the video analysis (e.g., detailed eye shape model) can be used by one or both of the processing modules 224, 228 for additional operations or processing. For example, in various applications, biometric identification, eye-tracking, recognition, or classification of objects, poses, etc. may be used by the wearable display system 200. For example, video of the wearer's eye(s) can be used for eye shape estimation, which, in turn, can be used by the processing modules 224, 228 to determine the direction of the gaze of the wearer 204 through the display 208. The processing modules 224, 228 of the wearable display system 200 can be programmed with one or more embodiments of eye shape estimation to perform any of the video or image processing applications described herein.
Example Eye Shape Estimation Routine
At block 312, a detailed eye shape model 400b may be estimated from the eye image 324. In some embodiments, the detailed eye shape model 400b may be estimated using cascaded shape regression as further described below. At block 316, eye features 115 are determined based at least in part on the detailed eye shape model 400b estimated in block 312. In some embodiments, eye features 115 (some of which are shown in image 332) include pupillary or limbic boundaries, eyelid boundaries, glints, eye keypoints, or a center of the pupil 114. Eye features 115 may further include any feature that can be used in a biometric application. The detailed eye shape model 400b estimated in block 312 may serve as prior knowledge to improve the robustness of the feature detection at block 316. At block 320, a biometric application (e.g., gaze estimation or biometric identification/authentication) is performed based at least in part on the biometric information obtained at blocks 312 and 316. In some embodiments, at block 320a, gaze direction may be estimated based at least in part on the eye features 115 determined at block 316. Additionally or alternatively, in some embodiments, at block 320b, biometric identification/authentication may be performed based at least in part on the eye features determined at block 316. Biometric identification or authentication may comprise determining an iris code based at least in part on the eye image and the determined pupillary and limbic boundaries (e.g., the iris code based on the Daugman algorithm).
Example Eye Shape Estimation
Given an input image I, with an initial eye shape S0, cascaded shape regression progressively refines a shape S by estimating a shape increment ΔS stage-by-stage. The initial shape S0 may represent a best guess to the eye shape (e.g., pupillary, limbic, and eyelid boundaries) or a default shape (e.g., circular pupillary and iris boundaries centered at the center of the eye image I). In a generic form, a shape increment ΔSt at stage t is regressed as:
ΔSt=ƒt(Φt(I,St-1)) Eq. (1)
where ƒt is a regression function at stage t and Φt is a shape-indexed extraction function. Note that Φt can depend on both the input image I and shape in the previous stage St-1. The shape-indexed extraction function Φt can handle larger shape variations compared to a “non-shape-indexed” feature. A pairwise pixel comparison feature may be used, which may be invariant to global illumination changes. The regression goes to the next stage t+1 by adding the shape increment ΔSt to the shape in the previous stage St-1 to yield St=St-1+ΔSt.
Some examples of cascaded shape regression models that can be used to estimate an eye shape can include: Explicit Shape Regression (ESR), Cascaded Pose Regression (CPR), Ensemble of Regression Trees (ERT), Supervised Descent Method (SDM), Local Binary Features (LBF), Probabilistic Random Forests (PRF), Cascade Gaussian Process Regression Trees (cGPRT), Coarse-to-Fine Shape Searching (CFSS), Random Cascaded Regression Copse (R-CR-C), Cascaded Collaborative Regression method (CCR), Spatio-Temporal Cascade Shape Regression (STCSR), or other cascaded shape regression methods.
In some embodiments, the detailed eye shape model 400b may comprise a plurality of boundary points 424 for the pupillary, limbic, or eyelid boundaries. The boundary points 424 may correspond to the estimated eyelid shape 412, the estimated iris shape 416, and the estimated pupil shape 420, respectively. The number of boundary points 424 can be in a range of 6-100 or more. In some implementations, the detailed eye shape model 400b can be used to determine whether a received eye image meets certain standards, e.g., quality of the image.
