Prior passive radar systems can perform real-time tracking of large objects such as intercontinental missiles and airplanes. However, the low frequency passive radar systems are ineffective in detecting and tracking small objects such as drones in urban environments where line of site of transmitter signals are disrupted by clutter such as, for example, buildings and/or multipath signals are formed.
In one aspect, a method includes receiving signals directly or indirectly from a transmitter. The received signals include a target signal, a clutter signal and a reference signal. The method also includes filtering the clutter signal from the received signals, processing the filtered radar data to obtain range and Doppler data, detecting and tracking a target from the range and Doppler data and classifying the target.
In another aspect, a receiver includes a processor and a non-transitory machine-readable medium that stores executable instructions. The instructions cause the processor to receive signals directly or indirectly from a transmitter. The received signals include a target signal, a clutter signal and a reference signal. The instructions further include instructions causing the processor to filter the clutter signal from the received signals, process the filtered radar data to obtain range and Doppler data, detect and track a target from the range and Doppler data and classify the target.
In a further aspect, an apparatus to detect a target includes electronic circuitry to receive signals directly or indirectly from a transmitter. The received signals include a target signal, a clutter signal and a reference signal. The apparatus also includes circuitry to filter the clutter signal from the received signals, process the filtered radar data to obtain range and Doppler data, detect and track a target from the range and Doppler data and classify the target.
One or more of the aspects above may include one or more of the following features. Receiving the signals directly or indirectly from the transmitter may include receiving the signals directly or indirectly from a transmitter transmitting a signal greater than 3 GHz. Classifying the target may include classifying the target as an unmanned aerial vehicle. Detecting and tracking the target from the range and Doppler data may include detecting rotating blades of an unmanned aerial vehicle. The clutter signal may be reflected from at least one of a building, a tower or a structure located in an urban environment. Receiving the signals directly or indirectly from the transmitter may include receiving the signals directly or indirectly from the transmitter using at least two receivers at two separate locations.
Described herein are techniques using passive radar to detect, track and classify a target such as a moving object, for example. In one example, the moving object may be an unmanned aerial vehicle or a person. In one particular example, the techniques described herein may be used in an urban environment. The techniques described herein compensate for the shortcomings in detecting a small object in an urban setting by using signals-of-opportunity from higher frequency signals (e.g., 5G cellular signals) and use adaptive clutter cancellation to detect and track small airborne drones.
Referring to
The transmitter 18 transmits a transmitter signal 24 which is received by the target 12, the clutter 16 and the receiver system 22. The receiver system 22 receives the transmitter signal 24 directly from the transmitter 18. As used herein the transmitter signal 24 is also called a reference signal.
The receiver system 22 also receives indirect signals from the transmitter 18. For example, the receiver system 22 receives a target signal 28 which is the transmitter signal 24 reflected from the target 12 and receives a clutter signal 32 which is the transmitter signal 24 reflected from the clutter 16.
The transmitter 18 provides signals greater than 3 GHz. In one example, the transmitter is part of a 5G cellular network. In one example, the receiver system 22 exploits 5G base stations as signals of opportunity. The frequencies used by the 5G network (e.g., signal greater than 3 GHz) improve range resolution and detection against small targets.
In one example, the receiver system 22 may be disposed on a moving platform or the receiver system 22 may be disposed in a stationary structure such as a ground station.
Referring to
In one example, the transmitter 18 transmits the transmitter signal 24 that is reflected off the target 12 to form the target signal 28 that is received by the receiver 42 of the receiver system 22. In another example, the transmitter 18 transmits the transmitter signal 24 that is reflected off the clutter 16 to form the clutter signal 32 that is received by the receiver 42 of the receiver system 22. In a still further example, the transmitter 18 transmits the transmitter signal 24 that is received directly by the receiver 42 of the receiver system 22.
Referring to
Referring to
Process 200 receives signals directly or indirectly from the transmitter (202). For example, the receiver system 22 receives the transmitter signal 24, the target signal 28 and the clutter signal 32 (
Process 200 filters the clutter signal (206). For example, the receiver system 22 filters the clutter signal 32 to reduce or remove the clutter signal 32 (
Process 200 performs Doppler and range processing (212). For example, the receiver system 22 performs Doppler and range processing (
For target detection, the reference signal 24 and clutter signal 32 are nulled from the received signal (which includes the transmitter signal 24, the target signal 28, and the clutter signal 32) so that a residual signal is comprised mostly of the target signal 28. The target's range and doppler can be estimated from the range doppler map, which are computed by the cross correlation of the residual signal with the reference signal 24 followed by Fast Fourier Transform.
Process 200 detects and tracks a target (220). For example, the receiver system 22 detects and tracks a target 12 (
Process 200 classifies the target (224). For example, the receiver system 22 classifies the target 12 (
Referring to
The processes described herein (e.g., process 200) are not limited to use with the hardware and software of
The system may be implemented, at least in part, via a computer program product, (e.g., in a non-transitory machine-readable storage medium), for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers)). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs may be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a non-transitory machine-readable medium that is readable by a general or special purpose programmable computer for configuring and operating the computer when the non-transitory machine-readable medium is read by the computer to perform the processes described herein. For example, the processes described herein may also be implemented as a non-transitory machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with the processes. A non-transitory machine-readable medium may include but is not limited to a hard drive, compact disc, flash memory, non-volatile memory, volatile memory, magnetic diskette and so forth but does not include a transitory signal per se.
The processes described herein are not limited to the specific examples described. For example, the process 200 is not limited to the specific processing order of
The processing blocks (for example, in the process 200) associated with implementing the system may be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system may be implemented as, special purpose logic circuitry (e.g., an FPGA (field-programmable gate array) and/or an ASIC (application-specific integrated circuit)). All or part of the system may be implemented using electronic hardware circuitry that include electronic devices such as, for example, at least one of a processor, a memory, programmable logic devices or logic gates.
Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Other embodiments not specifically described herein are also within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/905,618 filed Sep. 25, 2019 under 35 U.S.C. § 119(e) which application is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62905618 | Sep 2019 | US |