This application is filed under 35 U.S.C. 0.371 as a National Stage of PCT International Application No. PCT/US2019/019987, filed on Feb. 28, 2019, in the U.S. Patent and Trademark Office, which claims the priority benefit of Korean Patent Application No. 10-2018-0102536, filed on Aug. 30, 2018, in the Korean Intellectual Property Office. The disclosures of PCT International Application No. PCT/US2019/019987 and Korean Patent Application No. 10-2018-0102536 are incorporated by reference herein in their entireties.
An image forming apparatus using an electrophotographic method is an apparatus that supplies toner to an electrostatic latent image formed on a photoconductor to form a visible toner image on the photoconductor, transfers the toner image to a print medium via an intermediate transfer medium or directly to a print medium, and then fixes the transferred toner image on the print medium.
A development cartridge accommodates toner and supplies the toner to an electrostatic latent image formed on the photoconductor to form a visible toner image. When the toner accommodated in the development cartridge is exhausted, the development cartridge is removed from a main body of the image forming apparatus and a new development cartridge may be mounted on the main body of the image forming apparatus.
Reference will now be made in detail to examples which are illustrated in the accompanying drawings. The same reference numerals are used to denote the same elements, and repeated descriptions thereof will be omitted.
Referring to
A photosensitive drum 21 may include a cylindrical metal pipe and a photosensitive layer with photoconductivity formed on the periphery thereof, as an example of a photoconductor on which an electrostatic latent image is formed. A charging roller 23 is an example of a charger that charges a surface of the photosensitive drum 21 to a uniform potential. A charging bias voltage may be applied to the charging roller 23. A corona charger (not shown) may also be used instead of the charging roller 23. A developing roller 22 may supply toner to an electrostatic latent image formed on the surface of the photosensitive drum 21 to develop the electrostatic latent image.
A supply roller 24 may attach the toner to the developing roller 22. A supply bias voltage may be applied to attach the toner to the supply roller 24 with the developing roller 22. A regulating member 25 may regulate the amount of toner attached to a surface of the developing roller 22. The regulating member 25 may be, for example, a regulating blade whose tip is brought into contact with the developing roller 22 at a certain pressure. A cleaning member 26 may remove residual toner and foreign materials from the surface of the photosensitive drum 21 before charging. The cleaning member 26 may be, for example, a cleaning blade whose tip is in contact with the surface of the photosensitive drum 21. Hereinafter, the foreign materials removed from the surface of the photosensitive drum 21 are referred to as waste toner.
An optical scanner 4 may scan the surface of the photosensitive drum 21 charged to a uniform potential with light modulated according to image information. As the optical scanner 4, for example, a laser scanning unit (LSU) may be employed in which light irradiated from a laser diode is deflected in a main scanning direction by using a polygon mirror to scan the photosensitive drum 21.
A transfer roller 5 is an example of a transfer unit which is located opposite the photosensitive drum 21 to form a transfer nip. A transfer bias voltage for transferring a toner image developed on the surface of the photosensitive drum 21 to a print medium P may be applied to the transfer roller 5. A corona transferor may be used instead of the transfer roller 5.
The toner image transferred to the surface of the print medium P by the transfer roller 5 may be maintained on a surface of the print medium P by electrostatic attraction. A fixing device 6 may form a permanent print image on the print medium P by fixing the toner image on the print medium P by applying heat and pressure.
The development cartridge 2 according to the example may include a developing portion 210 provided with the photosensitive drum 21 and the developing roller 22, a waste toner accommodating portion 220 in which waste toner removed from the photosensitive drum 21 is accommodated, and a toner accommodating portion 230 connected to the developing portion 210 and accommodating toner. In order to refill toner in the toner accommodating portion 230, the development cartridge 2 may include the toner refilling portion 10 connected to the toner accommodating portion 230. The toner refilling portion 10 provides an interface between the toner refill cartridge 9 and the development cartridge 2, which will be described later below. The development cartridge 2 may be an integrated development cartridge including the developing portion 210, the waste toner accommodating portion 220, the toner accommodating portion 230, and the toner refilling portion 10.
A portion of an outer periphery of the photosensitive drum 21 may be exposed to the outside of a housing. The transfer roller 5 may contact the exposed portion of the photosensitive drum 21 to form the transfer nip. The developing portion 210 may be provided with one or more carrying members for carrying toner toward the developing roller 22. The carrying member may also stir toner to charge the toner to a certain potential.
