This application claims priority under 35 U.S.C. §119 or 365 to European Application No. 15306947.1, filed Dec. 7, 2015. The entire teachings of the above application(s) are incorporated herein by reference.
The invention relates to the field of computer programs and systems, and more specifically to a method, system and program for detecting, in a B-Rep having cycles of edges and modeling a part having cut-outs represented by tunnels, location of at least part of the tunnels.
A number of systems and programs are offered on the market for the design, the engineering and the manufacturing of objects. CAD is an acronym for Computer-Aided Design, e.g. it relates to software solutions for designing an object. CAE is an acronym for Computer-Aided Engineering, e.g. it relates to software solutions for simulating the physical behavior of a future product. CAM is an acronym for Computer-Aided Manufacturing, e.g. it relates to software solutions for defining manufacturing processes and operations. In such computer-aided design systems, the graphical user interface plays an important role as regards the efficiency of the technique. These techniques may be embedded within Product Lifecycle Management (PLM) systems. PLM refers to a business strategy that helps companies to share product data, apply common processes, and leverage corporate knowledge for the development of products from conception to the end of their life, across the concept of extended enterprise. The PLM solutions provided by Dassault Systèmes (under the trademarks CATIA, ENOVIA and DELMIA) provide an Engineering Hub, which organizes product engineering knowledge, a Manufacturing Hub, which manages manufacturing engineering knowledge, and an Enterprise Hub which enables enterprise integrations and connections into both the Engineering and Manufacturing Hubs. All together the system delivers an open object model linking products, processes, resources to enable dynamic, knowledge-based product creation and decision support that drives optimized product definition, manufacturing preparation, production and service.
Such systems may deal with industrializing a mechanical part represented by a virtual solid model. The industrialization may be to design the shape of the mold that is supposed to produce said part. One step to perform this industrialization is often to recognize and remove (from the input solid) details that are not produced by the molding process. These details may include holes. An issue can thus be to compute the topological invariants of a given input object according to the following meaning. A goal is to localize topological features of interest. When the input object is an image, a topological feature is a hole. When the input object is a solid, a topological feature is a tunnel (synonym for “through hole”) or a handle.
From the mathematical point of view, there is no limit in the dimension of objects under study. Nevertheless, industrial algorithms deal with 2D images or 3D solids. Algorithms to recognize holes in a 2D image are designed on purpose and cannot be generalized to solids. Algorithms to automatically recognize tunnels and handles on a solid can be classified into two categories. The first one makes use of iterative matrix computations in order to get the Smith normal form of the boundary matrix representing the topology of the input object. The so-called homology generators can be easily read on the Smith normal form matrix. From these generators, tunnels and handles can be determined. A typical reference is An iterative algorithm for homology computation on simplicial shapes, D. Boltcheva, D. Canino, S. M. Aceituno, J. C. Léon, L. De Floriani, F. Hétroy, CAD, 43, 11 (2011) 1457-1467. The second category of algorithms performs computations on simplicial complexes. In short, a 2D simplicial complex is a triangulated graph and a 3D simplicial complex is tetrahedral mesh of a volume. A typical reference is Computing geometry-aware handle and tunnel loops in 3D models, T. K. Dey, K. Li, J. Sun, D. Cohen-Steiner, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2008, Volume 27 Issue 3, August 2008. Commercial CAD systems also provide part simplification capabilities. They are semi-automatic in the sense that the user is supposed to select faces of the detail to remove and the system sometimes completes this selection by a local recognition. This process manages through holes as well.
This prior art has several drawbacks. Computing the Smith normal form matrix of a boundary matrix is questionable for the following reason. Coefficients of the boundary matrix are 0 and 1 but its size can be very large. Coefficients of the Smith normal form are integer numbers. They are obtained through an iterative algorithm that performs integer arithmetic computations, and intermediate results may involve large integer numbers. As opposed to floating numbers, there is no memory upper bound to represent an arbitrary large integer number in a computer. For this reason, failure cannot be excluded when computing the Smith normal form of a boundary matrix. This makes the Smith normal form technology incompatible with the industrial domain where input objects of any size must be taken into account. The second reference computes tunnels and handles of a solid model, but a drawback is that it requires a Voronoï triangulation of the B-Rep of the solid, a Voronoï 3D meshing of the inside volume of the solid and a Voronoï 3D meshing of the outside volume of the solid. In other words, the solid itself and its 3D spatial neighborhood must be meshed. Firstly, such a computation may fail because of the complexity of the meshing algorithm and the input geometry. Secondly, the computing time for meshing and topological computations is not compatible with an interactive use. Existing semi-automatic solutions of commercial CAD systems are not satisfactory because of their weak productivity.
Within this context, there is still a need for an improved solution to detect, in a B-Rep having cycles of edges and modeling a part having cut-outs represented by tunnels, location of at least part of the tunnels.
It is therefore provided a computer-implemented method for determining specifications of the input of a manufacturing operation that outputs a part having cut-outs. The manufacturing operation consists in forming the cut-outs via stamping, machining, milling and/or laser cutting. The method comprises providing specifications of the output part, including a user-designed B-Rep having cycles of edges and modeling the part, the cut-outs being represented by the user with tunnels in the B-Rep. The method also comprises determining, from equivalence classes of non-boundary cycles of the B-Rep with respect to the cycle-homology relationship, the set that consists of all cycles being the one having the smallest length in a respective equivalence class. The method also comprises performing a process on the set that includes iterating replacing a cycle of the set by its Z/2Z sum with an adjacent boundary cycle when this reduces the length, for a cycle of the set and its Z/2Z sum with a shorter cycle of the set, deleting the cycle when the sum results in a boundary cycle, otherwise replacing the cycle by the sum when this reduces the length. The method then comprises identifying among the cycles of the set a number n of cycles as location of tunnels, wherein n is the genus of the B-Rep. And the method then comprises editing the B-Rep by removing identified tunnels and filling the empty space, and outputting the specifications of the output part with the edited B-Rep.
