This invention relates to the field of the measurement of blood sampling, and more specifically to management of cross-contamination when sampling blood from a central venous catheter in the presence of infusion in the same catheter.
Tight glycemic control. Many peer-reviewed publications have demonstrated that tight control of blood glucose significantly improves critical care patient outcomes. Tight glycemic control (TGC) has been shown to reduce surgical site infections by 60% in cardiothoracic surgery patients and reduce overall ICU mortality by 40% with significant reductions in ICU morbidity and length of stay. See, e.g., Furnary Tony, Oral presentation at 2005 ADA annual, session titled “Management of the Hospitalized Hyperglycemic Patient;” Van den Berghe et al., NEJM 2001; 345:1359. Historically, caregivers have treated hyperglycemia (high blood glucose) only when glucose levels exceeded 220 mg/dl. Based upon recent clinical findings, however, experts now recommend IV insulin administration to control blood glucose to within the normoglycemic range (80-110 mg/dl). Adherence to such strict glucose control regimens requires near-continuous monitoring of blood glucose and frequent adjustment of insulin infusion to achieve normoglycemia while avoiding risk of hypoglycemia (low blood glucose). In response to the demonstrated clinical benefit, approximately 50% of US hospitals have adopted some form of tight glycemic control with an additional 23% expected to adopt protocols within the next 12 months. Furthermore, 36% of hospitals already using glycemic management protocols in their ICUs plan to expand the practice to other units and 40% of hospitals that have near-term plans to adopt TGC protocols in the ICU also plan to do so in other areas of the hospital.
Sampling from a central venous catheter. The effective implementation of tight glycemic control protocols generally requires the frequent measurement of glucose. This measurement process typically requires the procurement of a blood sample that is representative of the patient's physiological status. Samples can be obtained from a variety of means, including without limitation peripheral IV's, arterial blood lines, midline catheters peripherally inserted central catheters, and central venous catheters. Central venous catheters can be a preferred means of access due to the frequency of use in the ICU and the ability to make blood withdrawals on a regular basis. Most central venous catheters are multi-lumen catheters with the number of lumens being selected based upon patient needs. Catheters are referred to as monoluminal, biluminal or triluminal, dependent on the actual number of tubes or lumens (1, 2 and 3 respectively,). Some catheters have 4 or 5 lumens, depending on the reason for their use. The termination of the lumen in the body occurs at different locations. The termination point is typically referred to as a port. In the case of a multi-lumen catheter the port at the end of the catheter is defined as the distal port, with intervening ports referred to as medial ports and the port closest to the insertion into the body referred to as the proximal port. The catheter is usually held in place by a suture or staple and an occlusive dressing. Regular flushing with saline or a heparin-containing solution is performed to keep the line patent and prevent infection.
Central venous blood samples can be obtained through a variety of catheter types including a central venous catheter. Central venous catheters are utilized for many purposes to include drug infusion as well as blood sampling. When central venous catheters are utilized for procurement of a blood draw, nursing standards are very specific with respect to the procedure to be used. These standards require that all IV infusions be stopped and recommend a one minute wait time before drawing blood from the catheter. The rationale for both the stoppage and waiting period is to allow IV fluids and medications to be carried away from the catheter location such that the blood sample is not contaminated by the fluids being infused (the “infusate”). The mixing of IV fluids or medications in the blood sample is generally referred to as cross-contamination. Cross-contamination is the general process by which fluids being infused into the patient become present in the blood sample and can contaminate resulting measurements.
Although central venous catheters can be placed in a variety of locations, the typical placement is to have the tip 3-4 cm above the entrance to the right atrium. This places the tip in the center of the superior vena cava and the proximal opening about 6 cm back from the tip. The proximal port will typically be in the vein where the device was introduced; i.e. the brachial cephalic or internal jugular vein. The flow characteristics surrounding the ports of the central venous catheter can have direct influence on the possibility of cross-contamination. The superior vena cava is the main vein for the drainage of the superior aspect of the body. It is about 7 cm in length and is formed by the confluence of the brachiocephalic veins. It has no valves and ends in the right atrium. It is approximately 20 mm in diameter. The inferior vena cava has similar flow characteristics but the flow rates are strongly dependent upon exercise involving the lower extremity. Flow in the central vena cava is variable and is affected by the cardiac cycle and respiration.