Example of Training Images for Learning Cascaded Shape Regression
In some embodiments, the regression function ƒt and the shape-indexed extraction function Φt may be learned from sets of annotated (e.g., labeled) training data.
The training data 500 are annotated to show the features that are to be learned, which in this example include pupillary, limbic, and eyelid boundaries marked on each of the images. These labeled boundaries in each of the images in the training data 500 can be determined using any appropriate pupillary, limbic, or eyelid boundary technique or by hand. Various machine learning algorithms may be used to learn the regression function ƒt and the shape-indexed extraction function Φt from the annotated training data 500. Supervised machine learning algorithms (e.g., regression-based algorithms) can be used to learn the regression function and shape-indexed extraction function from the annotated data 500. Some examples of machine learning algorithms that can be used to generate such a model can include regression algorithms (such as, for example, Ordinary Least Squares Regression), instance-based algorithms (such as, for example, Learning Vector Quantization), decision tree algorithms (such as, for example, classification and regression trees), Bayesian algorithms (such as, for example, Naive Bayes), clustering algorithms (such as, for example, k-means clustering), association rule learning algorithms (such as, for example, a-priori algorithms), artificial neural network algorithms (such as, for example, Perceptron), deep learning algorithms (such as, for example, Deep Boltzmann Machine, or deep neural network), dimensionality reduction algorithms (such as, for example, Principal Component Analysis), ensemble algorithms (such as, for example, Stacked Generalization), or other machine learning algorithms.
In some embodiments, a set of training images may be stored in the remote data repository 232. The remote processing module 228 may access the training images to learn the regression function ƒt and the shape-indexed extraction function Φt. The local processing and data module 224 may then store the regression function ƒt and the shape-indexed extraction function Φt on the wearable device 200. This reduces the need for the local processing and data module 224 to perform the computationally intense process of learning the regression function ƒt and the shape-indexed extraction function Φt. In some embodiments, biometric information may be taken from the user 204 and stored on the local processing and data module 224. The biometric information can then be used by the local processing and data module 224 (or the remote processing module 228) to further train the regression function and shape-indexed extraction function based on the user's personalized eye shape and features through, for example, unsupervised learning. Such training personalizes the regression model so that it more particularly matches the features of the user's eyes and periocular region, which can improve accuracy and efficiency.
Example Eye Shape Training Routine
Example of Robust Feature Detection
Eyelid Occlusion of Pupil or Iris
Note, while the above embodiments specifically reference false pupil boundary points, the techniques described above may also be applied to identify and remove false limbic boundary points.
In some embodiments, a detailed eye shape model may be used in conjunction with a pupil boundary finding algorithm such as, e.g., the starburst algorithm, which can be employed to detect many pupil boundary points. Using the eyelid shapes 412 of the detailed eye shape model, the boundary points determined using the starburst algorithm that border upper or lower eyelids 110a, 110b are removed, and the remaining boundary points are used to fit a pupil boundary 420. In some embodiments, the limbic boundary points that border the sclera 113 may also be identified using the detailed eye shape model. Thereafter, the iris ellipse 416 is fit using only the limbic boundary points determined to border the sclera 113. Similarly, the pupil boundary 420 may be fit using only the pupil boundary points determined to border the iris 112. In some embodiments, the detailed eye shape model may improve the robustness of the pupil boundary-finding algorithm by providing a better initial “best guess” of the pupil center based on the detailed eye shape model.
Glint Detection
In conventional gaze estimation, the pupil boundary (e.g., an ellipse in some techniques) and glints are detected by searching the entire eye image. Given the detailed eye shape model described herein, feature detection can be faster and more efficient by eliminating the need to search the entire eye for features. In some embodiments, by first identifying the different regions of the eye (e.g., sclera, pupil, or iris) the detailed eye shape model may allow feature detection in particular regions of the eye (e.g., selective feature detection).
