Detecting malware based on reflection

Information

  • Patent Grant
  • 9594904
  • Patent Number
    9,594,904
  • Date Filed
    Thursday, April 23, 2015
    9 years ago
  • Date Issued
    Tuesday, March 14, 2017
    7 years ago
Abstract
According to one embodiment of the disclosure, a computerized method is described to detect a malicious object through its attempt to utilize reflection. The computerized method comprises receiving, by a network device, an object for analysis. Thereafter, the network device conducts a first analysis within a sandboxed environment. The first analysis determines whether the object is configured to utilize reflection. According to one embodiment, the first analysis involves analysis of the content of the object by a static analysis engine. Alternatively, or in addition to this analysis, the behavior of the object by an attempt to access a reflection API may determine that the object is utilizing reflection. Responsive to the network device determining that the object utilizes reflection, a second analysis is conducted to determine whether the object is malicious.
Description
FIELD

Embodiments of the disclosure relate to the field of cyber security. More specifically, embodiments of the disclosure relate to a system and method for detecting malware utilizing reflection for obfuscation.


GENERAL BACKGROUND

Malicious software (“generally referred to as “malware”) has become a pervasive problem for corporations and individual users alike, as the functionality of most networked resources is based on downloaded software. The presence of malware within downloaded software may compromise a networked resource and the network itself. A number of techniques have been used by malware authors to obfuscate the analysis of their malware within downloaded content.


Currently, security appliances are not equipped to consistently detect malware when obfuscated by malware authors using advanced programmatic techniques.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is a first illustrative embodiment of a threat detection platform (TDP) deployed within a network that detects malware that uses reflection for obfuscation.



FIG. 2 is a second illustrative embodiment of the TD) deployed within a network that operates in combination with remote sources to detect malware that uses reflection for obfuscation.



FIG. 3 is an exemplary embodiment of a logical representation of the TDP of FIG. 1.



FIG. 4 is a general exemplary flowchart that illustrates operations conducted by one or more electronic devices for determining whether an object that invokes reflection operations is malicious.



FIG. 5 is a first exemplary flowchart that illustrates operations collectively conducted by a static analysis engine and a classification system for determining whether an object invoking reflection operations is malicious.



FIG. 6 is a second exemplary flowchart that illustrates operations collectively conducted by a dynamic analysis engine and a classification engine for determining whether an object that invokes reflection operations is malicious.



FIG. 7 is an exemplary flowchart of the operations of the classification analysis performed by the classification engine of FIGS. 1 and 2.





DETAILED DESCRIPTION

Various embodiments of the disclosure relate to a platform that is implemented with logic configured to (i) analyze the content of an object to determine whether the object is configured to issue a function call that invokes reflection operations, and/or (ii) detect whether the object, when processed, issues a function call that invokes reflection operations. The functionality of this logic is directed to uncover malware that relies on reflection for obfuscation purposes.


In general, “reflection” represents an ability to examine or modify run-time behaviors of a particular object. As an example, in object oriented programming languages such as JAVA®, reflection allows for inspection of software components, such as interfaces as well as source code constructions (e.g., classes) at run-time, without knowing the names of these software components at compile time.


As an illustrative embodiment, such detection may involve a determination as to whether an object under analysis (sometimes referred to as a “suspect object”) is configured to or is attempting to access one or more application programming interfaces (APIs) that invoke reflection operations (hereinafter “reflection APIs”). In response to determining that the object is configured to or is attempting to access a reflection API, an analysis of one or more features of the object may be conducted to determine whether the object may be associated with a malicious attack. This analysis may involve probabilistic modeling analysis and/or machine learning analysis, as described below.


More specifically, a threat detection platform (TDP) may be deployed to conduct a first analysis of a suspect object to determine whether the suspect object is configured to issue a function call that invokes reflection operations, such as an API call to a reflection API for example. According to one embodiment of the disclosure, a static analysis engine of the TDP may be configured to conduct an operation (e.g., de-obfuscation such as decompiling and/or disassembling incoming data or even emulation) to recover content from the suspect object. The content may be part of a high-level representation of the object, such as at least a portion of source code, pseudo-code, or another human readable format. Thereafter, the content may be analyzed in efforts to detect the presence of one or more function calls that, during run-time, would invoke reflection operations.


For example, the static analysis engine may be configured to decompile an object, such as an executable file for example, to recover source code. Thereafter, the static analysis engine analyzes the source code to determine if the source code includes a function call that invokes reflection operations. For instance, the source code may include an API call to a predetermined reflection API. Upon completion of a scan of the source code (e.g., an examination without execution) and detection of a function call that invokes reflection operations (e.g., an API call to a reflection API), the object is determined to be suspicious. The object is deemed “suspicious” when there exists at least a first level of likelihood of the object being associated with a malicious attack.


Additionally, or in the alternative, reflection can be identified by implementing logic within a dynamic analysis engine of the TDP. During virtual processing of the suspect object, the logic may be adapted to set interception points (e.g., hooks, breakpoints, etc.) that are used to detect the presence of one or more function calls that invoke reflection operations (e.g., particular API or system calls, etc.). Hence, in response to detecting a function call that invokes reflection operations, logic within the dynamic analysis engine determines that the object is “suspicious”.