Difficulties in tight glycemic control when using a central venous catheter. For blood glucose measurement systems that utilize a central venous access catheter for procurement of a blood sample for subsequent analysis or place a catheter in the superior or inferior vena cava, the potential impact of cross-contamination involving a glucose containing fluid can be quite dramatic. For example, if the patient is being infused with a 5% dextrose solution (5000 mg/dl), and 1% cross-contamination occurs, the measured glucose value can be in error by 50 mg/dl. Given that the typical target range for tight glycemic control is between 80 and 120 mg/dl, a potential over-estimation by 50 mg/dl can have serious consequences. As an example, the patient might be given additional insulin due to the inaccurately high glucose measurement result. The actual overall systemic glucose would be consequently decreased while the measured glucose might remain high due to the presence of glucose via cross-contamination. Cross-contamination with non-glucose containing fluids also can affect the measurement, but are typically less significant since they generally result in a decreased glucose measurement. The impact is simply volumetric so at a glucose value of 100 mg/dl a 10% dilution can result in a glucose measurement of 90 mg/dl, and such slightly low glucose readings are less likely to have such dramatic undesirable treatment errors.
Accordingly, there is a need for methods and apparatuses that allow accurate glucose measurements from catheters, especially central venous catheters, in the presence of infusion of substances including glucose.
The present invention comprises methods and apparatuses that can provide accurate measurement of glucose or other analytes from a multilumen catheter in the presence of infusion of substances, including glucose. Examples of “multilumen catheters” include central venous catheters having multiple lumens, midline catheters having multiple lumens, multiple catheters configured or emplaced such that their lumens are in proximity to each other, and, in the case of indwelling analyte sensors, a catheter with a lumen for infusion and an indwelling sensor spaced apart from the infusion lumen. For blood withdrawal, anti-cross contamination controls can prevent the entrainment of blood which might be contaminated with feeding fluids or medications that are administered through other lumens within the catheter and in proximity of the blood sampling port. Cross contamination can occur under various situations, and is known to occur when the patient is connected to a ventilator. The ventilator cyclically raises the intra-thoracic pressure and diminishes blood flow rate in the central veins returning to the heart. The diminished flow can increase the chances for cross-contamination when additional lumens are introducing fluids during a draw sample.
While nursing guidelines provide for operation that reduces the risk of cross-contamination, there is little if any published literature that has any evidence that cross-contamination actually occurs with central venous catheters. There are published reports of cross-contamination when using central venous catheters for dialysis but the withdrawal flow rate are in excess of 100 ml/min. Discussions with greater than 20 intensive care professions confirmed the practice of turning off infusion pumps prior to blood sample withdrawal but the mechanism by which cross-contamination occurs was not known within the group of professional interviewed.
A computational fluid dynamics investigation was performed to more fully understand the potential for cross-contamination. The investigation used reasonable variations of several variables to examine the potential for cross-contamination. Variables examined and varied within reasonable limits were normal physiology flow rates in both the inferior and superior vena cava, typical intravenous infusion rates of 5% dextrose solutions, typical catheter port separation distances, and blood withdrawal rates. The investigation concluded that under the conditions investigated there was no reasonable potential for cross-contamination to occur. An identified limitation of the investigation was the relationship of the port to the wall of the vessel. Specifically, if the catheter is resting in the bottom of the vessel and the port is located on the bottom of the catheter, the flow characteristics surrounding the port would be quite different than in the center of the vessel as modeled in the computational fluid dynamics investigation.
A laboratory experiment was performed to investigate variation in flow rates and variations in catheter orientation.
System verification. The conductivity meter was tested in both the installed and uninstalled conditions. While installed, it underreported the conductivity of the solutions sampled by a factor of 0.692. Because all of the conductivity measurements taken during testing were with the sensor installed in the system, the final cross-contamination values should not be affected. If desired, the true conductivity values can be obtained by multiplying all of the ppm readings by a factor of 1.45. All of the conductivity values presented in this description are the uncorrected numbers.
