Embodiments of the disclosure relate to the field of cyber security. More specifically, embodiments of the disclosure relate to a system and method for detecting malware utilizing reflection for obfuscation.
Malicious software (“generally referred to as “malware”) has become a pervasive problem for corporations and individual users alike, as the functionality of most networked resources is based on downloaded software. The presence of malware within downloaded software may compromise a networked resource and the network itself. A number of techniques have been used by malware authors to obfuscate the analysis of their malware within downloaded content.
Currently, security appliances are not equipped to consistently detect malware when obfuscated by malware authors using advanced programmatic techniques.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Various embodiments of the disclosure relate to a platform that is implemented with logic configured to (i) analyze the content of an object to determine whether the object is configured to issue a function call that invokes reflection operations, and/or (ii) detect whether the object, when processed, issues a function call that invokes reflection operations. The functionality of this logic is directed to uncover malware that relies on reflection for obfuscation purposes.
In general, “reflection” represents an ability to examine or modify run-time behaviors of a particular object. As an example, in object oriented programming languages such as JAVA®, reflection allows for inspection of software components, such as interfaces as well as source code constructions (e.g., classes) at run-time, without knowing the names of these software components at compile time.
As an illustrative embodiment, such detection may involve a determination as to whether an object under analysis (sometimes referred to as a “suspect object”) is configured to or is attempting to access one or more application programming interfaces (APIs) that invoke reflection operations (hereinafter “reflection APIs”). In response to determining that the object is configured to or is attempting to access a reflection API, an analysis of one or more features of the object may be conducted to determine whether the object may be associated with a malicious attack. This analysis may involve probabilistic modeling analysis and/or machine learning analysis, as described below.
More specifically, a threat detection platform (TDP) may be deployed to conduct a first analysis of a suspect object to determine whether the suspect object is configured to issue a function call that invokes reflection operations, such as an API call to a reflection API for example. According to one embodiment of the disclosure, a static analysis engine of the TDP may be configured to conduct an operation (e.g., de-obfuscation such as decompiling and/or disassembling incoming data or even emulation) to recover content from the suspect object. The content may be part of a high-level representation of the object, such as at least a portion of source code, pseudo-code, or another human readable format. Thereafter, the content may be analyzed in efforts to detect the presence of one or more function calls that, during run-time, would invoke reflection operations.
For example, the static analysis engine may be configured to decompile an object, such as an executable file for example, to recover source code. Thereafter, the static analysis engine analyzes the source code to determine if the source code includes a function call that invokes reflection operations. For instance, the source code may include an API call to a predetermined reflection API. Upon completion of a scan of the source code (e.g., an examination without execution) and detection of a function call that invokes reflection operations (e.g., an API call to a reflection API), the object is determined to be suspicious. The object is deemed “suspicious” when there exists at least a first level of likelihood of the object being associated with a malicious attack.
Additionally, or in the alternative, reflection can be identified by implementing logic within a dynamic analysis engine of the TDP. During virtual processing of the suspect object, the logic may be adapted to set interception points (e.g., hooks, breakpoints, etc.) that are used to detect the presence of one or more function calls that invoke reflection operations (e.g., particular API or system calls, etc.). Hence, in response to detecting a function call that invokes reflection operations, logic within the dynamic analysis engine determines that the object is “suspicious”.
After the object is deemed “suspicious” in response to determining that the content associated with the object includes a function call or determining that the object issues a function call that invokes reflection operations, the static analysis engine and/or the dynamic analysis engine provides the suspicious object and/or particular features associated with the suspicious object to the classification system for a more in-depth analysis. Deployed within the security appliance or in a remotely located resource, the classification system is configured to determine whether the suspicious object is “malicious,” namely the system determines whether there is a prescribed likelihood (higher than the first level of likelihood) of the object being associated with a malicious attack. In general, it is contemplated that the classification system may not be accessed unless the suspect object (i) is configured to issue a function call that invokes reflection operations or (ii) has issued a function call that invokes reflection operations.
According to one embodiment of the disclosure, the classification system determines whether the object is malicious by applying a probabilistic model analysis to one or more features (herein “feature(s)”) extracted from the suspicious object after analysis by the static analysis engine and/or the dynamic analysis engine. These feature(s) may include, but are not limited or restricted to metadata (e.g., function names and/or object size), parameters passed (or to be passed) with an intended function call, and/or other information potentially indicative of malware such as suspicious data strings from content of the object if the object has been successfully de-obfuscated. It is contemplated that the feature(s) may further include information associated with behaviors that constitute abnormalities such as a reflection API downloading a file or executing a file.