After the object is deemed “suspicious” in response to determining that the content associated with the object includes a function call or determining that the object issues a function call that invokes reflection operations, the static analysis engine and/or the dynamic analysis engine provides the suspicious object and/or particular features associated with the suspicious object to the classification system for a more in-depth analysis. Deployed within the security appliance or in a remotely located resource, the classification system is configured to determine whether the suspicious object is “malicious,” namely the system determines whether there is a prescribed likelihood (higher than the first level of likelihood) of the object being associated with a malicious attack. In general, it is contemplated that the classification system may not be accessed unless the suspect object (i) is configured to issue a function call that invokes reflection operations or (ii) has issued a function call that invokes reflection operations.


According to one embodiment of the disclosure, the classification system determines whether the object is malicious by applying a probabilistic model analysis to one or more features (herein “feature(s)”) extracted from the suspicious object after analysis by the static analysis engine and/or the dynamic analysis engine. These feature(s) may include, but are not limited or restricted to metadata (e.g., function names and/or object size), parameters passed (or to be passed) with an intended function call, and/or other information potentially indicative of malware such as suspicious data strings from content of the object if the object has been successfully de-obfuscated. It is contemplated that the feature(s) may further include information associated with behaviors that constitute abnormalities such as a reflection API downloading a file or executing a file.


The classification system may, in addition, or in the alternative, apply a machine learning analysis to the feature(s) associated with the suspicious object. Machine learning analysis includes an operation of comparing the feature(s), either individually or as a pattern of two or more features, to data that is known to be malicious or non-malicious (e.g., benign). This comparison determines whether the suspicious object is malicious or non-malicious.


The results of the probabilistic model analysis, the machine learning analysis, or a combination of these analyses produces a result that identifies whether the suspicious object is deemed to be malicious or non-malicious.


I. Terminology


In the following description, certain terminology is used to describe aspects of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such processing or storage circuitry may include, but is not limited or restricted to a (hardware) processor; one or more processor cores; a programmable gate array; a microcontroller; an application specific integrated circuit; receiver, transmitter and/or transceiver circuitry; storage medium including semiconductor memory or a drive; or combinatorial logic, or combinations of one or more of the above components.


Logic (or engine) may be in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library or dynamic-link library (dll), or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a “non-transitory storage medium” may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device; and/or a semiconductor memory. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. For instance, the object may be a file (e.g., Portable Document Format “PDF” document, or Microsoft® Word® or other word processing document), or HyperText Markup Language “HTML” based web page, or the like. During analysis, for example, the object may exhibit or a program processing the object may exhibit one or more behaviors that are systematic of malicious activity and provide evidence that the object may be classified as malicious. One of these behaviors may include issuance of a function call that invokes one or more reflection operations.


One example of a function call that invokes reflection operations is an API call to access a reflection API (e.g., an API call to “Class.forName(X)” that causes the class named “X”, namely a programming construct with particular function to be dynamically loaded at run-time). Another example of a function call that invokes reflection operations may be a system call, normally based on an API call, where the called system function invokes reflection operations.


A “platform” generally refers to an electronic device with connectivity to an external data source (e.g., network, other electronic device, etc.) that typically includes a housing that protects, and sometimes encases, circuitry with data processing and/or data storage. Examples of a platform may include a server, a dedicated security appliance, or an endpoint device which may include, but is not limited or restricted to a stationary or portable computer including a desktop computer, laptop, netbook or tablet; a smartphone; a video-game console; or wearable technology (e.g., smart watch, etc.).


The term “transmission medium” is a physical or logical communication path with an endpoint device. For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, or operations are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and is not intended to limit the invention to the specific embodiments shown and described.


II. General Architecture


Referring to FIG. 1, an exemplary block diagram of a network 100 deploying a plurality of threat detection platforms (TDP) 1101-110N (N>1, where N=3 for this embodiment) communicatively coupled to a management system 120 via a network 125 is shown. In general, the management system 120 is adapted to manage each TDP 1101-1103. For instance, the management system 120 may be configured to perform content updates within a processing engine operating as part of a communication interface 135, a static analysis engine 140, a dynamic analysis engine 160, a classification engine 180, and/or a reporting engine 190 with an optional user interface capability. For example, the content update may include a software or firmware update that alters the functionality of the TDP 1101. Alternatively, the content update may include security content, such as signatures or rules changes (e.g., add/delete/modify signatures, rules or parameters that are utilized by the rules, etc.). The static analysis engine 140 and/or the dynamic analysis engine 160 may use the signatures and/or rules to detect whether reflection operations are invoked and whether the reflection operations are directed to malicious activities.


As shown in FIG. 1, a first threat detection platform (TDP) 1101 is an electronic device that is adapted to analyze information associated with incoming data (e.g., network traffic propagating over a communication network 132, input data from another type of transmission medium including a dedicated transmission medium, etc.). As this illustrative embodiment, the first TDP 1101 is communicatively coupled with the communication network 132 via an interface 136, where the communication network 132 may include a public network such as the Internet, a private network (e.g., a local area network “LAN”, wireless LAN, etc.), or a combination thereof. The interface 136 operates as a data capturing device that intercepts (or alternatively duplicates) at least a portion of the data associated with an object, which may include metadata. Alternatively, although not shown, the interface 136 may be configured to receive files or other objects that are not provided over a network. For instance, as an example, the interface 136 may be a data capturing device that automatically (or on command), accessing data stored in a storage system or another type of interface, such as a port, for receiving objects manually provided via a suitable dedicated communication link or from storage media such as portable flash drives.


In some embodiments, although not shown, interface 136 may be contained within the first TDP 1101. In other embodiments, the interface 136 can be integrated into an intermediary device in the communication path (e.g., an optional firewall 137, router, switch or other networked electronic device) or can be a standalone component, such as an appropriate commercially available network tap.