To verify that the system worked as intended, infusion and withdrawal ports were switched to purposely cause cross-contamination. A 3% potassium chloride solution was infused on the proximal port 321, and the sample was withdrawn from the distalport 322 at a rate of 60 ml/hr. Flow velocity profile 1 was used. The infusion rate was increased in steps of 200, 400, 600, 800, and 999 ml/hr. The results are presented in Table 1 and
The verification data shows that sample contamination increases as infusion rate increases, verifying that the laboratory system works as expected when contamination is known to be present. The expanding range of minimum and maximum values might be due to turbulence caused by higher infusion rates. The percentage of cross-contamination was calculated using the following function:
This function can also be used to calculate the minimum detectable level of cross-contamination. Inserting the measured concentrations of the simulated blood and infused fluid, and with the minimum detectable sample concentration rise of 10 ppm
Experimental Design. Several sets of experiments were conducted to measure the cross-contamination during operation. The parameters were chosen in an attempt to increase cross-contamination as testing progressed. Infusion rates from 200 ml/hr to 999 ml/hr were tested. The concentration of the infused fluid was increased to 4% (uncorrected measurement of 27200 ppm) in order to increase the sensitivity in measured contamination levels. In addition, a test was performed with an Intralipid 20% solution consisting of about 10% potassium chloride (uncorrected measurement of 61000 ppm).
Table 2 presents the results of the experiments with an infusion fluid of KCL and water.
Table 3 presents the results of the experiments with an infusion fluid of KCL and 20% Intralipid
There was no detectable cross-contamination during any of the tests. Calculating the minimum detectable contamination with the 4% (uncorrected measurement of 27200 ppm) solution, and assuming a detectable rise in 10 ppm, gives:
And the minimum detectable contamination with the 10% (uncorrected measurement of 61000 ppm) solution gives:
Therefore, the level of cross-contamination is below 0.037% in the KCl-water tests, and below 0.017% in the KCl-lntralipid testing. The laboratory testing demonstrated that the potential for cross-contamination is very low during typical use, and in experiments depicting cases worse than the typical operating conditions, cross-contamination was less than the detectable level of 0.017%.
Animal testing. A cross-contamination study on a mechanically ventilated pig was conducted to complete the investigation into cross-contamination. The protocol for investigation was (1) Place the catheter and confirm location by fluoroscopy; (2) Evaluate flow characteristics by injecting contrast agent; (3) Evaluate for cross-contamination; (4) Move catheter to next location. The testing procedure was
Evaluation of Results. In a condition without cross-contamination, the initial glucose levels and those during glucose infusion will be approximately equivalent until the infused glucose has circulated in the vascular system. The amount of infused glucose will result in approximately a 50 mg/dl systemic change assuming a total blood volume of 5 liters. This end of study glucose level will be referred to as the ending glucose level.
If cross-contamination occurs as a result of the infused glucose then the measured glucose will increase concurrently with the start of the glucose infusion. The use of a 50% glucose solution results in a significant glucose change even when the percentage of cross-contamination is less than 1%.
Four of the seven locations resulted in cross-contamination greater than 0.1%. This contrasts with the results anticipated and obtained from the computational fluid dynamics study and the laboratory investigation.
Mechanism for cross-contamination. As discussed in conjunction with
The normal venous pulse (Jugular venous pulse, JVP) reflects phasic pressure changes in the right atrium and consists of three positive waves and two negative troughs. In considering this pulse it is useful to refer to the events of the cardiac cycle. The positive presystolic “a” wave is produced by right atrial contraction and is the dominant wave in the JVP particularly during inspiration. During atrial relaxation, the venous pulse descends from the summit of the “a” way. Depending on the PR interval, this descent may continue until a plateau (“z” point) is reached just prior to right ventricular systole. More often the descent is interrupted by a second positive venous wave, “c” wave, which is produced by a bulging of the tricuspid valve into the right atrium during right ventricular isovolumic systole and by the impact of the crowded artery adjacent to the jugular vein. Following the summit of the “c” wave, the JVP contour declines, forming the normal negative systolic wave, the “x” wave. The “x” descent is due to a combination of atrial relaxation, the downward displacement of the tricuspid valve during right ventricular systole, and the ejection of blood from both the ventricles.