Blink Detection
In some embodiments, feature detection can be more robust and efficient by using a detailed eye shape model to determine whether a received eye image meets certain quality thresholds. For instance, the detailed eye shape model may be used to determine whether the eye is sufficiently open to estimate a reliable eye shape and to extract features and to perform a biometric application (e.g., gaze finding or biometric authentication/identification). In some embodiments, if the distance between the upper eyelid 110a and the lower eyelid 110b is less than a threshold, the eye image is considered unusable and is discarded, and accordingly no features are extracted for biometric application. In some embodiments, the eye image may be rejected if the upper eyelid 110a and the lower eyelid 110b are separated by no more than 5 mm. In another embodiment, the eye image may be rejected if greater than a certain percentage of the pupil 114 or iris 112 is occluded by one or more of the eyelids 110a, 110b (e.g., greater than 40%, 50%, 60%, 75%, or more). In another embodiment, the eye image may be rejected if a number of pupil boundary points 704 border the upper eyelid 110a or lower eyelid 110b. For instance, if roughly half of the pupil boundary points 704 border an eyelid 110a, 110b, it may be concluded that roughly half of the pupil 114 is occluded by the eyelid, and thus, the eye image is unsuitable for biometric applications. In other embodiments, rather than rejecting and discarding the eye image, the eye image is assigned a lower weight in a biometric application than eye images in which there is less occlusion of the eye (e.g., images where the distance between the upper eyelid 110a and the lower eyelid 110b is greater than the threshold).
Additional Aspects
In a first aspect, a wearable display system comprising: a light source configured to illuminate an eye of a user; an image capture device configured to capture an eye image of the eye; non-transitory memory configured to store the eye image; and a hardware processor in communication with the non-transitory memory, the hardware processor programmed to: receive the eye image from the non-transitory memory; estimate an eye shape from the eye image using cascaded shape regression, the eye shape comprising a pupil shape, an iris shape, or an eyelid shape; and perform a biometric application based at least in part on the eye shape.
In a second aspect, the wearable display system of aspect 1, wherein the light source comprises an infrared light source.
In a third aspect, the wearable display system of aspect 1 or aspect 2, wherein the hardware processor is further programmed to determine an eye feature based at least in part on the eye shape.
In a fourth aspect, the wearable display system of aspect 3, wherein the eye feature comprises at least one of a glint (e.g., from the light source), a blood vessel, an iris feature, or a center of the pupil.
In a fifth aspect, the wearable display system of any one of aspects 1 to 4, wherein the biometric application comprises determination of eye gaze.
In a sixth aspect, the wearable display system of aspect 5, wherein the eye shape comprises the iris shape, and the hardware processor is programmed to search for glints (e.g., from the light source) that are within the iris shape.
In a seventh aspect, the wearable display system of any one of aspects 1 to 6, wherein the eye shape comprises the pupil shape and the eyelid shape, and the hardware processor is programmed to identify a portion of the pupil that is occluded by the eyelid.
In an eighth aspect, the wearable display system of aspect 7, wherein the hardware processor is programmed to determine a pupillary boundary based on the pupil shape without the portion of the pupil that is occluded by the eyelid.
In a ninth aspect, the wearable display system of any one of aspects 1 to 8, wherein the eye shape comprises the iris shape and the eyelid shape, and the hardware processor is programmed to identify a portion of the iris that is occluded by the eyelid.
In a 10th aspect, the wearable display system of aspect 9, wherein the hardware processor is programmed to determine a limbic boundary based on the iris shape without the portion of the iris that is occluded by the eyelid.
In an 11th aspect, the wearable display system of any one of aspects 1 to 10, wherein eye shape comprises the eyelid shape, and the biometric application comprises determination of eye blink.
In a 12th aspect, the wearable display system of aspect 11, wherein the hardware processor is programmed to reject or assign a lower weight to the eye image if a distance between an upper eyelid and a lower eyelid is less than a threshold.