The method may comprise one or more of the following:
It is further provided a computer program comprising instructions for performing the method.
It is further provided a computer readable storage medium having recorded thereon the computer program.
It is further provided a system comprising a processor coupled to a memory and a graphical user interface, the memory having recorded thereon the computer program.
It is further provided a, input part of a manufacturing operation that outputs a part having cut-outs, the manufacturing operation consisting in forming the cut-outs via stamping, machining, milling and/or laser cutting, the input part being obtained by the above method.
It is further provided a method for producing the input part of a manufacturing operation that outputs a part having cut-outs, the manufacturing operation consisting in forming the cut-outs via stamping, machining, milling and/or laser cutting. The method comprises determining specifications of the input part according to the above method, and manufacturing the input part according to the determined specifications.
It is further provided a method for manufacturing a part having cut-outs; The method comprises producing the input part of a manufacturing operation that outputs the part having cut-outs according to the above method, and performing the manufacturing operation on the produced input part.
Embodiments of the invention will now be described, by way of non-limiting example, and in reference to the accompanying drawings, where:
The flowchart of
Such a method improves detection of cut-outs of a part, as it improves, in a B-Rep modeling the part, detection of the location of tunnels (e.g. previously not localized, i.e. the B-Rep does not include any data allowing direct retrieval—i.e. determination without any processing and/or computations—of the tunnels) representing the cut-outs (e.g. assigning a tunnel type flag/value to location(s) of the B-Rep, e.g. where such a type value was not present). Notably, thanks to the systematic approach of the method, in specific during the iteration of process S30, the method allows an automatic detection of tunnels, without involving the user (or with relatively little user-involvement). Furthermore, due to the specific mathematical framework underlying the computerization (cycle algebra and /2 sums) and the fact that process S30 reduces the scope of application of the identifying S40, the method is performed relatively fast and relatively lightly (from a hardware resource—e.g. CPU—point of view), thereby leading to a more accurate result (relatively less false negative and/or relatively less false positive) and/or in a more robust and real-time interaction manner. This holds true even when the part is relatively large (in terms of numbers of geometry), for example when the part includes more than 50, 100 or yet 500 faces (e.g. and more than 100, 500 or yet 1000 edges, and a corresponding number of vertices). Indeed, in such situations, examples of the method can still converge in less than 1 minute, or even 20 seconds, to an industrially verified and accurate result, as discussed later.
The method of
The method may comprise a further step of designing a lower and/or an upper matrix of a mold adapted for the manufacturing of the input. Such a designing is performed by a direct adaptation of the outputted specifications (e.g. automatically or semi-automatically), as known per se. Indeed, the lower and/or upper matrix may be designed such that they correspond complementarily to the 3D geometry provided by said outputted specifications. The method may then comprise producing such lower and/or upper matrix based on the design thereof.
In an example, such a method may be included as one step of a general process that starts with the design of a virtual product using a CAD system and that ends with machining the tool that is dedicated to manufacture the said product (based on the outputted specifications of the output part, which also directly correspond to the specifications of the mold). Manufacturing methods that may take benefit of the invention may involve a casting step (including die casting or sand casting), a molding step (including compression molding or injection molding), a forging step and/or a stamping step. These methods yield a preliminary version of the physical part, named the rough part, which does not feature all the details of the final product. Then, in a further step, small details are machined on the rough part by using drilling tools, cutting tools or punching tools. These details are mainly blind holes, through holes and/or functional surfaces. The diagram of
In an example, from the CAD system point of view, the data flow may run as follows. Firstly, the user designs the functional version of the virtual part. The focus is on how the part fulfils its specifications, its geometry is very simple and does not depend of any manufacturing process.
The method is computer-implemented. This means that the steps (or substantially all the steps) of the method are executed by at least one computer, or any system alike. Thus, steps of the method are performed by the computer, possibly fully automatically, or, semi-automatically. In examples, the triggering of at least some of the steps of the method may be performed through user-computer interaction. The level of user-computer interaction required may depend on the level of automatism foreseen and put in balance with the need to implement user's wishes. In examples, this level may be user-defined and/or pre-defined. In an example, referring to
A typical example of computer-implementation of the method is to perform the method with a system adapted for this purpose. The system may comprise a processor coupled to a memory—e.g. and a graphical user interface (GUI)—, the memory having recorded thereon a computer program comprising instructions for performing the method. The memory may also store a database. The memory is any hardware adapted for such storage, possibly comprising several physical distinct parts (e.g. one for the program, and possibly one for the database).
The method includes conditional processes. This typically concerns S32 and S34. But this can even concern S20, as the part may simply have no cut-out at all, in which case the absence of detection can be seen as a detection of a null—or void—result, which also needs to be performed robustly as false negative are as an issue as false positive are (being noted that the handling of such null situations is a mere matter of implementation, the remainder of the discussion focusing on cases where it is assumed that cut-outs are present and thus to be detected). Thus, depending on the part on which it is applied, advantages of the method may be highlighted. The method proves particularly advantageous when the B-Rep of the part has been designed via a process where tunnels are detectable by the method, which is most often the case when the part has been designed by a user of CAD system, e.g. a mechanical engineering designer. A computer program comprising instructions to perform the method thus proves to be a useful tool in the part design industry.