In the case of abnormal cardiac function, at least three mechanisms are known to cause a retrograde flow: tricuspid valve regurgitation, increased flow resistance out of the right atrium, and atrial fibrillation. In the case of tricuspid regurgitation, the right ventricle contracts but the tricuspid valve does not prevent retrograde flow into the right atrium and subsequently the thoracic veins. Possible conditions of retrograde flow can be associated with larger than normal “a” waves. Giant “a” waves are present with each beat, the right atrium is contracting against an increased resistance. This may result from obstruction at the tricuspid valve (tricuspid stenosis or atresia), right atrial myxoma or conditions associated with increased resistance to right ventricular filling. Abnormally large “a” waves can occur in patients with pulmonary stenosis or pulmonary hypertension in whom both the atrial and right ventricular septa are intact. Abnormally large and typically narrow “a” waves, often referred to as Cannon “a” waves, occur when the right atrium contracts while the tricuspid valve is closed during right ventricular systole. Cannon waves can occur either regularly or irregularly and are most common in the presence of arrhythmias. Atrial fibrillation is a condition known to cause the irregular occurrence of cannon “a” waves.
Another known source of stagnant or retrograde flow is mechanical ventilation. During normal breathing the diaphragm is lowered creating a negative pressure in the thoracic cavity. This negative pressure creates the gradient for air movement and for the filling of the lungs with each new breath. The negative pressure in the thoracic cavity also helps blood return to the heart. In the case of positive pressure ventilation, the pressure gradients are reversed. As shown in
In the study animal conducted, reverse flow occurred during the periods of positive pressure ventilation. To help confirm that mechanical ventilation is the major source of retrograde flow and subsequent contamination, one location was examined with and without ventilation. For the catheter location in the mid abdomen, two tests were conducted. The first was conducted with mechanical ventilation on and the second test with no ventilation. The rate of ventilation was 10 breaths per minute. As can be seen by comparing
Detection of cross-contamination. Reliable detection of conditions that are likely to lead to cross-contamination can be beneficial, since glucose measurements made during such conditions can be adjusted or discarded as possibly inaccurate. Pressure changes can be used to detect conditions likely to lead to cross-contamination. One mechanism that creates retrograde blood flow resulting in contamination of the blood sample is a change in the pressure surrounding the vessel. An increase in pressure can result in compression of the vessel and flow away from the compression. Pressure changes can occur within the thoracic cavity, and can occur within the abdominal cavity. Pressure can be sensed within the venous system. If the pressure change is significant enough to be likely to cause cross-contamination, then the system can indicate the potential for cross-contamination to allow appropriate actions to be taken (e.g., no sample withdrawal, disregard measurements on this sample that are susceptible to the cross-contaminating substance(s), disregard this sample, etc.). Abnormal cardiac function resulting in retrograde flood flow is commonly associated with abnormally large “a” waves. This degree of pressure variation can be sensed by an intravascular pressure monitoring system. A pressure sensing system for these types of waves can be based upon both the magnitude and/or the frequency of occurrence. In addition to pressure changes due to mechanical ventilation, the following are known to change pressure changes which can influence venous flow: valsalva maneuver, abnormal cardiac function, coughing or gross movement of the body. A valsalva maneuver is performed by forcibly exhaling against closed lips and pinched nose or is frequently used when defecating.
Many types of abnormal cardiac function, specifically atrial fibrillation, are associated with an abnormal electrocardiogram, EKG. An additional level of protection against potential cross-contamination due to abnormal cardiac function can be incorporated by ensuring that the heart has a normal EKG.
The measured glucose values can themselves be used to detect when one or more measured values are likely to have been compromised by cross-contamination. Cross-contamination due to mechanical ventilation has a frequency that is correlated with the ventilation rate. Maximum cross-contamination can occur during the highest rates of pressure change and then decrease. If continuous, or suitably frequent, measurements are made, these measurements will have a variation in glucose values that have a frequency that mimics that of the ventilator. A system can make continuous or suitably frequent measurements that span at least one ventilation cycle and check for significant variation in the glucose values. Typical physiology results in glucose variations that follow general trends and have a maximum rate of about 2 mg/dl per minute. If the measurement was to show sinusoidal variations, or other variations correlated with ventilator operation and not with physiological activity, such variations would be highly indicative of cross-contamination. The system can automatically assess the stability of the glucose measurement and provide a warning indication the possible presence of cross-contamination. To demonstrate the influence of cross-contamination a study was conducted.