The classification system may, in addition, or in the alternative, apply a machine learning analysis to the feature(s) associated with the suspicious object. Machine learning analysis includes an operation of comparing the feature(s), either individually or as a pattern of two or more features, to data that is known to be malicious or non-malicious (e.g., benign). This comparison determines whether the suspicious object is malicious or non-malicious.
The results of the probabilistic model analysis, the machine learning analysis, or a combination of these analyses produces a result that identifies whether the suspicious object is deemed to be malicious or non-malicious.
I. Terminology
In the following description, certain terminology is used to describe aspects of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such processing or storage circuitry may include, but is not limited or restricted to a (hardware) processor; one or more processor cores; a programmable gate array; a microcontroller; an application specific integrated circuit; receiver, transmitter and/or transceiver circuitry; storage medium including semiconductor memory or a drive; or combinatorial logic, or combinations of one or more of the above components.
Logic (or engine) may be in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library or dynamic-link library (dll), or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a “non-transitory storage medium” may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device; and/or a semiconductor memory. As firmware, the executable code is stored in persistent storage.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. For instance, the object may be a file (e.g., Portable Document Format “PDF” document, or Microsoft® Word® or other word processing document), or HyperText Markup Language “HTML” based web page, or the like. During analysis, for example, the object may exhibit or a program processing the object may exhibit one or more behaviors that are systematic of malicious activity and provide evidence that the object may be classified as malicious. One of these behaviors may include issuance of a function call that invokes one or more reflection operations.
One example of a function call that invokes reflection operations is an API call to access a reflection API (e.g., an API call to “Class.forName(X)” that causes the class named “X”, namely a programming construct with particular function to be dynamically loaded at run-time). Another example of a function call that invokes reflection operations may be a system call, normally based on an API call, where the called system function invokes reflection operations.
A “platform” generally refers to an electronic device with connectivity to an external data source (e.g., network, other electronic device, etc.) that typically includes a housing that protects, and sometimes encases, circuitry with data processing and/or data storage. Examples of a platform may include a server, a dedicated security appliance, or an endpoint device which may include, but is not limited or restricted to a stationary or portable computer including a desktop computer, laptop, netbook or tablet; a smartphone; a video-game console; or wearable technology (e.g., smart watch, etc.).
The term “transmission medium” is a physical or logical communication path with an endpoint device. For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, or operations are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and is not intended to limit the invention to the specific embodiments shown and described.
II. General Architecture
Referring to
As shown in
In some embodiments, although not shown, interface 136 may be contained within the first TDP 1101. In other embodiments, the interface 136 can be integrated into an intermediary device in the communication path (e.g., an optional firewall 137, router, switch or other networked electronic device) or can be a standalone component, such as an appropriate commercially available network tap.
For this illustrative embodiment, however, the interface 136 may be configured to capture data associated with an incoming object for analysis, and perhaps its corresponding metadata (or generate metadata based on the captured data). The metadata may be used, at least in part, to determine protocols, application types and other information that may be used by logic (e.g., scheduler 150 or a virtual machine monitor not shown) within the first TDP 1101 to determine particular software profile(s) used for virtual machine (VM) configuration and/or VM operation scheduling. For instance, the software profile(s) may be used for selecting and/or configuring one or more virtual machines (VMs) 1631-163M (M≧1) within a virtual analysis environment 162 of the dynamic analysis engine 160. These software profile(s) may be directed to different software or different versions of the same software application extracted from software image(s) fetched from a storage device 155. Additionally, the metadata may be used, at least in part, as the feature(s) that are evaluated by a classification system 182 within the classification engine 180 in determining whether the object under analysis is malicious or not.
As further shown in
As shown in
After de-obfuscation, the reflection API analysis logic 144 may analyze content that is part of the high-level representation of the object for the presence of one or more API calls to any reflection API. In response to determining that the suspect object includes content that, at run-time, would issue an API call to one of the reflection APIs, the feature extraction logic 146 may extract feature(s) from the high-level representation (e.g., source code, or pseudo-code or another high-level language), such as called function names, data associated with the size of the object, information associated with one or more post infection behaviors, or the like. According to this embodiment of the disclosure, the extracted feature(s) may be provided as static analysis (SA)-based results 145 to the classification system 182 of the classification engine 180 for subsequent analysis.