The method generally manipulates modeled objects, as the B-Rep is a modeled object. A modeled object is any object defined by data stored e.g. in the database. By extension, the expression “modeled object” designates the data itself. According to the type of the system, the modeled objects may be defined by different kinds of data. The system may indeed be any combination of a CAD system, a CAE system, a CAM system, a PDM system and/or a PLM system. In those different systems, modeled objects are defined by corresponding data. One may accordingly speak of CAD object, PLM object, PDM object, CAE object, CAM object, CAD data, PLM data, PDM data, CAM data, CAE data. However, these systems are not exclusive one of the other, as a modeled object may be defined by data corresponding to any combination of these systems. A system may thus well be both a CAD and PLM system, as will be apparent from the definitions of such systems provided below.
By CAD system, it is additionally meant any system adapted at least for designing a modeled object on the basis of a graphical representation of the modeled object, such as CATIA. In this case, the data defining a modeled object comprise data allowing the representation of the modeled object. A CAD system may for example provide a representation of CAD modeled objects using edges or lines, in certain cases with faces or surfaces. Lines, edges, or surfaces may be represented in various manners, e.g. non-uniform rational B-splines (NURBS). Specifically, a CAD file contains specifications, from which geometry may be generated, which in turn allows for a representation to be generated. Specifications of a modeled object may be stored in a single CAD file or multiple ones. The typical size of a file representing a modeled object in a CAD system is in the range of one Megabyte per part. And a modeled object may typically be an assembly of thousands of parts.
In the context of CAD, a modeled object may typically be a 3D modeled object, e.g. representing a product such as a part or an assembly of parts, or possibly an assembly of products. By “3D modeled object”, it is meant any object which is modeled by data allowing its 3D representation. A 3D representation allows the viewing of the part from all angles. For example, a 3D modeled object, when 3D represented, may be handled and turned around any of its axes, or around any axis in the screen on which the representation is displayed. This notably excludes 2D icons, which are not 3D modeled. The display of a 3D representation facilitates design (i.e. increases the speed at which designers statistically accomplish their task). This speeds up the manufacturing process in the industry, as the design of the products is part of the manufacturing process.
The 3D modeled object may represent the geometry of a product to be manufactured in the real world subsequent to the completion of its virtual design with for instance a CAD software solution or CAD system, such as a (e.g. mechanical) part (or equivalently an assembly of parts, as the assembly of parts may be seen as a part itself from the point of view of the method, or the method may be applied independently to each part of the assembly), or more generally any rigid body assembly (e.g. a mobile mechanism). A CAD software solution allows the design of products in various and unlimited industrial fields, including: aerospace, architecture, construction, consumer goods, high-tech devices, industrial equipment, transportation, marine, and/or offshore oil/gas production or transportation. The 3D modeled object designed by the method may thus represent an industrial product which may be any mechanical part, such as a part of a terrestrial vehicle (including e.g. car and light truck equipment, racing cars, motorcycles, truck and motor equipment, trucks and buses, trains), a part of an aerial vehicle (including e.g. airframe equipment, aerospace equipment, propulsion equipment, defense products, airline equipment, space equipment), a part of a naval vehicle (including e.g. navy equipment, commercial ships, offshore equipment, yachts and workboats, marine equipment), a general mechanical part (including e.g. industrial manufacturing machinery, heavy mobile machinery or equipment, installed equipment, industrial equipment product, fabricated metal product, tire manufacturing product), an electro-mechanical or electronic part (including e.g. consumer electronics, security and/or control and/or instrumentation products, computing and communication equipment, semiconductors, medical devices and equipment), a consumer good (including e.g. furniture, home and garden products, leisure goods, fashion products, hard goods retailers' products, soft goods retailers' products), a packaging (including e.g. food and beverage and tobacco, beauty and personal care, household product packaging).
In examples, the part may be a molded part, a sheet metal piece part, a forming or thermoforming plastic part, a metal casting part, or an extrusion or lamination part such as a metal rolling part. Indeed, as known per se from the field of mechanical engineering, such parts generally have cutouts that correspond to stamping, machining, milling and/or laser cutting (depending on the material and/or the related manufacturing process contemplated for the part). The method thus allows detection of location of such cut-outs in the B-Reps that model these parts. The locations may be outputted as the n cycles identified at S40 as such, or with any type of post-processing (which is an implementation detail). Then, as known from the prior art, the method may further comprise removing the identified tunnels (e.g. all or part thereof, e.g. at least one, e.g. depending on user-decision and/or automatically or manually or semi-automatically) from the B-Rep, and optionally filling the empty space. This can be performed via any classical method known as such from the prior art, possibly with slight adaptations (notably to bridge the output of the method of
As known per se and as discussed above, in many industries parts are manufactured by performing cut-outs (i.e. obtained by a material discontinuous removal process, e.g. by the above-mentioned stamping, machining, milling and/or laser cutting) in a material matrix (i.e. obtained by a material continuous deforming process—that preserves at least substantially the quantity of material, e.g. the above-mentioned molding, sheet metal shaping, plastic forming or thermoforming, metal casting, and/or extrusion or lamination part, such as metal rolling). However, the designer typically models the final part (that is, with its cut-outs) without inserting any specific information on cut-out location. This allows the mechanical designer to focus on his part of the job. Then, the method of
By PLM system, it is additionally meant any system adapted for the management of a modeled object representing a physical manufactured product (or product to be manufactured). In a PLM system, a modeled object is thus defined by data suitable for the manufacturing of a physical object. These may typically be dimension values and/or tolerance values. For a correct manufacturing of an object, it is indeed better to have such values.