For this illustrative embodiment, however, the interface 136 may be configured to capture data associated with an incoming object for analysis, and perhaps its corresponding metadata (or generate metadata based on the captured data). The metadata may be used, at least in part, to determine protocols, application types and other information that may be used by logic (e.g., scheduler 150 or a virtual machine monitor not shown) within the first TDP 1101 to determine particular software profile(s) used for virtual machine (VM) configuration and/or VM operation scheduling. For instance, the software profile(s) may be used for selecting and/or configuring one or more virtual machines (VMs) 1631-163M (M≧1) within a virtual analysis environment 162 of the dynamic analysis engine 160. These software profile(s) may be directed to different software or different versions of the same software application extracted from software image(s) fetched from a storage device 155. Additionally, the metadata may be used, at least in part, as the feature(s) that are evaluated by a classification system 182 within the classification engine 180 in determining whether the object under analysis is malicious or not.


As further shown in FIG. 1, the first TDP 1101 includes communication interface 135, static analysis engine 140, scheduler 150, storage device 155, dynamic analysis engine 160, classification engine 180, and/or reporting engine 190. Herein, according to this embodiment of the disclosure, the communication interface 135 receives an object and converts that object into a format, as need or appropriate, on which scanning may be conducted by the static analysis engine 140 (see operation (1)). This conversion may involve decompression of the object for example. It is contemplated that the communication interface 135 may conduct decompilation, disassembly or other de-obfuscation activities on the object and/or extraction of specific data associated with the object; however, according to this embodiment as described below, the de-obfuscation and data extraction activities may be handled by logic within the static analysis engine 140.


As shown in FIG. 1, the static analysis engine 140 comprises de-obfuscation logic 142, reflection API analysis logic 144, and/or feature extraction logic 146 (and their collective operations are illustrated as operation (2)). The de-obfuscation logic 142 is configured to de-obfuscate at least a portion of an incoming object received from the communication interface 135. As an example, the de-obfuscation logic 142 may be configured to de-obfuscate, such as decompile and/or disassemble, at least a portion of the incoming object (e.g., an executable) to recover a high-level representation of the object. The high-level representation may be in the form of source code, pseudo-code, or another high-level language.


After de-obfuscation, the reflection API analysis logic 144 may analyze content that is part of the high-level representation of the object for the presence of one or more API calls to any reflection API. In response to determining that the suspect object includes content that, at run-time, would issue an API call to one of the reflection APIs, the feature extraction logic 146 may extract feature(s) from the high-level representation (e.g., source code, or pseudo-code or another high-level language), such as called function names, data associated with the size of the object, information associated with one or more post infection behaviors, or the like. According to this embodiment of the disclosure, the extracted feature(s) may be provided as static analysis (SA)-based results 145 to the classification system 182 of the classification engine 180 for subsequent analysis.


It is contemplated that the static analysis engine 140 may further include processing circuitry that is responsible for extracting and/or generating metadata contained within or otherwise associated with incoming data from the communication interface 135 (e.g., network traffic, downloaded data). This metadata may be subsequently used for configuring one or more VMs 1631-163M within a virtual analysis environment 162 for conducting a dynamic analysis of the object 148 associated with that metadata.


Referring still to FIG. 1, the reflection API analysis logic 144 of the static analysis engine 140 analyzes content within the object, which may be a portion of network traffic (or downloaded data) according to this embodiment of the disclosure. Such analysis may involve the performance of one or more checks on content associated with the object, namely content that is part of the high-level representation of the object, without execution of the object. Examples of the checks may include signature checks, which may involve a comparison of content that is part of the high-level representation of the object to one or more pre-stored signatures, which may include one or more reflection API function names.


After scanning the content of the suspect object, the reflection API analysis logic 144 determines whether or not this object is “suspicious” based on whether content within the high-level representation includes an API call to a reflection API. As a result, the static analysis engine 140 may pass this suspicious object 148 to the dynamic analysis engine 160 for more in-depth analysis in a VM-based analysis environment 162 (see operation (3)). Additionally, or in the alternative, the reflection API analysis logic 144 may signal the feature extraction logic 146 to obtain one or more features associated with the suspect object and provide such feature(s) 143 to the classification engine 180 as part of SA-based results 145 (see operation (4)).


Additionally, after analysis of the object has been completed, the static analysis engine 140 may provide some or all of the incoming object as the suspicious object 148 to the dynamic analysis engine 160 for in-depth dynamic analysis by one or more VMs 1631-163M of the virtual analysis environment 162. For instance, according to one embodiment of the disclosure, a first VM 1631 may be adapted to process the suspicious object 148. Logic within the dynamic analysis engine 160 (e.g., reflection hooking logic 165 within the first VM 1631) may be configured to monitor for certain types of behaviors exhibited by the suspicious object 148 during processing within the first VM 1631. One type of behavior may include the object 148 invoking reflection operations through one or more API calls to a reflection API. Another type of behavior may include detection of a system call (or, where a virtualization layer include a hypervisor is employed in an embodiment, a hyper call) that invokes reflection operations, where the system call (or hyper call) may be issued (or triggered) by the suspicious object 148 at run-time and may be based on an API call.


Herein, according to one embodiment, the first VM 1631 is configured to process the suspicious object 148. The reflection hooking logic 165 may be used to set one or more hooks at one or more reflection APIs or equivalent operating system (e.g., guest or host OS) functions that may perform or invoke reflection operations, where the hooks redirect the operational flow such as redirecting operations via a JUMP instruction to the classification system as described below (see operation (5)). Examples of these reflection APIs may include, but are not limited or restricted to getClass( ) API or Class.forName( ), which are responsible for finding a class associated with the object.