It is contemplated that the static analysis engine 140 may further include processing circuitry that is responsible for extracting and/or generating metadata contained within or otherwise associated with incoming data from the communication interface 135 (e.g., network traffic, downloaded data). This metadata may be subsequently used for configuring one or more VMs 1631-163M within a virtual analysis environment 162 for conducting a dynamic analysis of the object 148 associated with that metadata.
Referring still to
After scanning the content of the suspect object, the reflection API analysis logic 144 determines whether or not this object is “suspicious” based on whether content within the high-level representation includes an API call to a reflection API. As a result, the static analysis engine 140 may pass this suspicious object 148 to the dynamic analysis engine 160 for more in-depth analysis in a VM-based analysis environment 162 (see operation (3)). Additionally, or in the alternative, the reflection API analysis logic 144 may signal the feature extraction logic 146 to obtain one or more features associated with the suspect object and provide such feature(s) 143 to the classification engine 180 as part of SA-based results 145 (see operation (4)).
Additionally, after analysis of the object has been completed, the static analysis engine 140 may provide some or all of the incoming object as the suspicious object 148 to the dynamic analysis engine 160 for in-depth dynamic analysis by one or more VMs 1631-163M of the virtual analysis environment 162. For instance, according to one embodiment of the disclosure, a first VM 1631 may be adapted to process the suspicious object 148. Logic within the dynamic analysis engine 160 (e.g., reflection hooking logic 165 within the first VM 1631) may be configured to monitor for certain types of behaviors exhibited by the suspicious object 148 during processing within the first VM 1631. One type of behavior may include the object 148 invoking reflection operations through one or more API calls to a reflection API. Another type of behavior may include detection of a system call (or, where a virtualization layer include a hypervisor is employed in an embodiment, a hyper call) that invokes reflection operations, where the system call (or hyper call) may be issued (or triggered) by the suspicious object 148 at run-time and may be based on an API call.
Herein, according to one embodiment, the first VM 1631 is configured to process the suspicious object 148. The reflection hooking logic 165 may be used to set one or more hooks at one or more reflection APIs or equivalent operating system (e.g., guest or host OS) functions that may perform or invoke reflection operations, where the hooks redirect the operational flow such as redirecting operations via a JUMP instruction to the classification system as described below (see operation (5)). Examples of these reflection APIs may include, but are not limited or restricted to getClass( ) API or Class.forName( ), which are responsible for finding a class associated with the object.
Upon determining that the object 148 is issuing function calls to access an API or OS function that invokes reflection operations, the object feature extraction logic 167 may be activated to extract one or more features 172 (e.g., arguments, etc.) from the function call(s). Similarly, these feature(s) 172 may include a name of the function identified in the function call and/or other data within the arguments of the function call issued (or triggered) by the object 148 during processing within the first VM 1631. The feature(s) 172 may be stored in data store 170 and are subsequently provided to (or accessible by) the classification system 182 as part of VM-based results 175.
Referring still to
According to one embodiment of the disclosure, the dynamic analysis engine 160 may be adapted to execute one or more VMs 1631-163M that each simulate processing of the suspicious object 148 within a run-time environment. For instance, dynamic analysis engine 160 may include processing logic 161 to provide anticipated signaling to the VM(s) 1631, . . . , and/or 163M during virtual processing of the suspicious object 148, and as such, emulate a source of and/or destination for communications with the suspicious object 148 while processed within the VM(s) 1631, . . . , and/or 163M. As an example, the processing logic 161 may be adapted to operate by providing simulated key inputs from a keyboard, keypad or touch screen, as requested by the suspicious object 148 during run-time.
Referring still to
According to one embodiment of the disclosure, the classification engine 180 includes the classification system 182 that is configured to receive the SA-based results 145 and/or the VM-based result 175 associated with the object under analysis. Based at least partially on the SA-based results 145 and/or VM-based results 175, the classification system 182 evaluates the feature(s) within the SA-based results 145 and/or VM-based results 175 to determine whether the suspicious object 148 should be classified as “malicious” (see operation (7)).