By CAM solution, it is additionally meant any solution, software of hardware, adapted for managing the manufacturing data of a product. The manufacturing data generally includes data related to the product to manufacture, the manufacturing process and the required resources. A CAM solution is used to plan and optimize the whole manufacturing process of a product. For instance, it can provide the CAM users with information on the feasibility, the duration of a manufacturing process or the number of resources, such as specific robots, that may be used at a specific step of the manufacturing process; and thus allowing decision on management or required investment. CAM is a subsequent process after a CAD process and potential CAE process. Such CAM solutions are provided by Dassault Systèmes under the trademark DELMIA®.
By CAE solution, it is additionally meant any solution, software of hardware, adapted for the analysis of the physical behavior of modeled object. A well-known and widely used CAE technique is the Finite Element Method (FEM) which typically involves a division of a modeled objet into elements which physical behaviors can be computed and simulated through equations. Such CAE solutions are provided by Dassault Systèmes under the trademark SIMULIA®. Another growing CAE technique involves the modeling and analysis of complex systems composed a plurality components from different fields of physics without CAD geometry data. CAE solutions allows the simulation and thus the optimization, the improvement and the validation of products to manufacture. Such CAE solutions are provided by Dassault Systèmes under the trademark DYMOLA®.
PDM stands for Product Data Management. By PDM solution, it is meant any solution, software of hardware, adapted for managing all types of data related to a particular product. A PDM solution may be used by all actors involved in the lifecycle of a product: primarily engineers but also including project managers, finance people, sales people and buyers. A PDM solution is generally based on a product-oriented database. It allows the actors to share consistent data on their products and therefore prevents actors from using divergent data. Such PDM solutions are provided by Dassault Systèmes under the trademark ENOVIA®.
The GUI 2100 may be a typical CAD-like interface, having standard menu bars 2110, 2120, as well as bottom and side toolbars 2140, 2150. Such menu- and toolbars contain a set of user-selectable icons, each icon being associated with one or more operations or functions, as known in the art. Some of these icons are associated with software tools, adapted for editing and/or working on the 3D modeled object 2000 displayed in the GUI 2100. The software tools may be grouped into workbenches. Each workbench comprises a subset of software tools. In particular, one of the workbenches is an edition workbench, suitable for editing geometrical features of the modeled product 2000. In operation, a designer may for example pre-select a part of the object 2000 and then initiate an operation (e.g. change the dimension, color, etc.) or edit geometrical constraints by selecting an appropriate icon. For example, typical CAD operations are the modeling of the punching or the folding of the 3D modeled object displayed on the screen. The GUI may for example display data 2500 related to the displayed product 2000. In the example of
The client computer of the example comprises a central processing unit (CPU) 1010 connected to an internal communication BUS 1000, a random access memory (RAM) 1070 also connected to the BUS. The client computer is further provided with a graphical processing unit (GPU) 1110 which is associated with a video random access memory 1100 connected to the BUS. Video RAM 1100 is also known in the art as frame buffer. A mass storage device controller 1020 manages accesses to a mass memory device, such as hard drive 1030. Mass memory devices suitable for tangibly embodying computer program instructions and data include all forms of nonvolatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM disks 1040. Any of the foregoing may be supplemented by, or incorporated in, specially designed ASICs (application-specific integrated circuits). A network adapter 1050 manages accesses to a network 1060. The client computer may also include a haptic device 1090 such as cursor control device, a keyboard or the like. A cursor control device is used in the client computer to permit the user to selectively position a cursor at any desired location on display 1080. In addition, the cursor control device allows the user to select various commands, and input control signals. The cursor control device includes a number of signal generation devices for input control signals to system. Typically, a cursor control device may be a mouse, the button of the mouse being used to generate the signals. Alternatively or additionally, the client computer system may comprise a sensitive pad, and/or a sensitive screen.
The computer program may comprise instructions executable by a computer, the instructions comprising means for causing the above system to perform the method. The program may be recordable on any data storage medium, including the memory of the system. The program may for example be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The program may be implemented as an apparatus, for example a product tangibly embodied in a machine-readable storage device for execution by a programmable processor. Method steps may be performed by a programmable processor executing a program of instructions to perform functions of the method by operating on input data and generating output. The processor may thus be programmable and coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. The application program may be implemented in a high-level procedural or object-oriented programming language, or in assembly or machine language if desired. In any case, the language may be a compiled or interpreted language. The program may be a full installation program or an update program. Application of the program on the system results in any case in instructions for performing the method.
As mentioned earlier, the method or a prior process may comprise the design of the B-Rep, e.g. by an industrial designer. “Designing a 3D modeled object” designates any action or series of actions which is at least part of a process of elaborating a 3D modeled object. Thus, the method may comprise creating the 3D modeled object from scratch. Alternatively, the method may comprise providing the B-Rep of a 3D modeled object previously created, and then modifying the 3D modeled object.