The physics describing the potential for cross-contamination indicate that the amount of cross-contamination can be sensitive to the withdrawal rate. In the case of constant glucose concentration in a large volume of blood, the amount of glucose in the sample is not dependent upon the rate of withdrawal. In contrast, when cross-contamination occurs, the rate of withdrawal influences the amount of contaminated sample obtained. As blood is removed from the body and mixing occurs in the withdrawal system, higher withdrawal rates lead to more contaminated sample. Additionally a high withdrawal rate can pull downstream blood back into the catheter increasing the amount of contamination. The relationship between withdrawal rate and the amount of cross-contamination can be used to identify situations where cross-contamination occurs. The measurement system can make measurements at two or more different withdrawal rates. A difference between the measured glucose values can be an indicator of contamination. In the case of a pressure limited withdrawal (i.e., where withdrawal rate is variable to maintain a substantially constant withdrawal pressure), the rate of flow varies over the withdrawal period due to the presence of blood in the system. Glucose consistency over the withdrawal period will be at the measurement or noise level of the system if no contamination is present. A change in measured glucose larger than the typical maximum physiologic rate of 2 mg/dl per minute can indicate that cross-contamination has occurred.
Cross-contamination can be detected by comparing two different analyte values. A first analyte value determined can be an analyte that undergoes volumetric dilution. For example cross-contamination will result in a decreased hematocrit value due to volumetric dilution. A second value determined can be an analyte that is present in the infused fluid. For example cross-contamination by a glucose-containing infusate will result in an increased glucose measurement value but will concurrently result in a decreased measurement of an analyte not contained in the infused solution (due to volumetric dilution of the sample by the infusate). The method of analyte comparison can be conducted under any situation what would vary the amount of contamination, for example measurement at different conditions in the ventilator cycle or measurements at different withdrawal rates. In case of varying the withdrawal rate the system can be operated as follows (1) measure both hematocrit and glucose at a high withdrawal rate, (2) measure both hematocrit and glucose at a lower withdrawal rate and (3) compare the results. If no cross-contamination is occurring there should be substantially no alteration in the hematocrit to glucose ratio. If cross-contamination is occurring the hematocrit value will increase as the withdrawal rate is decreased and the glucose value will decrease.
Cross-contamination can be assessed by making two measurements where the difference between the measurements is the operation of the infusion pumps. The method for assessing cross-contamination based upon one or more measured results has been described above. The difference in this methodology is the fact that the withdrawal rate can be maintained at a constant level but the conditions under which the two withdrawals are made are different. In addition to comparing specific blood analyte values, a general spectroscopic comparison can be utilized. The spectral response of the blood sample is the aggregate influence of all of the absorbing compounds in the sample. Therefore if the composition of the sample has changed appreciably a comparison between two spectroscopic responses taken under two different conditions can be utilized to identify contamination. For example, if sample #1 is contamination free while sample #2 contains the contaminant a simple spectral comparison by subtraction or division or a related method will show a spectroscopic response above the baseline noise level. Such an observation can be highly indicative of the presence of cross-contamination. Therefore a general spectroscopic similarity metric such as a ratio can be utilized to determine the presence of cross-contamination. The above process can be repeated, e.g., every time a new infusion is started for a given patient.
Reducing the influence of cross-contamination. It can be convenient for a measurement system to automatically adjust its operation to reduce the influence of cross-contamination. As one example, if the measured response shows variations in glucose values that are consistent with the ventilation frequency then the resulting data stream can be processed to remove the values likely to be influenced by cross-contamination. In a simple example, the lowest 10% of values in a sequence of measurement values can be averaged and this number be reported as the measured glucose value. More sophisticated process methods such as digital filtering or Fourier transformation can also be used.