Upon determining that the object 148 is issuing function calls to access an API or OS function that invokes reflection operations, the object feature extraction logic 167 may be activated to extract one or more features 172 (e.g., arguments, etc.) from the function call(s). Similarly, these feature(s) 172 may include a name of the function identified in the function call and/or other data within the arguments of the function call issued (or triggered) by the object 148 during processing within the first VM 1631. The feature(s) 172 may be stored in data store 170 and are subsequently provided to (or accessible by) the classification system 182 as part of VM-based results 175.


Referring still to FIG. 1, the scheduler 150 may be adapted to configure one or more VMs 1631-163M based on metadata associated with the suspicious object 148 in order to conduct run-time processing of the suspicious object 148 within the configured VMs 1631-163M. For instance, the first VM 1631 and a second VM 1632 may be configured to run concurrently (i.e. overlapping at least in part in time), where each VM 1631 and 1632 being configured with a different software profile corresponding to software images stored within storage device 155. As an alternative embodiment, the first VM 1631 may be configured to run plural processes concurrently or sequentially, each process configured according to a software configuration that may be used by different electronic devices connected to a particular enterprise network (e.g., endpoint device(s) 130) or a prevalent type of software configuration (e.g., a particular version of Windows® OS and/or a particular version of a web browser with a particular application plug-in). It is contemplated that the VM configuration described above may be handled by logic other than the scheduler 150.


According to one embodiment of the disclosure, the dynamic analysis engine 160 may be adapted to execute one or more VMs 1631-163M that each simulate processing of the suspicious object 148 within a run-time environment. For instance, dynamic analysis engine 160 may include processing logic 161 to provide anticipated signaling to the VM(s) 1631, . . . , and/or 163M during virtual processing of the suspicious object 148, and as such, emulate a source of and/or destination for communications with the suspicious object 148 while processed within the VM(s) 1631, . . . , and/or 163M. As an example, the processing logic 161 may be adapted to operate by providing simulated key inputs from a keyboard, keypad or touch screen, as requested by the suspicious object 148 during run-time.


Referring still to FIG. 1, the static analysis engine 140 may be adapted to provide SA-based results 145 to the classification system 182 while the dynamic analysis engine 160 may be adapted to provide the VM-based results 175 to the classification system 182 (see operations (4, 6)). According to one embodiment of the disclosure, the SA-based results 145 may include information obtained by analyzing the incoming object that is potentially indicative of malware (e.g., function names, object size, suspicious strings within the object 148). Similarly, the VM-based results 175 may include information associated with the object 148 as well as the function calls that invoke reflection operations (e.g., function names or other argument data associated with the functions calls).


According to one embodiment of the disclosure, the classification engine 180 includes the classification system 182 that is configured to receive the SA-based results 145 and/or the VM-based result 175 associated with the object under analysis. Based at least partially on the SA-based results 145 and/or VM-based results 175, the classification system 182 evaluates the feature(s) within the SA-based results 145 and/or VM-based results 175 to determine whether the suspicious object 148 should be classified as “malicious” (see operation (7)).


For instance, as an illustrative embodiment, the SA-based results 145 include one or more features that are provided to probabilistic modeling logic 184. The probabilistic modeling logic 184 is configured as a decision-tree analysis scheme, which receives one or more features as input, either individually or as a pattern of two or more features, and produces a result that may be used to identify whether the object is associated with a malicious attack.


According to one embodiment, the result may identify a risk level that indicates a likelihood of the object being associated with a malicious attack. For instance, the risk level may be identified in a variety of manners. For instance, the risk level may be conveyed by a two-state result that simply represents the object as malicious or non-malicious. Another risk level may be conveyed through a tri-state result (high, medium, low) to identify various probabilities of the object being associated with the malicious attack and obfuscated by reflection. Yet another risk level may be conveyed using scores that provide a greater granularity as to the likelihood of the object being associated with a malicious attack and obfuscated by reflection.


As an illustrative example, the result may include an overall score that is formed by an aggregation of scores (e.g., prescribed values) for some or all of the features undergoing analysis by the probabilistic modeling logic 184. Herein, the name of a function call directed to a particular reflection API that is detected within the de-obfuscated content of the object may be assigned a first score. Similarly, the name of a system function that invokes reflection operations and is extracted from a system call detected during virtual processing of the object 148 may be assigned a second score different than the first score. Again, the size of the object may be assigned a third score, which is different than the first and second scores. The aggregation of these scores may be used to compute an overall score, which represents the likelihood of the object being malware that is obfuscated through reflection.


As an illustrative example, suppose that the object under static analysis is a file having a filename entitled “2014_IRS_TAX_INQUIRY” with a size of 15 megabytes and including content that represents a function call to a reflection API (e.g., getClass( )). According to this probabilistic modeling analysis, an aggregate value (e.g., a score greater than or equal to 8 out of a maximum 10) denotes that the object 148 is malicious. The probabilistic model logic 184 may include a portion of the decision-tree analysis that includes the following:

    • If object_content_string=string ‘getClass’
      • Score+=Score+4;
    • If filename string>8
      • if first_char=char ‘[0-9]’
        • Score+=Score+2.5
      • if first_char=char ‘[A-Z]”
        • Score+=Score+1.5
    • If filesize>10 megabytes
      • Score+=Score+2


Based at least in part on the one or more features associated with the object, a determination may be made by the probabilistic modeling logic 184 of the classification system 182 as to whether or not the object that invokes reflection is associated with a malicious attack. Upon determining that the object is associated with a malicious attack, the classification system 182 may provide information to identify the malicious object, including the resultant score and/or one or more of the features provided as part of the SA-based results 145, to the reporting engine 190.