The method may be included in a manufacturing process, which may comprise, after performing the method, producing a physical product corresponding to the modeled object, for example first without the cut-outs if the tunnels have been removed from the B-Rep (and possibly afterwards performing the cut-outs). In any case, the modeled object designed by the method may represent a manufacturing object. The modeled object may thus be a modeled solid (i.e. a modeled object that represents a solid). The manufacturing object may be a product, such as a part, or an assembly of parts. Because the method improves the design of the modeled object, the method also improves the manufacturing of a product and thus increases productivity of the manufacturing process.
The method of
Given the solid model of a mechanical part (e.g. the B-Rep), a goal of the method may be to identify and localize (e.g. all) through holes (i.e. tunnels in the B-Rep). A further step of the industrial process may be to remove these through holes in order to design the shape of the corresponding mold. Through holes recognition makes use of the “combinatorial algebraic topology” mathematical theory. By performing algebraic computation with cycles on the B-Rep of the solid, and by contracting these cycles to their minimal length and tension at S20 and S30, the method may compute topological “tunnels” and “handles” of the solid (being noted that these topological concepts are known per se). Through holes are localized by “tunnel” cycles.
The method provides automatic recognition of through holes: no user selection is required. When advantageously combined with feature removal, this provides the user with a valuable tool for molding design. The method is useful as well to add editable features to a pure B-Rep obtained through a STEP format translator for example. Recognizing through holes allows the creation of an editable “through hole” feature replacing the geometrical through hole. Thus, the method can be used to improve a feature recognition process. Furthermore, the method algorithm only deals with the B-Rep model (and more particularly minimal information required in the B-Rep model) of the input solid as opposed to other data structures and computations (integer number matrices, Voronoï meshing). This makes the method robust.
The input of the method is the well-known B-Rep format that models a solid. As widely known, a B-rep model includes topological entities and geometrical entities. Topological entities are: face, edge, and vertex. Geometrical entities are 3D objects: surface, plane, curve, line, point. By definition, a face is a bounded portion of a surface, named the supporting surface. An edge is a bounded portion of a curve, named the supporting curve. A vertex is a point in 3D space. They are related to each other's as follows. The bounded portion of a curve is defined by two points (the vertices) lying on the curve. The bounded portion of a surface is defined by its boundary, this boundary being a set of edges lying on the surface. Edges of the face's boundary are connected together by sharing vertices. Faces are connected together by sharing edges. By definition, two faces are adjacent if they share an edge. Similarly, two edges are adjacent if they share a vertex. Such information is enough input data for the method.
The method of
Concepts well-known from algebraic topology and used by the method are now introduced to the discussion. A goal of the introduction is to provide an overall view of the concepts used by the method. The mathematical formalism is detailed in next section.
The concepts of cycles and boundary cycles are first discussed.
Given a closed skin in the 3D space, a cycle is intuitively a single closed loop on said skin. Intuitively, a boundary cycle is a loop that is the boundary of a portion of the skin: cutting the skin along a boundary cycle separates two pieces. A non-boundary cycle is the contrary of a boundary cycle: there exist no portions of the skin that can be bounded by a non-boundary cycle. Intuitively, cutting the skin along a non-boundary cycle does not separate two pieces.
A goal of algebraic topology is to classify cycles on a given skin into two categories: boundary cycles and non-boundary cycles. Furthermore, a goal is also to classify the non-boundary cycles into a minimum set of independent cycles (set R, as detailed later). It turns out that the localization of through holes of a solid is to be better found among non-boundary cycles of its B-Rep.
The concept of equivalent cycles is now discussed.
One key feature of the theory is an equivalence relationship among the set of cycles: the so called “homology” relationship. By definition, given a closed skin S, two cycles u and ν on S are homologous is there exists a portion w of S such that u “and” ν, noted u+ν, is the boundary of w. The symbolization u+ν is formally defined later. For example, cycle u and cycle ν on the torus skin in
An example of counting of the number of handles is now discussed.
One theorem of differential geometry states that any single closed skin (in the 3D space) can be smoothly deformed into: a sphere, a torus, a double torus, a triple torus, etc., as illustrated in
Furthermore, if the skin is described by a topological graph (typically a triangulated mesh, or the compliant topology of a solid's B-Rep) then, the number γ of handles, named the genus of the skin, is easily computed by using a so called Euler formula. Noting n2 the number of faces, n1 the number of edges and n0 the number of vertices, the genus γ is such that:
n
0
−n
1
+n
2=2(1−γ)
n
0
−n
1
+n
2
−n
l=2(1−γ)
The method makes use of these results to anticipate the number of minimum non-boundary cycles. In short, by identifying at S20 the equivalence classes of non-boundary cycles within a basis of elementary cycles (i.e. each equivalence class being identified as a respective subset of the basis), the basis of elementary cycles being by definition such that each cycle of the B-Rep is obtainable by a (e.g. not necessarily unique) /2 sum of elementary cycles (the example of how to determine such basis implemented by the method of
Algebraic topology background is now discussed in more details.
The method makes use of the abstract and complex mathematics of combinatorial algebraic topology. Not all the details of this theory can be given within the scope of the method, so only useful concepts and operations are detailed.
The whole theory deals with simplicial complexes of arbitrary dimension, but the useful part of the theory relates to cycles on a closed and oriented 3D skin, typically the B-Rep of a solid model. Before reaching this use, the theory is introduced for triangulated closed skins in 3D space.
p-Chains
The topology of a triangulated skin Σ is defined as follows. Let n2 be the number of triangles, n1 the number of edges and n0 the number of vertices. Let C2={0,1}n
A goal is to associate algebraic objects (vectors) with topological entities (faces, edges, vertices). In fact, geometrical data (coordinates of vertices, normal vectors of triangles) is not relevant for the present purpose.