In a 13th aspect, the wearable display system of any one of aspects 1 to 12, wherein the eye shape comprises a boundary to a pupil, an iris, or an eyelid.
In a 14th aspect, the wearable display system of aspect 13, wherein the boundary comprises a plurality of boundary points.
In a 15th aspect, the wearable display system of any one of aspects 1 to 14, wherein the biometric application comprises biometric identification or biometric authentication.
In a 16th aspect, the wearable display system of any one of aspects 1 to 15, wherein the hardware processor is programmed to fit a curve to a boundary of the pupil, iris, or eyelid.
In a 17th aspect, the wearable display system of any one of aspects 1 to 16, wherein to estimate the eye shape from the eye image using cascaded shape regression, the hardware processor is programmed to: iterate a regression function for determining a shape increment over a plurality of stages, the regression function comprising a shape-indexed extraction function.
In an 18th aspect, the wearable display system of aspect 17, wherein to iterate the regression function, the hardware processor is programmed to evaluate
ΔSt=ƒt(Φt(I,St-1)),
for a shape increment ΔSt at stage t of the iteration, where ƒt is the regression function at stage t, Φt is the shape-indexed extraction function at stage t, I is the eye image, and St-1 is the eye shape at stage t−1 of the iteration.
In a 19th aspect, the wearable display system of aspect 17 or aspect 18, wherein the shape-indexed extraction function provides a comparison of eye image values between a pair of pixel locations.
In a 20th aspect, a method for processing an eye image, the method comprising: under control of a hardware processor: receiving the eye image; estimating an eye shape using cascaded shape regression; determining eye features using the eye shape; and performing a biometric application using the eye features.
In a 21st aspect, the method of aspect 20, wherein performing the biometric application comprises performing biometric identification.
In a 22nd aspect, the method of aspect 20 or aspect 21, wherein performing the biometric application comprises eye gaze determination.
In a 23rd aspect, the method of any one of aspects 20 to 22, wherein estimating the eye shape comprises estimating at least one of an eyelid shape, an iris shape, or a pupil shape.
In a 24th aspect, the method of any one of aspects 20 to 23, wherein, after estimating the eye shape, the hardware processor is configured to reject an unsuitable eye image.
In a 25th aspect, the method of any one of aspects 20 to 24, wherein estimating the eye shape using cascaded shape regression comprises iterating a regression function that comprises a shape-indexed extraction function.
In a 26th aspect, a method for training an eye shape calculation engine, the method comprising: under control of a hardware processor: receiving a set of annotated training eye images, wherein each image in the set is labeled with an eye shape; and using a machine learning technique applied to the set of annotated training eye images to learn a regression function and a shape-indexed extraction function, where the regression function and the shape-indexed extraction function learn to recognize the eye shape.
In a 27th aspect, the method of aspect 26, wherein the eye shape comprises a shape of a pupil, a shape of an iris, or a shape of an eyelid.
In a 28th aspect, the method of aspect 26 or aspect 27, wherein the regression function and the shape-indexed extraction function are learned to recognize eye shape according to an iteration of
ΔSt=ƒt(Φt(I,St-1)),
for a shape increment ΔSt at stage t of the iteration, where ƒt is the regression function at stage t, Φt is the shape-indexed extraction function at stage t, I is an unlabeled eye image, and St-1 is the eye shape at stage t−1 of the iteration.
In a 29th aspect, the method of aspect 28, wherein the shape-indexed extraction function provides a comparison of eye image values between a pair of pixel locations.
In a 30th aspect, the method of aspect 29, wherein the comparison comprises a binary or Boolean value.
Additional Considerations
Each of the processes, methods, and algorithms described herein and/or depicted in the attached figures may be embodied in, and fully or partially automated by, code modules executed by one or more physical computing systems, hardware computer processors, application-specific circuitry, and/or electronic hardware configured to execute specific and particular computer instructions. For example, computing systems can include general purpose computers (e.g., servers) programmed with specific computer instructions or special purpose computers, special purpose circuitry, and so forth. A code module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language. In some implementations, particular operations and methods may be performed by circuitry that is specific to a given function.