For instance, as an illustrative embodiment, the SA-based results 145 include one or more features that are provided to probabilistic modeling logic 184. The probabilistic modeling logic 184 is configured as a decision-tree analysis scheme, which receives one or more features as input, either individually or as a pattern of two or more features, and produces a result that may be used to identify whether the object is associated with a malicious attack.
According to one embodiment, the result may identify a risk level that indicates a likelihood of the object being associated with a malicious attack. For instance, the risk level may be identified in a variety of manners. For instance, the risk level may be conveyed by a two-state result that simply represents the object as malicious or non-malicious. Another risk level may be conveyed through a tri-state result (high, medium, low) to identify various probabilities of the object being associated with the malicious attack and obfuscated by reflection. Yet another risk level may be conveyed using scores that provide a greater granularity as to the likelihood of the object being associated with a malicious attack and obfuscated by reflection.
As an illustrative example, the result may include an overall score that is formed by an aggregation of scores (e.g., prescribed values) for some or all of the features undergoing analysis by the probabilistic modeling logic 184. Herein, the name of a function call directed to a particular reflection API that is detected within the de-obfuscated content of the object may be assigned a first score. Similarly, the name of a system function that invokes reflection operations and is extracted from a system call detected during virtual processing of the object 148 may be assigned a second score different than the first score. Again, the size of the object may be assigned a third score, which is different than the first and second scores. The aggregation of these scores may be used to compute an overall score, which represents the likelihood of the object being malware that is obfuscated through reflection.
As an illustrative example, suppose that the object under static analysis is a file having a filename entitled “2014_IRS_TAX_INQUIRY” with a size of 15 megabytes and including content that represents a function call to a reflection API (e.g., getClass( )). According to this probabilistic modeling analysis, an aggregate value (e.g., a score greater than or equal to 8 out of a maximum 10) denotes that the object 148 is malicious. The probabilistic model logic 184 may include a portion of the decision-tree analysis that includes the following:
Based at least in part on the one or more features associated with the object, a determination may be made by the probabilistic modeling logic 184 of the classification system 182 as to whether or not the object that invokes reflection is associated with a malicious attack. Upon determining that the object is associated with a malicious attack, the classification system 182 may provide information to identify the malicious object, including the resultant score and/or one or more of the features provided as part of the SA-based results 145, to the reporting engine 190.
As another illustrative embodiment, if provided in lieu of or in addition to SA-based results 145, the VM-based results 175 may include one or more features 172 that are provided to probabilistic modeling logic 184 based on monitored behaviors during processing of the object 148 within the first VM 1631. According to this illustrative example, the probabilistic model logic 184 assigns a risk level to the object 148 under dynamic analysis. For a file having a filename (2014_IRS_TAX_INQUIRY) with a size of 15 megabytes and including content (e.g., a code that initiates a function call to access the reflection API such as getClass( )), the probabilistic modeling logic 184 may assign a risk level (e.g., aggregate score of at least 8 out of a maximum 10) that denotes that the object 148 is malicious. For this example, the probabilistic model logic 184 may include a portion of the decision-tree analysis that includes the following:
For this illustrated embodiment, based at least in part on the feature(s) associated with the object 148, a determination may be made by the probabilistic modeling logic 184 of the classification engine 180 as to whether or not the object 148 is associated with a malicious attack. Upon determining that the object 148 is associated with a malicious attack (when Score≧8), the classification engine 180 may provide information to identify the malicious object, including one or more of the features 172 or the resultant score, to the reporting engine 190.
As shown in
In addition, or in the alternative to probabilistic modeling logic 184, the classification engine 180 may comprise machine learning logic 186. Machine learning logic 186 performs an analysis of the one or more features that are part of the SA-based results 145 and/or the one or more features that are part of the VM-based results 175. These features are compared, either individually or as a pattern of two or more features, to data known to be malicious or non-malicious (e.g. benign). The comparison is conducted to determine whether the object under analysis is malicious. Upon determining that the object is malicious (i.e., associated with a malicious attack), the classification engine 180 may provide information to identify the malicious object, such as one or more of the features from the SA-based results 145 and/or the VM-based result 175 and/or resultant score, to the reporting engine 190.
Referring now to
Including the probabilistic modeling logic 184 and/or machine learning logic 186, the classification system 200 determines whether the object 148 is malicious and returns a result 220 of its probabilistic analysis or machine learning analysis (described above) along with the identifier 210 to the classification engine 180 (see operation 8).