As another illustrative embodiment, if provided in lieu of or in addition to SA-based results 145, the VM-based results 175 may include one or more features 172 that are provided to probabilistic modeling logic 184 based on monitored behaviors during processing of the object 148 within the first VM 1631. According to this illustrative example, the probabilistic model logic 184 assigns a risk level to the object 148 under dynamic analysis. For a file having a filename (2014_IRS_TAX_INQUIRY) with a size of 15 megabytes and including content (e.g., a code that initiates a function call to access the reflection API such as getClass( )), the probabilistic modeling logic 184 may assign a risk level (e.g., aggregate score of at least 8 out of a maximum 10) that denotes that the object 148 is malicious. For this example, the probabilistic model logic 184 may include a portion of the decision-tree analysis that includes the following:




















If call = getClass( )





 Score += Score + 4;





 if filename string > 8





  if first_char = char ′[0-9]’





   Score += Score + 2.5





  if first_char = char ‘[A-Z]”





   Score += Score +1.5





 if filesize > 10 megabytes





  Score += Score + 2










For this illustrated embodiment, based at least in part on the feature(s) associated with the object 148, a determination may be made by the probabilistic modeling logic 184 of the classification engine 180 as to whether or not the object 148 is associated with a malicious attack. Upon determining that the object 148 is associated with a malicious attack (when Score≧8), the classification engine 180 may provide information to identify the malicious object, including one or more of the features 172 or the resultant score, to the reporting engine 190.


As shown in FIG. 1, the reporting engine 190 is configured to receive information 185 from the classification engine 180 and generate alerts 192, especially in response to the suspicious object being now classified as malicious (see operation (8)). The alerts may include various types of messages, which may include text messages and/or email messages, video or audio stream, or other types of information over a wired or wireless communication path. The reporting engine 190 features an optional user interface 194 (e.g., touch pad, keyed inputs, etc.) for customization as to the reporting configuration.


In addition, or in the alternative to probabilistic modeling logic 184, the classification engine 180 may comprise machine learning logic 186. Machine learning logic 186 performs an analysis of the one or more features that are part of the SA-based results 145 and/or the one or more features that are part of the VM-based results 175. These features are compared, either individually or as a pattern of two or more features, to data known to be malicious or non-malicious (e.g. benign). The comparison is conducted to determine whether the object under analysis is malicious. Upon determining that the object is malicious (i.e., associated with a malicious attack), the classification engine 180 may provide information to identify the malicious object, such as one or more of the features from the SA-based results 145 and/or the VM-based result 175 and/or resultant score, to the reporting engine 190.


Referring now to FIG. 2, according to another embodiment of the disclosure, the static analysis engine 140 and/or dynamic analysis engine 160 located within the first TDP 1101 may determine that the object is suspicious when the object is configured to invoke or invokes reflection operations, as described above (see operations 1-2 & 4-5). However, located remotely from the first TDP 1101, such as part of a cloud computing service 138 or within a different enterprise network for example, a classification system 200 is configured to receive an identifier 210 for the object along with (i) the object 137 and/or one or more features 143; (ii) object 148 and/or one or more features 172; or any combination thereof (see operations 3, 6 and 7). The identifier 210 may include any value that is considered to be unique, such as a hash result (e.g., MD5 hash value) for example.


Including the probabilistic modeling logic 184 and/or machine learning logic 186, the classification system 200 determines whether the object 148 is malicious and returns a result 220 of its probabilistic analysis or machine learning analysis (described above) along with the identifier 210 to the classification engine 180 (see operation 8).


Upon determining that the object 137 or 148 is associated with a malicious attack, the classification engine 180 may provide information 230 to identify the malicious object, including one or more of the features 143 or 172 and/or the result 220 (e.g., resultant score value), to the reporting engine 190. Upon determining that the object 137 or 148 is benign, the classification engine 180 may provide information 230 to identify the object and that the object is benign, including the result 220, to the reporting engine 190. In lieu of reporting benign objects, the classification engine 180 may merely report malicious objects to the reporting engine 190 (see operation 9).


As still shown in FIG. 2, the reporting engine 190 is configured to receive information from the classification engine 180 and generate alerts 192, especially in response to the suspicious objects that have now been classified as malicious (see operation 10).


III. Exemplary Logic Layout of TDP


Referring now to FIG. 3, an exemplary embodiment of a logical representation of the first TDP 1101 is shown. The first TDP 1101 includes a housing 305, which is made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protect circuitry within the housing 305, namely one or more processors 300 that are coupled to communication interface logic 310 that is part of communication interface 135 of FIGS. 1-2 via a first transmission medium 320. Communication interface logic 310 enables communications with other TDP 1102-1103 and management system 120 of FIG. 1. According to one embodiment of the disclosure, communication interface logic 310 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 310 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 300 is further coupled to persistent storage 340 via a second transmission medium 330. According to one embodiment of the disclosure, persistent storage 340 may include (a) static analysis engine 140, including de-obfuscation logic 142, reflection API analysis logic 144 and feature extraction logic 146; (b) the dynamic analysis engine 160 that includes the processing logic 161 and the virtual analysis environment 162 that includes VM(s) 1631-163M, where at least some of the VM(s) 1631-163M include reflection hooking logic 165 and object feature extraction logic 167; (c) classification engine 180; (d) reporting engine 190; and/or (e) one or more data stores 350 that may be utilized by static analysis engine 140, dynamic analysis engine 160, classification engine 180, and/or reporting engine 190. One or more of these engines (or logic units) could be implemented externally from the first TDP 1101.