Further, certain implementations of the functionality of the present disclosure are sufficiently mathematically, computationally, or technically complex that application-specific hardware or one or more physical computing devices (utilizing appropriate specialized executable instructions) may be necessary to perform the functionality, for example, due to the volume or complexity of the calculations involved or to provide results substantially in real-time. For example, a video may include many frames, with each frame having millions of pixels, and specifically programmed computer hardware is necessary to process the video data to provide a desired image processing task, eye shape model, or biometric application in a commercially reasonable amount of time.
Code modules or any type of data may be stored on any type of non-transitory computer-readable medium, such as physical computer storage including hard drives, solid state memory, random access memory (RAM), read only memory (ROM), optical disc, volatile or non-volatile storage, combinations of the same and/or the like. The methods and modules (or data) may also be transmitted as generated data signals (e.g., as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The results of the disclosed processes or process steps may be stored, persistently or otherwise, in any type of non-transitory, tangible computer storage or may be communicated via a computer-readable transmission medium.
Any processes, blocks, states, steps, or functionalities in flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing code modules, segments, or portions of code which include one or more executable instructions for implementing specific functions (e.g., logical or arithmetical) or steps in the process. The various processes, blocks, states, steps, or functionalities can be combined, rearranged, added to, deleted from, modified, or otherwise changed from the illustrative examples provided herein. In some embodiments, additional or different computing systems or code modules may perform some or all of the functionalities described herein. The methods and processes described herein are also not limited to any particular sequence, and the blocks, steps, or states relating thereto can be performed in other sequences that are appropriate, for example, in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. Moreover, the separation of various system components in the implementations described herein is for illustrative purposes and should not be understood as requiring such separation in all implementations. It should be understood that the described program components, methods, and systems can generally be integrated together in a single computer product or packaged into multiple computer products. Many implementation variations are possible.
The processes, methods, and systems may be implemented in a network (or distributed) computing environment. Network environments include enterprise-wide computer networks, intranets, local area networks (LAN), wide area networks (WAN), personal area networks (PAN), cloud computing networks, crowd-sourced computing networks, the Internet, and the World Wide Web. The network may be a wired or a wireless network or any other type of communication network.
The systems and methods of the disclosure each have several innovative aspects, no single one of which is solely responsible or required for the desirable attributes disclosed herein. The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination. No single feature or group of features is necessary or indispensable to each and every embodiment.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. In addition, the articles “a,” “an,” and “the” as used in this application and the appended claims are to be construed to mean “one or more” or “at least one” unless specified otherwise.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: A, B, or C” is intended to cover: A, B, C, A and B, A and C, B and C, and A, B, and C. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be at least one of X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.