Upon determining that the object 137 or 148 is associated with a malicious attack, the classification engine 180 may provide information 230 to identify the malicious object, including one or more of the features 143 or 172 and/or the result 220 (e.g., resultant score value), to the reporting engine 190. Upon determining that the object 137 or 148 is benign, the classification engine 180 may provide information 230 to identify the object and that the object is benign, including the result 220, to the reporting engine 190. In lieu of reporting benign objects, the classification engine 180 may merely report malicious objects to the reporting engine 190 (see operation 9).
As still shown in
III. Exemplary Logic Layout of TDP
Referring now to
Processor(s) 300 is further coupled to persistent storage 340 via a second transmission medium 330. According to one embodiment of the disclosure, persistent storage 340 may include (a) static analysis engine 140, including de-obfuscation logic 142, reflection API analysis logic 144 and feature extraction logic 146; (b) the dynamic analysis engine 160 that includes the processing logic 161 and the virtual analysis environment 162 that includes VM(s) 1631-163M, where at least some of the VM(s) 1631-163M include reflection hooking logic 165 and object feature extraction logic 167; (c) classification engine 180; (d) reporting engine 190; and/or (e) one or more data stores 350 that may be utilized by static analysis engine 140, dynamic analysis engine 160, classification engine 180, and/or reporting engine 190. One or more of these engines (or logic units) could be implemented externally from the first TDP 1101.
Collective logic within the static analysis engine 140 may be configured to de-obfuscate (e.g., decompile or disassemble) an object and obtain a higher level representation of the object than machine code, such as source code for example. Thereafter, the content of the source code is analyzed to determine if reflection operations would be invoked by the object when processed. After detection that the object would invoke reflection operations, the static analysis engine 140 provides the object under analysis or particular feature(s) associated with the object to the classification system for more in-depth analysis.
Additionally, or in the alternative, reflection can be identified by detecting function calls that invoke reflection operations, where the function calls may be directed to reflection APIs and/or system functions that invoke reflection operations. Hence, during processing of the object within the VM 1631 and detecting at least one of the function calls that invoke reflection operations, the dynamic analysis engine 160 is able to determine that the object is suspicious.
Hereafter, the classification engine 180 is configured to determine whether an object, which is previously determined as suspicious, is further determined to be malicious or non-malicious. The object is deemed “suspicious” based on a determination of the presence of API calls within content of the object or a detection, during virtual processing of the object, of the issuance of function calls (e.g., API calls, system calls, etc.) that invokes reflection operations. The classification engine 180 may conduct probabilistic model analysis and/or machine learning analysis on certain feature(s) extracted from the object after a prior analysis uncovered that the object is invoking reflection operations. The feature(s) may include, but are not limited or restricted to function names, file sizes, and/or other information potentially indicative of malware such as extract suspicious strings from the contents of the object if the object has been successfully decompiled.
When implemented as hardware circuitry, the static analysis engine 140 may be configured to be communicatively coupled to communication interface logic 310 and/or the classification engine 180. The dynamic analysis engine 160 may further be communicatively coupled to the communication interface logic 310, the static analysis engine 140, and/or the classification engine 180. The classification engine 180 is communicatively coupled to the reporting engine 190.
IV. Exemplary Threat Detection Based on Reflection
Referring to
Additionally, or in the alternative, the behavior of the object may be monitored at run-time to detect whether the object is invoking reflection operations (block 410). For instance, this may be accomplished by setting interception points (e.g., hooks, breakpoints with subsequent activity after code execution halts, etc.) to detect one or more function calls resulting from processing the object within the virtual machine. One type of function call being monitored includes an API call directed to reflection API. Additionally, or in the alternative, another function call being monitored includes a system call that invokes reflection operations, where the system call may be based on an API call issued by the object.
In response to detecting that the object invokes reflection operations, content from the suspect object is extracted for further analysis (block 420). The content may include one or more features of the object under analysis, suspicious string data, or the like.
A classification analysis is conducted on the extracted content to determine the likelihood of the object, which invokes reflection operations, is associated with a malicious attack (block 430). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a result (e.g., a resultant score) that may be used to classify whether the object is malicious or not, as previously described. If the result is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 440 and 450). Otherwise, the suspect object is determined to be non-malicious (blocks 440 and 460).