Since cross-contamination results from pressure changes, the change in pressure can be recorded and measured glucose values adjusted based on the pressure changes. For example, if the pressure changes exceeded a threshold then measurements made on blood procured during this period can be excluded from the analysis. In another example, the pressure change can be used as a correction for the measured result. For example the measured glucose values can be adjusted based on a function of the pressure changes, e.g., a fixed percentage, a percentage determined based on the magnitude of the pressure difference, or a percentage determined based on the pressure differences and the composition of the infusate. The adjustment to be made can also be tailored to a specific patient by combination with other methods—e.g., the pressure difference can be recorded, and the actual glucose value at that pressure difference determined by another correction method (e.g., interpolation between values obtained under conditions of no cross-contamination), and the difference between the measured value and the corrected value used to determine the correction to be applied to subsequent measurements under similar conditions such as pressure differences.
During the standard ventilation cycle the flow rate in the vena cava varies. The periods of decreased or reversed flow represent the greatest potential for cross-contamination during the ventilation cycle. If there is potential for cross-contamination to occur during these periods of decreased or reversed flow in the blood vessel, the problem can be mitigated by stopping the withdrawal during these periods. A variable rate withdrawal can be linked to the ventilation cycle by monitoring the pressure in the vessel or by monitoring the pressure of the ventilator airway. The withdrawal rate can be accordingly modulated such that the withdrawal rate is decreased appropriately during periods when cross-contamination is likely to be present. The modulation process can involve decreasing the withdrawal rate, stopping the withdrawal or even reversing the withdrawal rate to insure that the sample obtained is free from cross-contamination.
In some blood access system there is the opportunity to withdraw blood from the central venous catheter and to physically separate potentially cross-contaminated blood from uncontaminated blood. In one example, a pressure sensor can identify a pressure change indicative of a flow reversal. The blood segment associated with this potentially cross-contaminated sample can be tracked as it is withdrawn through the blood access system. At an appropriate point the potentially contaminated sample can be diverted into a second fluid path such that the resulting blood sample for measurement is contamination free.
Infusions that can result in cross-contamination can also be stopped during phases of the ventilator cycle likely to lead to cross-contamination. The trigger for stopping fluid infusion can be an intra vessel pressure or flow measurement, a direct trigger signal from the ventilator, measured flow or pressure from the ventilator patient circuit, or some other method that provides information regarding the status of ventilation including nerve impulse or EMG signals, intra-abdominal, intrathoracic or intravascular pressure signals.
Under conditions where the patient is not ventilated or the influence of ventilation is moderately small, the withdrawal rate can be a more important factor. In the animal testing conducted with catheter locations near the right atrium or in the pelvis, there was no appreciable cross contamination but the withdrawal rate was only 20 ml/min. A nurse can easily generate withdrawal rates in excess of 60 ml/min. The potential for cross-contamination is influenced by the flow rate of blood at the site of the central venous catheter, the rate of infusion, the rate of withdrawal, the glucose concentration of the infused fluid, catheter port orientation and the distance between the point of infusion and withdrawal. The rate of withdrawal is an important parameter in determining cross-contamination: control of this parameter can reduce the likelihood of cross-contamination. In the hospital environment the rate of withdrawal can vary appreciably due to the type of syringe used, the force applied by the nurse or clinical care provider, and a variety of other uncontrolled variables. Under a variety of conditions, the withdrawal rate of the blood access system can specified and controlled such that the amount of cross-contamination does not affect the clinical efficacy of the device. Based upon medical data, the typical flow in a non-ventilated patient in the superior vena cava will average between 10 and 20 cm per second with a peak at 35 cm per second in the direction towards the heart. This will overwhelm both the infusion velocity and the withdrawal velocity of the infused drugs except for periods of about 200 ms during which the flow is retrograde at about one to 2 cm per second for about 150 ms. The retrograde flow will cause the infused fluid from the medial port to move in a retrograde manner over a distance of about 0.3 cm. The typical distance between ports on most central venous catheters is about 1 cm. The use of withdrawal rates that do not create enough suction to pull the glucose infusion across the port separation distance should be used when procuring blood samples for glucose measurement. Cross contamination can be prevented during blood withdrawal by interrupting the withdrawal of the sample during the inflation of the lung or at any point where cross-contamination is sufficiently likely. As noted previously, the large venous vessels in the thoracic cavity do not have valves, therefore flow is determined by pressure gradients. For the purposes of determining the presence of reverse flow, measurement of intravascular pressures or pressure changes can be beneficial. In the blood access circuit shown in
In practice, it can be desirable to minimize the total time needed to withdraw the blood and eliminate any unwanted flow characteristics at the catheter tip due to the overall compliance of the circuit. These desired requirements can be achieved with responsive and active control of fluid flows, pressures, or a combination thereof. Four methods of interrupting flow for the purpose of anti-cross contamination controls have been identified: 1) a compliance isolation method, 2) a flow feedback method 3) a cascade pressure-flow feedback control method and 4) a pressure feedback method. For completeness of the description of operation, the block diagrams of these example circuits include direct measurement of the ventilator stage and include the determination of lag between the ventilator stage and the intravascular pressure change, although as described herein variations are possible.