Now, C2, C1 and C0 are equipped with the addition modulo 2, noted +. Operation+combines integers 0 and 1 according to the following rules: 0+1=1+0=1, 0+0=0 and 1+1=0. The appropriate notations are now C2=(/2)n
For example, consider a tetrahedral polyhedral skin, as illustrated in
Similarly, C1=(/2)6 and
Finally, C0=(/2)4 and
Boundary Operators
The connectivity of triangles, edges and vertices is captured by so-called boundary operators, traditionally noted ∂p. The boundary operator ∂2: C2→C1 describes how triangles are bounded by edges. It is a linear operator from C2 to C1 defined by a matrix featuring 0,1 coefficients spread through n1 rows and n2 columns. Similarly, the boundary operator ∂1: C1→C0 describes how edges are bounded by vertices. It is a linear operator from C1 to C0 defined by a matrix featuring 0,1 coefficients spread through n0 rows and n1 columns. By nature, ∂1∘∂2=0, meaning that the boundary of a boundary has no boundary. Given w∈Cp, the typical formalism is ∂pw=Σi=1k σi with σi∈Cp−1 for all i. The boundary operator can be noted ∂ instead of ∂p when it is not ambiguous.
With this model, a bounding entity (vertex, edge) occurs either zero or one time (and not twice or more) in the boundary of the bounded entity (edge, face). Consequently, an edge cannot start and end at the same vertex and cannot occur twice or more in the boundary of the same face.
Back to the example, and according to the connectivity defined in
The topological information “triangle ƒ1 is bounded by edges e1, e4 and e6” is the result of the following matrix-vector product. It computes the boundary of ƒ1.
Thanks to previous definitions, the formalism ∂2ƒ1=e1+e4+e6 is now rigorous. Notice that the sequence of edges in the triangle boundary has no importance because addition is a commutative operation.
The boundary operator ∂1 is as follows.
The topological information “edge e3 is bounded by vertices ν2 and ν4” is the result of the following matrix vector product.
Here again, the formalism ∂1e3=ν2+ν4 is totally rigorous. Notice that the sequence of vertices in the edge boundary has no importance because addition is a commutative operation.
Finally, it can be checked that, as expected, ∂2∘∂1=0, keeping in mind that 1+1=0 in /2.
This formalism allows combination of chains according to a very simple rule. The sum u+ν of two chains includes elements of u that are not in ν and elements of ν that are not in u.
Cycles
Thanks to this algebraic background, the formal definition of a cycle and a boundary cycle are as follows. A 1-chain u is a 1-cycle if ∂1u=0. A 1-cycle u is boundary cycle if there exists a 2-chain w such that ∂2w=u. Because ∂1∘∂2=0, a boundary is always a cycle, but the reverse is not necessarily true, as previously illustrated with the torus skin.
Back to the example, the 1-chain s=e6+e5+e3+e1 is a cycle because ∂1s=0 and it is also a boundary cycle because ∂2(ƒ2+ƒ3)=s. In the tetrahedron example, all cycles are boundary cycles.
The method of
Homology Relationship
Let Ker∂1⊂C1 be the group of 1-cycles, that is the kernel of boundary operator ∂1:
Ker∂1={u∈C1,∂1u=0}
By definition, two 1-cycles u, ν∈Ker∂1 are homologous if there exists a 2-chain w∈C2 such that u+ν=∂2w. The homology relationship is an equivalence relationship, so, according to basic algebra, it defines equivalent classes on Ker∂1. By definition, the homology group H1 includes these equivalent classes. More precisely, let Im∂2 be the group of 2-chains boundaries:
Im∂2={∂2w,w∈C2}.
By construction, the homology group H1 is the quotient group H1=Ker∂1/Im∂2. This algebraic process provides a structure on the set of 1-cycles that are not boundary cycles. One goal of the invention is to compute the generators of H1.
The following property is very useful to the method. If u and ν are homologous, and if s is a boundary cycle, then u+s and ν are also homologous. The proof is as follows. Since u and ν are homologous, there exists a chain w such that u+ν=∂2w. Since s is a boundary cycle, there exists a chain t such that s=∂2t. So,
meaning that u+s and ν are homologous.
In the example of
Computing the covering tree is now discussed.
The covering tree is useful to create the basis of elementary cycles. The input of the algorithm is a non-oriented graph. The output is a labelling “2” of edges that belong to the covering tree. Before starting the algorithm, all vertices and all edges are labeled “0”. The algorithm uses a last-in-first-out (LIFO) list as an internal variable. The label of entity z is noted m(z). Labelling entity z with value k is symbolized by instruction m(z):=k.
It should be noticed that the covering tree is not unique, but any one can be used.
The identification S24 of the basis of elementary cycles is now discussed.
The previous algorithm provides a labelling of edges of the input graph: label 2 edges are those of the covering tree, label 1 edges are not. According to graph theory, adding a label 1 edge to the covering tree creates a unique elementary cycle (a single loop), which can be identified by the said edge.
Each elementary cycle is obtained by adding a label 1 edge to the covering tree. Added edge is removed before next label 1 edge is added. Noting n1 the number of edges, n0 the number of vertices and nc the number of elementary cycles, nc can be computed by the formula:
n
c
=n
1
−n
0+1
S26 is now discussed.
S26 may start with a testing of whether a cycle is a boundary cycle or not (in order to filter out boundary cycles).
The inputs of the algorithm are:
The output of the algorithm is the answer “yes” or “no” to the question “is the input cycle a boundary cycle?”.