Similarly, while operations may be depicted in the drawings in a particular order, it is to be recognized that such operations need not be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flowchart. However, other operations that are not depicted can be incorporated in the example methods and processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. Additionally, the operations may be rearranged or reordered in other implementations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
This application is a continuation of U.S. application Ser. No. 15/693,975, filed Sep. 1, 2017, entitled “DETAILED EYE SHAPE MODEL FOR ROBUST BIOMETRIC APPLICATIONS,” which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5291560 | Daugman | Mar 1994 | A |
6095989 | Hay et al. | Aug 2000 | A |
6154559 | Beardsley | Nov 2000 | A |
6850221 | Tickle | Feb 2005 | B1 |
7572008 | Elvesjo et al. | Aug 2009 | B2 |
7682026 | Huffman et al. | Mar 2010 | B2 |
7771049 | Knaan et al. | Aug 2010 | B2 |
7970179 | Tosa | Jun 2011 | B2 |
8363783 | Gertner et al. | Jan 2013 | B2 |
8845625 | Angeley et al. | Sep 2014 | B2 |
8950867 | Macnamara | Feb 2015 | B2 |
9081426 | Armstrong | Jul 2015 | B2 |
9215293 | Miller | Dec 2015 | B2 |
9262680 | Nakazawa et al. | Feb 2016 | B2 |
9310559 | Macnamara | Apr 2016 | B2 |
9348143 | Gao et al. | May 2016 | B2 |
D758367 | Natsume | Jun 2016 | S |
9417452 | Schowengerdt et al. | Aug 2016 | B2 |
9470906 | Kaji et al. | Oct 2016 | B2 |
9547174 | Gao et al. | Jan 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9740006 | Gao | Aug 2017 | B2 |
9791700 | Schowengerdt et al. | Oct 2017 | B2 |
9851563 | Gao et al. | Dec 2017 | B2 |
9857591 | Welch et al. | Jan 2018 | B2 |
9874749 | Bradski | Jan 2018 | B2 |
10521661 | Chen et al. | Dec 2019 | B2 |
20030169907 | Edwards et al. | Sep 2003 | A1 |
20060028436 | Armstrong | Feb 2006 | A1 |
20060147094 | Yoo | Jul 2006 | A1 |
20060280340 | Derakhshani et al. | Dec 2006 | A1 |
20070081123 | Lewis | Apr 2007 | A1 |
20070140531 | Hamza | Jun 2007 | A1 |
20070274570 | Hanna et al. | Nov 2007 | A1 |
20080002262 | Chirieleison | Jan 2008 | A1 |
20080226138 | Suzuki et al. | Sep 2008 | A1 |
20080253622 | Tosa et al. | Oct 2008 | A1 |
20090310829 | Baba et al. | Dec 2009 | A1 |
20100202669 | Hollingsworth et al. | Aug 2010 | A1 |
20110150334 | Du et al. | Jun 2011 | A1 |
20110280454 | Su et al. | Nov 2011 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120162549 | Gao et al. | Jun 2012 | A1 |
20120163678 | Du et al. | Jun 2012 | A1 |
20120219189 | Wu et al. | Aug 2012 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130125027 | Abovitz | May 2013 | A1 |
20130169530 | Bhaskar et al. | Jul 2013 | A1 |
20130208234 | Lewis | Aug 2013 | A1 |
20130242262 | Lewis | Sep 2013 | A1 |
20130266195 | Shiell | Oct 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20140023240 | Venkatesha et al. | Jan 2014 | A1 |
20140071539 | Gao | Mar 2014 | A1 |
20140133705 | Hanita et al. | May 2014 | A1 |
20140147022 | Zhou et al. | May 2014 | A1 |
20140161317 | Hiramaki et al. | Jun 2014 | A1 |
20140177023 | Gao et al. | Jun 2014 | A1 |
20140218468 | Gao et al. | Aug 2014 | A1 |
20140267420 | Schowengerdt | Sep 2014 | A1 |
20140267771 | Lawler | Sep 2014 | A1 |
20140270405 | Derakhshani et al. | Sep 2014 | A1 |
20140300867 | Fassi et al. | Oct 2014 | A1 |
20140306866 | Miller et al. | Oct 2014 | A1 |
20140355841 | Santos-Villalobos et al. | Dec 2014 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150103306 | Kaji et al. | Apr 2015 | A1 |
20150134583 | Tamatsu et al. | May 2015 | A1 |
20150178939 | Bradski et al. | Jun 2015 | A1 |