Compliance Isolation: The compliance isolation method provides anti-contamination control by using pinch valves that close fluid connections between the pump loop tubing and the sensor set at the blood optionally and optionally the flush pump, interrupting flow during the interval of lung inflation. This method works with the example pressure based withdrawal technique shown and prevents or minimizes flow reversal during the intervals of interruption by isolating the soft compliance of the pump loops from the stiffer portions of the sensor set. The pinch valves are activated immediately upon the signal of lung inflation and the pumps are allowed to continue operating at the pressure target with zero flow. Any alarms that would normally sense occlusions during the withdrawal can be deactivated during this interval.
As shown in
Flow Feedback Control:
For this method to work properly, the desired flow target must be set at a value that does not cause pressure to exceed the pressure limit beyond which degassing of the fluids might be expected to occur. Pressure can increase as additional blood is drawn into the blood line so the flow target must be set so that pressure is maintained within the limit at the end of the draw. The desired flow target command shaping and timing are determined according to a flow reference trajectory generator that determines the latency between the ventilator pressure signal and ventilator induced pressure changes on the blood pressure measurement. These latencies are determined during KVO and used to delay the command to stop flow accordingly.
Cascaded Flow-Pressure Feedback Control: The cascade control method enhances the benefits of 1) maximum draw rate at a target negative upstream pressure which limits the de-gas rate of fluids during intervals where cross contamination is not expected, and 2) rapid deceleration of fluid flow rate to zero (or near zero) during intervals where cross contamination is expected. These benefits are achieved by using an inner, flow feedback control loop, and an outer, pressure feedback control loop. These inner and outer loops comprise the control cascade.
The inner flow feedback loop is operational all the time during the draw as well as draw interruptions, and the outer pressure feedback loop is only active between the flow interruptions. The inner flow feedback loop effectively stiffens the flow impedance of the sensor set. This results in a faster time constant in the flow response as compared to the sensor set without flow feedback where changes in flow rate are limited by the intrinsic compliance and resistance of the sensor set.
The outer pressure feedback loop provides the command signal to the inner flow feedback loop during the interval of lung deflation, where cross contamination is not expected to occur. The pressure loop targets a high negative pressure during that interval to maximize the draw rate however within a pressure constraint that prevents or minimizes degassing of the blood and maintenance fluid. During lung inflation the pressure controller is reset and held inactive with a command of zero flow to the inner flow loop.
Pressure Feedback Control: The pressure feedback control method utilizes the same pressure feedback control servo used during the draw intervals for the intervals that interrupt withdrawal by substituting a slightly positive pressure target during these intervals. This results in an immediate reversal of the pump just after the draw which prevents reversal of flow during the interrupts and maintains a slight positive flow from the canula.
To further confirm the operational principles with respect to controlling flow in a blood access circuit, a simple confirmatory test was conducted in the laboratory. A blood access circuit and pumping mechanism as shown in
The particular sizes and equipment discussed above are cited merely to illustrate particular embodiments of the invention. It is contemplated that the use of the invention can involve components having different sizes and characteristics. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims the benefit of U.S. provisional application 60/955,636, filed Aug. 13, 2007, which is incorporated herein by reference. This application is related to U.S. provisional application 60/791,719, filed Apr. 12, 2006, and to U.S. provisional application 60/737,254, filed Nov. 15, 2006, each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60955636 | Aug 2007 | US |