Collective logic within the static analysis engine 140 may be configured to de-obfuscate (e.g., decompile or disassemble) an object and obtain a higher level representation of the object than machine code, such as source code for example. Thereafter, the content of the source code is analyzed to determine if reflection operations would be invoked by the object when processed. After detection that the object would invoke reflection operations, the static analysis engine 140 provides the object under analysis or particular feature(s) associated with the object to the classification system for more in-depth analysis.


Additionally, or in the alternative, reflection can be identified by detecting function calls that invoke reflection operations, where the function calls may be directed to reflection APIs and/or system functions that invoke reflection operations. Hence, during processing of the object within the VM 1631 and detecting at least one of the function calls that invoke reflection operations, the dynamic analysis engine 160 is able to determine that the object is suspicious.


Hereafter, the classification engine 180 is configured to determine whether an object, which is previously determined as suspicious, is further determined to be malicious or non-malicious. The object is deemed “suspicious” based on a determination of the presence of API calls within content of the object or a detection, during virtual processing of the object, of the issuance of function calls (e.g., API calls, system calls, etc.) that invokes reflection operations. The classification engine 180 may conduct probabilistic model analysis and/or machine learning analysis on certain feature(s) extracted from the object after a prior analysis uncovered that the object is invoking reflection operations. The feature(s) may include, but are not limited or restricted to function names, file sizes, and/or other information potentially indicative of malware such as extract suspicious strings from the contents of the object if the object has been successfully decompiled.


When implemented as hardware circuitry, the static analysis engine 140 may be configured to be communicatively coupled to communication interface logic 310 and/or the classification engine 180. The dynamic analysis engine 160 may further be communicatively coupled to the communication interface logic 310, the static analysis engine 140, and/or the classification engine 180. The classification engine 180 is communicatively coupled to the reporting engine 190.


IV. Exemplary Threat Detection Based on Reflection


Referring to FIG. 4, a general exemplary flowchart is shown that illustrates operations conducted by one or more electronic devices, such as a TDP or another type of platform, for determining whether a suspect object, which invokes reflection operations to obfuscate content or operability, is malicious. Upon receiving an object, an analysis is conducted to determine whether the suspect object is configured to access a reflection API (block 400). This may be determined by analyzing the de-obfuscated content associated with the object (e.g., the decompiled source code) for the presence of an API call that, at run-time, would invoke a reflection API. If the object includes such an API call, the object is deemed suspicious.


Additionally, or in the alternative, the behavior of the object may be monitored at run-time to detect whether the object is invoking reflection operations (block 410). For instance, this may be accomplished by setting interception points (e.g., hooks, breakpoints with subsequent activity after code execution halts, etc.) to detect one or more function calls resulting from processing the object within the virtual machine. One type of function call being monitored includes an API call directed to reflection API. Additionally, or in the alternative, another function call being monitored includes a system call that invokes reflection operations, where the system call may be based on an API call issued by the object.


In response to detecting that the object invokes reflection operations, content from the suspect object is extracted for further analysis (block 420). The content may include one or more features of the object under analysis, suspicious string data, or the like.


A classification analysis is conducted on the extracted content to determine the likelihood of the object, which invokes reflection operations, is associated with a malicious attack (block 430). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a result (e.g., a resultant score) that may be used to classify whether the object is malicious or not, as previously described. If the result is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 440 and 450). Otherwise, the suspect object is determined to be non-malicious (blocks 440 and 460).


Referring now to FIG. 5, a first exemplary flowchart is shown that illustrates operations conducted by the static analysis engine and the classification system collectively deployed within the TDP and/or external resources (e.g. cloud services). Upon receiving a suspect object, an analysis is conducted to determine whether the object is configured to invoke reflection operations. This analysis may involve de-obfuscating by decompiling and/or disassembling (or by emulation) at least part of the object to recover a high-level representation (e.g., source code, or pseudo-code or another high-level language), and thereafter, conducting an analysis of the content that is part of the high-level representation (e.g., at least a portion of the source code or pseudo-code) to determine whether the object would invoke reflection at run-time (blocks 500, 510 and 520). The object is considered to invoke reflection upon determining, by static analysis of the source code (or pseudo-code or another high-level language, that the code includes an API call to a reflection API.


If the de-obfuscated content of the suspect object fails to include an API call to a reflection API which is considered to be one of the triggering events for subsequent analysis, the analysis ends as the suspect object may be further analyzed through other malware detection schemes. However, in response to detecting that the suspect object is configured to access a reflection API for example, content from the suspect object is extracted for further analysis (blocks 520 and 530). The content may include one or more features of the suspect object (e.g., name of the reflection API, size of the suspect object, suspicious string data, or the like). Optionally, the static analysis engine may determine if the de-obfuscated (e.g., decompiled) high-level representation (e.g., source code, pseudo-code, or another high-level language) is further obfuscated, and if so, further operations are conducted to further de-obfuscate the high-level representation (blocks 540 and 550).


A classification analysis is conducted on the extracted content to determine the likelihood of the object being associated with a malicious attack (block 560). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a result that represents a likelihood of the object, which invokes reflection operations, is associated with a malicious attack, as previously described. If the result is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 570 and 580). Otherwise, the suspect object is determined to be non-malicious (blocks 570 and 590).