The principle of the algorithm is as follows. Marching from one side of the cycle (along faces of the B-Rep), if it is possible to reach the other side of the cycle without crossing it, then it is not a boundary cycle. Marching from both sides of the cycle, if the two paths can get together without crossing it, then it is not a boundary cycle.
The algorithm uses a last-in-first-out (LIFO) list as an internal variable. The label value of a face ƒ is noted m(ƒ). Labelling face ƒ with value k is symbolized by instruction m(ƒ):=k. Before starting, all faces are labeled 0. The algorithm is based on the fact that each edge is shared by exactly two faces, which is a property of solids B-Rep.
If the input cycle is a boundary cycle, all faces are visited by the algorithm. In this case, the input cycle is the boundary of all faces labeled +1 and it is also the boundary of all faces labeled −1.
The reducing of cycles remaining in set R (process S30) is now discussed.
Reducing cycles is the main process of the method of
Eliminate Boundary Cycles
The very first step is to eliminate S25 boundary cycles from the list of elementary cycles. This is performed by using, on each elementary cycle, the dedicated “testing a boundary cycle” algorithm described previously. After this step is done, the number of non-boundary elementary cycles is noted nb. By construction, nb≦nc. Number nb depends on the choice of the covering tree used to compute elementary cycles.
Classes of Non-Boundary Cycles
The second step is to arrange S26 non-boundary elementary cycles into equivalence classes according to the homology relationship. This is done as follows.
Let nh be the number of classes of non-boundary elementary cycles. By construction nh≦nb. A class may include only one cycle.
Next step is to select S28 a representative non-boundary elementary cycle ri in each class. It is chosen to have the smallest (cumulated e.g. Euclidian) length amongst all other cycles of the class, if any.
Reducing S30 Classes of Non-Boundary Elementary Cycle
This step S30 is the core of the method of the example. The input data is the set R of cycles ri respectively representing classes of non-boundary elementary cycles. According to the theory, the homology group H1 is a finite group of 22γ elements and it is generated by a minimum set of 2γ elements, named the generators and noted G={h1, . . . , h2γ}. Set R={r1, . . . , rn
The previous formula must be understood in the sense of homology classes: there exists a 2-chain w such that r+Σi∈I hi=∂w or, equivalently, r+∂w=Σi∈I hi. Since set R is built on the basis of elementary cycles and according to the fact that any cycle can be written as a sum of elementary cycles, it is sure that elements of R are generators of H1. The point is that set R not always minimal in both meanings: the number of elements nh≧2γ and the (e.g. Euclidian) length of cycles.
The algorithm iteratively reduces as much as possible the number of cycles in set R as well as their respective (e.g. Euclidian) length. The smallest number of cycles in the final reduced R, noted R0, is known from the theory (|R|≧|R0|≧2γ) but it may happen that |R0|>2γ at the end of the algorithm. Nevertheless, all the γ tunnel-like cycles can be found in R0.
The iterative algorithm of the example of
Length Reduction by Adding Adjacent Faces S32
Length reduction through adjacent faces may be implemented as follows. The input data is a non-boundary cycle u and the output data is the shortest cycle homologous to cycle u according to the wireframe topology of the solid. The label of face ƒ is noted m(ƒ). Labelling face ƒ with value k is symbolized by instruction m(ƒ):=k. Before starting, all faces are labeled “0”.
This method does not change the number of cycles in R.
Reduction by Combining Non-Boundary Cycles S34
The input data is the set R. The output data is an updated set R including less cycles and shorter cycles.
Reduction by combining cycles may be implemented as follows. Let ri and rj be two cycles of R, and rk the longest one of both. Their sum is noted r=ri+rj. If r is a boundary cycle, it means that rk is homologous to a sum of cycles of R and thus is superfluous. It is eliminated from R. Otherwise, rk is replaced by r if Length (r) is smaller than Length (rk). The algorithm is:
Splitting into Simple Cycles S36
The splitting S36 into simple cycles is an option that further improves the method. It can be performed after each iteration of S34 or after S34 has converged. Then, iterations of S34 may be performed again, and then S36 may be performed again, until convergence. Such interlacing of iterations of S34 and S36 can be implemented in any way.
S36 can be implemented as follows. The first step is to separate connected components, which is a classical algorithm in the art of graph theory. Next step is to find simple cycles. Start with an arbitrary vertex and follow a path of edges from this vertex until a visited vertex is reached. Repeat the process until all edges are visited. It should be noticed that all vertices have an even number of incident edges, otherwise, the 1-chain is not a cycle. This method increases the number of elements in R, but the overall length Σi=1 n
Once set R is correctly reduced, the method can accurately identify location of tunnels. In the example of
Tension of a Cycle
Let C: [0, L]→3 be a smooth closed curve. It is parameterized with arc length and L is its length. Consequently, the tangent vector is normalized |C′(t)|=1 for all t∈[0, L] and the second derivative vector is perpendicular to the tangent vector C′(t), C″(t)=0 for all t∈[0, L]. If this closed curve is an elastic material, it is well known from prior art that the elastic force F at point C(t) is oriented along the curvature vector C″(t).
Smooth Curve on a Smooth Surface
Now, the elastic curve is on a smooth closed surface being the boundary of a solid. The outer normal of the smooth surface at point C(t) is noted N(t). The elastic force tends to push point C(t) inside the solid when C″(t), N(t)<0. Conversely, the elastic force tends to pull point C(t) away from the solid when C″(t), N(t)>0.