The waste toner accommodating portion 220 may be located above the developing portion 210. The waste toner accommodating portion 220 may be spaced upward from the developing portion 210 to form a light path 250 therebetween. Waste toner removed from the surface of the photosensitive drum 21 by the cleaning member 26 may be accommodated in the waste toner accommodating portion 220. The waste toner removed from the surface of the photosensitive drum 21 may be transferred to the inside of the waste toner accommodating portion 220 by one or more transfer members 221, 222, and 223. The shape and the number of a waste toner transfer member are not limited. An appropriate number of waste toner transfer members may be provided at appropriate positions to effectively disperse waste toner in the waste toner accommodating portion 220 considering a volume or a shape of the waste toner accommodating portion 220.
The toner accommodating portion 230 may be connected to the toner refilling portion 10 to accommodate toner. The toner accommodating portion 230 may be connected to the developing portion 210 by a toner supply 234 as shown by dashed lines in
The toner accommodating portion 230 may be provided with one or more toner supply members 231, 232, and 233 for supplying toner to the developing portion 210 through the toner supply 234. The shape and the number of toner supply members are not limited. An appropriate number of toner supply members may be provided at appropriate positions in the toner accommodating portion 230 to effectively supply toner to the developing portion 210 considering a volume or a shape of the toner accommodating portion 230. The toner supply member 233 may transfer toner to the toner supply 234.
An image forming process according to the above-described configuration will be briefly described. A charging bias voltage is applied to the charging roller 23, and the photosensitive drum 21 may be charged to a uniform potential. The optical scanner 4 may scan the photosensitive drum 21 with light modulated corresponding to image information to form an electrostatic latent image on the surface of the photosensitive drum 21. The supply roller 24 may attach toner to the surface of the developing roller 22. The regulating member 25 may form a toner layer having a uniform thickness on the surface of the developing roller 22. A developing bias voltage may be applied to the developing roller 22. Toner carried to the developing nip as the developing roller 22 is rotated is moved and attached to the electrostatic latent image formed on the surface of the photosensitive drum 21 by the developing bias voltage so that a visible toner image may be formed on the surface of the photosensitive drum 21. The print medium P drawn out from a loading unit 7 by a pickup roller 71 may be transferred to the transfer nip where the transfer roller 5 and the photosensitive drum 21 face each other by a feed roller 72. When a transfer bias voltage is applied to the transfer roller 5, the toner image may be transferred to the print medium P by electrostatic attraction. The toner image transferred to the print medium P is fixed to the print medium P by receiving heat and pressure from the fixing device 6, whereby printing may be completed. The print medium P is discharged by a discharge roller 73. Toner remaining on the surface of the photosensitive drum 21 without being transferred to the print medium P may be removed by the cleaning member 26.
According to an image forming apparatus of the example, the development cartridge 2 may include the toner refilling portion 10 in order to refill toner in the development cartridge 2 in a state in which the development cartridge 2 is mounted on the main body 1 without removing the development cartridge 2 from the main body 1. The toner refilling portion 10 may be integrally formed with the development cartridge 2 and may be detached from the main body 1 together with the development cartridge 2.
Referring to
The body 91 may include an outer body 91-1 and an inner body 91-2 located inside the outer body 91-1 and accommodating toner. The toner discharge portion 940 is provided in the inner body 91-2. The plunger 93 may be inserted into the inner body 91-2 and moved in the longitudinal direction A. The plunger 93 may be moved from an upper position Q1 to a lower position Q2. The discharge shutter 95 may be provided so as to be independently rotatable with respect to the tip portion 91-3 of the body 91. For example, as shown in
The toner refill cartridge 9 may be provided with a toner injection completion signal generator 92 used for detecting completion of injection of toner. For example, referring to the example of
A connection interface 96 may be provided at the tip portion 91-3 of the body 91. When the toner refill cartridge 9 is mounted on the toner refilling portion 10, the connection interface 96 may be electrically connected to the main body 1 to transfer information of the toner refill cartridge 9 to the main body 1. In the example, the connection interface 96 may be electrically connected to the main body 1 via the first connector 146 provided in the toner refilling portion 10. The main body 1, for example, a controller provided in the main body 1, may determine whether or not the toner refill cartridge 9 is mounted depending on whether the controller is electrically connected to the connection interface 96, for example, whether the controller can communicate with the connection interface 96.
The connection interface 96 may include a circuit unit 962 for managing information of the toner refill cartridge 9 and an electrical contact portion 961 for connection with the main body 1. The circuit unit 962 may be a customer replaceable unit monitor (CRUM) including a processor for performing at least one of authentication and/or encrypted data communication with the main body 1. The circuit unit 962 may further include a memory. The memory may store various types of information for the toner refill cartridge 9. For example, information about a manufacturer, information about manufacturing date and time, unique information such as serial number, model name, and the like, various programs, digital signature information, and a usage state (e.g., how many sheets have been printed so far, how many remaining sheets can be printed, and how much toner is remaining) may be stored in the memory. In addition, information about a lifetime of the toner refill cartridge 9, setup menu, and the like may be stored in the memory. In addition, the circuit unit 962 may include functional blocks capable of performing various functions for communication authentication, encryption, and the like with the main body 1. The circuit unit 962 may be implemented in the form of a chip including a processor and/or a memory, or a printed circuit board assembly (PBA) in which circuit elements for implementing chips and various functional blocks are mounted.