Referring to FIG. 6, a second exemplary flowchart is shown that illustrates operations conducted by the dynamic analysis engine and the classification system collectively deployed within the TDP and/or external resources (e.g. cloud services). Upon processing the suspect object within a configured virtual machine, based on one or more behaviors of the object during processing within the virtual machine, a determination is made whether the object is invoking reflection operations (blocks 600, 610 and 620).


In response to detecting that the object is invoking reflection operations, such as the object is attempting to access the reflection API for example, content from the object under analysis is extracted for further analysis (blocks 620 and 630). The content may include one or more features of the object, suspicious string data, or the like.


A classification analysis is conducted on the extracted content to determine the likelihood of the object being associated with a malicious attack (block 640). According to one embodiment of the disclosure, the classification analysis may involve probabilistic model analysis and/or machine learning analysis to produce a resultant score, as previously described. If the resultant score is greater than a prescribed threshold, the suspect object is determined to be malicious (blocks 650 and 660). Otherwise, the suspect object is determined to be non-malicious (blocks 650 and 670).


Referring now to FIG. 7, an exemplary flowchart of the operations of the classification analysis described in FIGS. 4-6 as performed by the classification system of FIGS. 1 and 2 is shown. Herein, the classification system performs a first classification analysis on the content of the object to determine a first classification result (block 700). According to one embodiment of the disclosure, the first classification analysis includes a probabilistic model analysis on contents of the object, namely an analysis on features and other data associated with the object in accordance with a decision-tree analysis as described above. Based on these features provided for analysis, a result (e.g., resultant score) is produced, which represents the likelihood of the object under analysis being associated with a malicious attack. According to another embodiment of the disclosure, the first classification analysis may feature a machine learning analysis on content of the object, namely comparing content associated with the object to content associated with known malware or known benign data. Based on these comparisons, a result (e.g., resultant score) is produced, which represents a likelihood that the object is associated with a malicious attack.