20150199008 | Kim et al. | Jul 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150222883 | Welch | Aug 2015 | A1 |
20150222884 | Cheng | Aug 2015 | A1 |
20150268415 | Schowengerdt et al. | Sep 2015 | A1 |
20150278642 | Chertok et al. | Oct 2015 | A1 |
20150301599 | Miller | Oct 2015 | A1 |
20150302652 | Miller et al. | Oct 2015 | A1 |
20150309263 | Abovitz et al. | Oct 2015 | A2 |
20150326570 | Publicover et al. | Nov 2015 | A1 |
20150346490 | TeKolste et al. | Dec 2015 | A1 |
20150346495 | Welch et al. | Dec 2015 | A1 |
20160011419 | Gao | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160034811 | Paulik et al. | Feb 2016 | A1 |
20160098844 | Shaji et al. | Apr 2016 | A1 |
20160104053 | Yin et al. | Apr 2016 | A1 |
20160196465 | Wu et al. | Jul 2016 | A1 |
20160202756 | Wu | Jul 2016 | A1 |
20160269411 | Malachi | Sep 2016 | A1 |
20170053165 | Kaehler | Feb 2017 | A1 |
20170053166 | Amayeh et al. | Feb 2017 | A1 |
20170109580 | Kaehler et al. | Apr 2017 | A1 |
20170352135 | Florea | Dec 2017 | A1 |
20170364732 | Komogortsev | Dec 2017 | A1 |
20180039846 | Grubb | Feb 2018 | A1 |
20180137335 | Kim et al. | May 2018 | A1 |
20180137337 | Zeng et al. | May 2018 | A1 |
20180173986 | Gousev | Jun 2018 | A1 |
20180300589 | Levinshtein | Oct 2018 | A1 |
20190034706 | el Kaliouby | Jan 2019 | A1 |
20190073533 | Chen et al. | Mar 2019 | A1 |
20190244010 | Kim | Aug 2019 | A1 |
20190362144 | Chen | Nov 2019 | A1 |
20190392145 | Komogortsev | Dec 2019 | A1 |
20200110952 | Gleeson-May | Apr 2020 | A1 |
20200175262 | Pitre | Jun 2020 | A1 |
20200219295 | el Kaliouby | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2915301 | Oct 2008 | FR |
WO 2014182769 | Nov 2014 | WO |
WO 2016018488 | Feb 2016 | WO |
WO 2017034860 | Mar 2017 | WO |
WO 2017034861 | Mar 2017 | WO |
WO 2017066296 | Apr 2017 | WO |
WO 2019045750 | Mar 2019 | WO |
Entry |
---|
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee for PCT Application No. PCT/US17/49860, dated Oct. 26, 2017. |
International Search Report and Written Opinion for PCT Application No. PCT/US17/49860, dated Jan. 5, 2018. |
“Feature Extraction Using Convolution”, Ufldl, printed Sep. 1, 2016, in 3 pages. URL:http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution. |
“Machine Learning”, Wikipedia, printed Oct. 3, 2017, in 14 pages. URL: https://en.wikipedia.org/wiki/Machine_learning. |
Alonso-Fernandez, F. et al., “Iris Recognition Based on SIFT Features”, ATVS, Universidad Autonoma de Madrid, Spain, Sep. 2009, in 28 pages. |
Anthony, S., “MIT releases open-source software that reveals invisible motion and detail in video”, Extreme Tech, Feb. 28, 2013, as accessed Aug. 4, 2017, in 5 pages. |
Aubry M. et al., “Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Jun. 23-28, 2014); Computer Vision Foundation—Open Access Version in 8 pages. |
Cao, X. et al., “Face Alignment by Explicit Shape Regression” International Journal of Computer Vision, Dec. 2013, in 14 pages. |
Carreira J. et al., “Human Pose Estimation with Iterative Error Feedback”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 27-30, 2016, pp. 4733-4742. |
Choy et al., “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, arXiv; e-print arXiv:1604.00449v1, Apr. 2, 2016 in 17 pages. |
Collet et al., “The MOPED framework: Object Recognition and Pose Estimation for Manipulation”, The International Journal of Robotics Research. (Sep. 2011) 30(10):1284-306; preprint Apr. 11, 2011 in 22 pages. |
Dai J. et al., “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Jun. 27-30, 2016 (pp. 3150-3158). |
Daugman, J. et al., “Epigenetic randomness, compleity and singularity of human iris patterns”, Proceedings of Royal Society: Biological Sciences, vol. 268, Aug. 22, 2001, in 4 pages. |