The electrical contact portion 961 may have various forms such as a conductive pattern, a modular jack, a resilient terminal, and the like, which may be electrically connected to the main body 1. The electrical contact portion 961 of the example shown in
For example, the electrical contact portion 961 may have three electrical contacts 961a, 961b, and 961c. The first electrical contact 961a may be for transmitting information stored in the memory of the circuit unit 962 to the main body 1 of the image forming apparatus. The second electrical contact 961b may be for transmitting a signal regarding whether or not the toner refill cartridge 9 is mounted on the toner refilling portion 10 to the main body 1 of the image forming apparatus. The third electrical contact 961c may be for transmitting a toner injection completion signal or a removal request signal of the toner refill cartridge 9 to the main body 1 of the image forming apparatus.
As shown in
When the toner refill cartridge 9 is mounted on the toner refilling portion 10 of the image forming apparatus, the connection interface 96 of the toner refill cartridge 9 may be electrically connected to the first connector 146 located at a certain portion of the toner refilling portion 10. The connection interface 96 of the toner refill cartridge 9 may be electrically connected to the main body 1, for example, a controller provided in the main body 1 through the first connector 146 and a second connector 127 provided in the toner refilling portion 10. When the toner refill cartridge 9 is mounted on a mounting portion 11 through an insertion portion of an upper body 13, the first connector 146 may be directly connected to the electrical contact portion 961 of the connection interface 96. The first connector 146 may be connected to the second connector 127 by a flexible cable and the second connector 127 may be electrically connected to the controller provided in the main body 1.
Referring to
When the toner refill cartridge 9 is mounted on the image forming apparatus, the image forming apparatus may confirm completion of mounting of the toner refill cartridge 9 based on electrical connection between the toner refill cartridge 9 and the image forming apparatus described above, and may authenticate the mounted toner refill cartridge 9. Thereafter, when a user pushes the plunger 93 of the toner refill cartridge 9 mounted on the image forming apparatus, toner may be supplied to the toner accommodating portion 230 of the development cartridge 2 through the toner refilling portion 10 from the toner refill cartridge 9. The image forming apparatus may determine whether toner injection is completed such that a certain amount of toner may be properly refilled from the toner refill cartridge 9. Hereinafter, a manner in which the image forming apparatus determines the completion of the toner injection will be described with reference to
The toner refill cartridge 9 of
Referring to
In an example shown in
In an example shown in
Referring to
In an example shown in
Meanwhile, a image forming apparatus 100, on which the toner refill cartridge 9 shown in
When the toner refill cartridge 9 described with reference to
When the toner refill cartridge 9 described with reference to
The image forming apparatus 100 on which the toner refill cartridge 9 is mounted may further include a user interface (not shown). The controller (not shown), when mounting of the toner refill cartridge 9 is completed, may control the user interface (not shown) to display that toner injection is possible upon the completion of mounting of the toner refill cartridge 9. Furthermore, the controller (not shown), when toner injection of the toner refill cartridge 9 is completed, may delete information related to the toner refill cartridge 9 stored in the memory of the toner refill cartridge 9 and control the user interface (not shown) to display that the toner refill cartridge 9 is removable. The user interface (not shown) may also output information about the completion of mounting of the toner refill cartridge 9 or the toner injection completion.
It should be understood that the disclosure described herein should be considered in a descriptive sense and is not limiting. Descriptions of features within each example should be considered as available for other similar features in other examples. Therefore, the scope of the disclosure is defined not by the detailed description of the disclosure but by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0102536 | Aug 2018 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/019987 | 2/28/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/046417 | 3/5/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6862420 | Less | Mar 2005 | B1 |
RE42312 | Umezawa et al. | Apr 2011 | E |
8565649 | Murakami | Oct 2013 | B2 |
8995886 | Kim | Mar 2015 | B2 |
Number | Date | Country |
---|---|---|
8-6370 | Jan 1996 | JP |
2002-341639 | Nov 2002 | JP |
10-0498053 | Jun 2005 | KR |
10-0961094 | May 2010 | KR |
10-2010-0108087 | Oct 2010 | KR |
10-2014-0084766 | Jul 2014 | KR |
10-1799088 | Nov 2017 | KR |
Number | Date | Country | |
---|---|---|---|
20210080863 A1 | Mar 2021 | US |