The tunnel vs. handle type of a smooth closed curve on a smooth closed surface is defined by measuring the length of the elastic curve where the force is directed inside the solid or outside the solid. Precisely, let φ: [0, L]→{−1,0,+1} be a mapping defined by φ(t)=−1 if C″(t), N(t)<0, φ(t)=+1 if C″(t), N(t)>0 and φ(t)=0 if C″(t), N(t)=0. The curve C is a tunnel (resp. a handle) if ∫0L φ(t)dt<0 resp. ∫0L φ(t)dt>0). Function φ is considered (rather than the scalar product itself) in order to increase robustness of the method (and make it resist to local singularities). The integral value is computed to have a global view and discard irregularities.
For example, let a and b respectively be the small and large radius of the torus illustrated in
A goal is to generalize this definition to the boundary of solid that features sharp edges and sharp vertices. By nature, a 3D point that belongs to the boundary of a solid is an inside point of a face or an inside point of a sharp edge or a sharp vertex. In the context of the method, a point inside a smooth edge or at a smooth vertex is equivalent to a point inside a face because the outer normal is well defined. Furthermore, curve C is a path of edges of the solid.
The method of the example may thus apply the following schemes to achieve an accurate result.
Point C(t) is Inside a Face
If C(t) is inside a face, then the outer normal N(t) is well defined and the values of mapping φ(•) are as follows.
C″(t), N(t)
Point C(t) is Inside a Sharp Edge
Now, C″(t) is well defined but where N(t) is not, meaning that curve C locally coincides with a sharp edge of the solid. This situation is the most common since, by nature, curve C is a path of edges. Then, there exists two adjacent faces to C(t), face 1 and face 2, and it is possible to compute scalar products C″(t),N1(t) and C″(t),N2(t) where Ni are the normal vectors of adjacent faces (numbering order is not meaningful). The mapping φ(•) is defined according to the signs of scalar products and to the local convexity of the sharp edge at point C(t).
Next table includes the values of mapping φ(•) at a point C(t) when the sharp edge is convex. Notice that this table is equal to the previous one when N1(t)=N2(t).
C″(t), N1(t)
C″(t), N2(t)
Next table includes the values of mapping φ(•) at a point C(t) when the sharp edge is non-convex. Notice that this table is equal to the first one when N1(t)=N2.
C″(t), N1(t)
C″(t), N2(t)
Point C(t) is at a Sharp Vertex
The sharp vertex situation is used when previous computations do not yield any conclusion, mainly because ∫0L φ(t)dt=0. This always happens when curve C involves line segments on planar faces. At a sharp vertex C(t0), curve C is the junction of two smooth curves, respectively C−(t) and C+(t), meaning that C(t)=C−(t) for t<t0 and C(t)=C+(t) for t>t0. Curves C− and C+ respectively have two adjacent faces. Let F(t0)=C+′(t0)−C−′(t0) be the elastic force at t0. The diagnosis combines evaluations of mapping φ(•) respectively computed using curves C− and C+. For ε∈{−, +}, the value φ(t0ε) is computed according to the following table if curve Cε is a convex edge.
F (t0), N1ε(t0)
F(t0), N2ε(t0)
For ε∈{−, +}, the value φ(t0ε) is computed according to the following table if curve Cε is a non-convex edge.
F(t0), N1ε(t0)
F(t0), N2ε(t0)
Notice that the two previous tables are equal to the first one when N1ε(t0)=N2ε(t0).
Whether elastic curve C is pulled outside or inside the solid at vertex C(t0) is disclosed by the values φ(t0−) and φ(t0+). Next table gathers all possibilities.
A full implementation of the algorithm of
Next table collects the balance of topological entities and useful Euler formulas.
Next iteration is to shorten x by adding ∂2w, where w is the right half cylindrical face of the solid's B-Rep, which yields cycle e, as illustrated in
The very last step is to identify that cycles a and b are tunnels and that cycles c, d and e are handles by using the cycle tension criteria. A local section of the solid in the neighborhood of point X of cycle b is as shown on
An implementation of the method of
Selecting and Removing Cutout Faces
As mentioned earlier, editing the B-Rep by removing identified tunnels and filling the empty space can be performed classically, according to any method known per se. Examples are discussed hereunder.
This edition can be advantageously performed by using APIs of commercial CAD software providing feature recognition and face removal capacities like the CAA library of Dassault Systemes. For clarity and consistency, it is illustrated in the context of the method through a simple example.
Given a tunnel cycle identified by using the method, in an example a step of the process is to select the faces of the cutout and to remove these faces while keeping a closed boundary of the solid.
Identifying the faces of the cutout may be done as follows. By definition, a “depression” is a set of adjacent faces of the solid that is bounded by convex edges. Choosing the left side of the cycle, adjacent faces are collected until a first depression is found. A second depression is found the same way by choosing the right side of the cycle. The depression featuring the shortest boundary curves is selected: it is the cutout.
Removing the cutout faces may be done as follows. The first step is to discard all the faces of the cutout from the B-Rep of the solid, which yields an open skin, as illustrated in next figure. The boundary of this open skin includes two cycles. The initial one (cycle A in
It should be understood that the local geometry and topology of the solid in the neighborhood of a cycle can be very complex, depending on the number of faces adjacent to the cycle. An ultimate solution is to compute a filling surface over the cycle and to sew it to the solid.
Number | Date | Country | Kind |
---|---|---|---|
15306947.1 | Dec 2015 | EP | regional |