Referring now to
If the de-obfuscated content of the suspect object fails to include an API call to a reflection API which is considered to be one of the triggering events for subsequent analysis, the analysis ends as the suspect object may be further analyzed through other malware detection schemes. However, in response to detecting that the suspect object is configured to access a reflection API for example, content from the suspect object is extracted for further analysis (blocks 520 and 530). The content may include one or more features of the suspect object (e.g., name of the reflection API, size of the suspect object, suspicious string data, or the like). Optionally, the static analysis engine may determine if the de-obfuscated (e.g., decompiled) high-level representation (e.g., source code, pseudo-code, or another high-level language) is further obfuscated, and if so, further operations are conducted to further de-obfuscate the high-level representation (blocks 540 and 550).
A classification analysis is conducted on the extracted content to determine the likelihood of the object being associated with a malicious attack (block 560). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a result that represents a likelihood of the object, which invokes reflection operations, is associated with a malicious attack, as previously described. If the result is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 570 and 580). Otherwise, the suspect object is determined to be non-malicious (blocks 570 and 590).
Referring to
In response to detecting that the object is invoking reflection operations, such as the object is attempting to access the reflection API for example, content from the object under analysis is extracted for further analysis (blocks 620 and 630). The content may include one or more features of the object, suspicious string data, or the like.
A classification analysis is conducted on the extracted content to determine the likelihood of the object being associated with a malicious attack (block 640). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a resultant score, as previously described. If the resultant score is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 650 and 660). Otherwise, the suspect object is determined to be non-malicious (blocks 650 and 670).
Referring now to
Next, a determination is made whether additional classification analysis is to be performed (block 710). If so, the classification system performs a second classification analysis on the content of the object to determine a second classification result (block 720). Where the first classification analysis is directed to a probabilistic model analysis of content associated with the object, the second classification analysis may feature a more detailed probabilistic model analysis or a machine learning analysis. Similarly, where the first classification analysis includes a machine learning analysis, the second classification analysis may feature a more detailed machine learning analysis or a probabilistic model analysis.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. For instance, some or all of the functionality of the static analysis engine, the dynamic analysis engine and the classification engine of
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5978917 | Chi | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6118382 | Hibbs et al. | Sep 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6417774 | Hibbs et al. | Jul 2002 | B1 |
6424627 | Sørhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6700497 | Hibbs et al. | Mar 2004 | B2 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
6995665 | Appelt et al. | Feb 2006 | B2 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201072 | Matulic | Jun 2012 | B2 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291198 | Mott et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321240 | Lorsch | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8401982 | Satish | Mar 2013 | B1 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9165142 | Sanders | Oct 2015 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191864 | Govindarajapuram | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080032556 | Schreier | Feb 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080181227 | Todd | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209401 | Fanning | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080263669 | Alme | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078790 | Fazunenko | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314270 | Lifliand | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120159454 | Barham | Jun 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120174224 | Thomas | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130055338 | McDougal | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140359761 | Altman | Dec 2014 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150301837 | Goetz | Oct 2015 | A1 |
20160092684 | Langton | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
Marchette, David J., Computer Intrusion Detection and Network Monitoring: A Statistical (“Marchette”), (2001). |
Margolis, P.E., “Random House Webster's 'Computer & Internet Dictionary 3rd Edition”, ISBN 0375703519, (Dec. 1998). |
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J., et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Peter M. Chen, and Brian D. Noble, “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”). |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance, “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/sectionl.html, (Jan. 6, 2014). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Mathew M., “Throttling Virses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jso?reload=true&arnumber=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003). |
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages. |
AltaVista Advanced Search Results. “attack vector identifier” Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009). |
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Aziz, Ashar, System and Method for Malware Containment, U.S. Appl. No. 14/620,060, filed Feb. 11, 2015, non-Final Office Action dated Apr. 3, 2015. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “Extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists,org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
Cohen, M.I., “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05 Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R., et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P., ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek-.com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007. |
Hjelmvik, Erik, “Passive Network Security Analysis with NetworkMiner”, (In)Secure, Issue 18, (Oct. 2008), pp. 1-100. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . (Accessed on Aug. 28, 2009). |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike, “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”). |
Krasnyansky, Max, et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Liljenstam, Michael, et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003). |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014]. |