Daugman, J., “How Iris Recognition Works”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 1, Jan. 2004, in 10 pages. |
Daugman, J., “New Methods in Iris Recognition,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 37, No. 5, Oct. 2007, in 9 pages. |
Derpanis, K., “Overview of the RANSAC Algorithm”, dated May 13, 2010, in 2 pages. |
Dollar, P. et al., “Cascaded Pose Regression”, IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2010, in 8 pages. URL: https://pdollar.github.io/files/papers/DollarCVPR10pose.pdf. |
Everingham M. et al., “The PASCAL Visual Object Classes (VOC) Challenge”, Int J Comput Vis (Jun. 2010) 88(2):303-38. |
Hansen, D. et al., “In the Eye of the Beholder: A Survey of Models for Eyes and Gaze”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, No. 3, Mar. 2010, in 23 pages. |
Kar A. et al., “Category-specific object reconstruction from a single image”, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Jun. 7-12, 2015 (pp. 1966-1974). |
Kazemi, V. et al., “One Millisecond Face Alignment with an Ensemble of Regression Trees”, IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, in 8 pages. URL: https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kazemi_One_Millisecond_Face_2014_CVPR_paper.pdf. |
Li, D. et al., “Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches”, IEEE CVPR Workshop on V4HCI, Jun. 2005, in 8 pages. |
Rublee, E. et al., “ORB: an efficient alternative to SIFT or SURF”, Menlo Park, California, Nov. 2011, in 8 pages. |
Wikipedia: “Deep Learning”, Wikipedia, printed Apr. 27, 2016, in 40 pages. URL: https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks. |
Wikipedia: “Deep Learning”, Wikipedia, printed Oct. 3, 2017, in 23 pages. URL: https://en.wikipedia.org/wiki/Deep_learning. |
Xiang Y. et al., “Data-Driven 3D Vox el Patterns for Object Category Recognition”, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 7-12, 2015 (pp. 1903-1911). |
Xiao J. et al., “Localizing 3D cuboids in single-view images”, in Advances in Neural Information Processing Systems 25. F. Pereira et al. [Eds.] Dec. 2012 (pp. 746-754). |
International Preliminary Report on Patentability and Written Opinion for PCT Application No. PCT/US17/49860, dated Mar. 3, 2020. |
ARToolKit: https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm, archived Oct. 13, 2005. |
Azuma, “A Survey of Augmented Reality,” Teleoperators and Virtual Environments 6, 4 (Aug. 1997), pp. 355-385. https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf. |
Azuma, “Predictive Tracking for Augmented Realty,” TR95-007, Department of Computer Science, UNC-Chapel Hill, NC, Feb. 1995. |
Bimber, et al., “Spatial Augmented Reality—Merging Real and Virtual Worlds,” 2005 https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf. |
Jacob, “Eye Tracking in Advanced Interface Design,” Human-Computer Interaction Lab Naval Research Laboratory, Washington, D.C. / paper/ in Virtual Environments and Advanced Interface Design, ed. by W. Barfield and T.A. Furness, pp. 258-288, Oxford University Press, New York (1995). |
Pang, et al., “Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,” PLoS One 10(10); e0139098, doi:10. 1371/journal. Published Oct. 1, 2015. |
Tanriverdi and Jacob, “Interacting With Eye Movements in Virtual Environments,” Department of Electrical Engineering and Computer Science, Tufts University, Medford, MA—paper/Proc. ACM CHI 2000 Human Factors in Computing Systems Conference, pp. 265-272, Addison-Wesley/ACM Press (2000). |
Number | Date | Country | |
---|---|---|---|
20200125843 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15693975 | Sep 2017 | US |
Child | 16719876 | US |