Next, a determination is made whether additional classification analysis is to be performed (block 710). If so, the classification system performs a second classification analysis on the content of the object to determine a second classification result (block 720). Where the first classification analysis is directed to a probabilistic model analysis of content associated with the object, the second classification analysis may feature a more detailed probabilistic model analysis or a machine learning analysis. Similarly, where the first classification analysis includes a machine learning analysis, the second classification analysis may feature a more detailed machine learning analysis or a probabilistic model analysis.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. For instance, some or all of the functionality of the static analysis engine, the dynamic analysis engine and the classification engine of FIG. 1 may be implemented within another type of network device, such as an endpoint device. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method comprising: receiving, by a network device, an object for analysis;conducting, by the network device, a first analysis to determine whether the object is configured to invoke reflection operations at run-time; andresponsive to the network device determining that the object is configured to invoke reflection operations at run-time, conducting a second analysis within one or more virtual machines to determine whether the object is deemed to be malicious.
  • 2. The computerized method of claim 1, wherein the object is deemed to be malicious if the second analysis determines that there exists a probability above a threshold probability that the object includes malware.
  • 3. The computerized method of claim 1, wherein the reflection operations comprise examining and modifying run-time behavior of the object without knowledge of a class associated with the object.
  • 4. The computerized method of claim 1, wherein the first analysis comprises de-obfuscating at least part of the object to produce a high-level representation of the object and analyzing the high-level representation of the object to determine whether the object is configured to issue a call to an Application Programming Interface that invokes the reflection operations.
  • 5. The computerized method of claim 4, wherein the high-level representation of the object comprises source code that is produced during decompiling of the object.
  • 6. The computerized method of claim 5, wherein the first analysis scans the source code to determine whether the source code includes an API function name for the Application Programming Interface that invokes the reflection operations.
  • 7. The computerized method of claim 1, wherein the first analysis comprises decompiling an executable that is at least part of the object to produce source code associated with the object and analyzing the source code to determine whether an Application Programming Interface (API) function name for an API that invokes the reflection operations and is accessible by the object through an API call.
  • 8. The computerized method of claim 1, wherein the first analysis comprises de-obfuscating at least a portion of content of the object and analyzing the de-obfuscated portion of the content to determine whether the de-obfuscated portion of the content of the object is configured to issue an Application Programming Interface call to an Application Programming Interface that invokes the reflection operations.
  • 9. The computerized method of claim 1, wherein the second analysis comprises (1) analyzing one or more features of the object provided as input into a probabilistic modeling analysis that produces a score value for each feature provided as input, (2) computing an aggregate of the score values for each of the one or more features to computer an aggregated score value, and (3) determining whether or not the object is malicious based on the aggregated score value.
  • 10. The computerized method of claim 1, wherein the second analysis comprises analyzing one or more features of the object provided as input into a machine learning analysis, the machine learning analysis includes conducting a comparison of content within a first feature of the one or more features to known malicious patterns; anddetermining that the object is malicious based on a matching of at least one known malicious pattern of the known malicious patterns to the content within the first feature of the one or more features.
  • 11. The computerized method of claim 1, wherein the second analysis is conducted remotely from the network device.
  • 12. A computerized method comprising: receiving, by a network device, an object for analysis;conducting, by the network device, a first analysis to determine whether, during processing of the object within a virtual machine, the object is issuing one or more function calls that invoke reflection operations; andresponsive to the network device determining that the object is issuing calls that invoke reflection operations, conducting a second analysis to determine whether the object is malicious.
  • 13. The computerized method of claim 12, wherein the first analysis comprises detecting the one or more function calls that includes an Application Programming Interface (API) call to a reflection API.
  • 14. The computerized method of claim 13, wherein the first analysis comprises setting at least one hook at the reflection API and, in response to the API call to the reflection API, redirecting information associated with the API call for use in the second analysis.
  • 15. The computerized method of claim 13, wherein the reflection API comprises one of a getClass API and a Class.forname API.
  • 16. The computerized method of claim 12, wherein the second analysis comprises (1) analyzing one or more features of the object provided as input into a probabilistic modeling analysis that produces a score value for each feature provided as input, (2) computing an aggregate of the score values for each of the one or more features to computer an aggregated score value, and (3) determining whether or not the object is malicious based on the aggregated score value.
  • 17. The computerized method of claim 12, wherein the second analysis comprises analyzing one or more features of the object provided as input into a machine learning analysis, the machine learning analysis includes conducting a comparison of content within a first feature of the one or more features to known malicious patterns; anddetermining that the object is malicious based on a matching of at least one known malicious pattern of the known malicious patterns to the content within the first feature of the one or more features.
  • 18. A network device comprising: a communication interface configured to receive an incoming object, the communication interface includes a connector adapted for coupling to a wired communication medium;a static analysis engine communicatively coupled to the communication interface, the static analysis engine to receive the object and perform a first analysis of the object, the first analysis determines whether the object is configured to invoke reflection operations at run-time; anda classification system communicatively coupled to the static analysis engine, the classification system, in response to the static analysis engine determining that the object is configured to invoke reflection operations at run-time, conducts a second analysis by processing the object within one or more virtual machines to determine whether the object is malicious.
  • 19. The network device of claim 18, wherein the object is deemed to be malicious by the classification system if the second analysis determines that there exists a probability above a threshold probability that the object includes malware.
  • 20. The network device of claim 18, wherein the static analysis engine performs the first analysis by at least decompiling at least part of the object to produce code and analyzing the code to determine whether the object is configured to issue a function call that invokes reflection operations.
  • 21. The network device of claim 20, wherein the function call comprises an API call to a reflection API that invokes the reflection operations.
  • 22. The network device of claim 18, wherein the classification system performs the second analysis by at least analyzing features of the object based on a decision-tree analysis, each of the features is assigned a score value in accordance with the decision-tree analysis and an aggregate of the score values for the features identifies whether or not the object is malicious.
  • 23. The network device of claim 18, wherein the classification system performs the second analysis by at least (1) analyzing one or more features of the object provided as input into a machine learning analysis, the machine learning analysis includes conducting a comparison of content within a first feature of the one or more features to known malicious patterns, and (2) determining that the object is malicious based on a matching of at least one known malicious pattern of the known malicious patterns to the content within the first feature of the one or more features.
  • 24. A network device comprising: a communication interface configured to receive an incoming object, the communication interface includes one of (i) a connector adapted for coupling to a wired communication medium or (ii) a radio unit with one or more antennas for wireless connectivity for receiving the incoming object;a dynamic analysis engine communicatively coupled to the communication interface, the dynamic analysis engine to receive the object and perform a first analysis of the object, the first analysis determines, during processing of the object within a virtual machine, whether the object is invoking reflection operations based on one or more function calls; anda classification system communicatively coupled to the static analysis engine, the classification system, in response to the static analysis engine determining that the object invoking reflection operations, conducts a second analysis to determine whether the object is malicious.
  • 25. A non-transitory storage medium including software that, when executed by a processor implemented with a network device, causes the network device to detect within an object under analysis is associated with a malicious attack by performing operations comprising: conducting at least one of (1) a first analysis to determine whether an object received for analysis is configured to invoke reflection operations at run-time and (2) a second analysis to determine, during processing of the object within a virtual machine, whether the object is issuing one or more function calls that invoke reflection operations; andresponsive to the network device determining that the object is configured to invoke reflection operations at run-time, conducting a third analysis to determine whether the object is malicious.
US Referenced Citations (520)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201072 Matulic Jun 2012 B2
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291198 Mott et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321240 Lorsch Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8401982 Satish Mar 2013 B1
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9165142 Sanders Oct 2015 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191864 Govindarajapuram Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080181227 Todd Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209401 Fanning Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080263669 Alme Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078790 Fazunenko Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314270 Lifliand Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120159454 Barham Jun 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120174224 Thomas Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130055338 McDougal Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140359761 Altman Dec 2014 A1
20150096025 Ismael Apr 2015 A1
20150301837 Goetz Oct 2015 A1
20160092684 Langton Mar 2016 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (76)
Entry
Marchette, David J., Computer Intrusion Detection and Network Monitoring: A Statistical (“Marchette”), (2001).
Margolis, P.E., “Random House Webster's 'Computer & Internet Dictionary 3rd Edition”, ISBN 0375703519, (Dec. 1998).
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J., et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Peter M. Chen, and Brian D. Noble, “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”).
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance, “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/sectionl.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Mathew M., “Throttling Virses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jso?reload=true&arnumber=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003).
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages.
AltaVista Advanced Search Results. “attack vector identifier” Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?ltag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Aziz, Ashar, System and Method for Malware Containment, U.S. Appl. No. 14/620,060, filed Feb. 11, 2015, non-Final Office Action dated Apr. 3, 2015.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “Extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists,org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I., “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05 Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R., et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P., ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek-.com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik, “Passive Network Security Analysis with NetworkMiner”, (In)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike, “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”).
Krasnyansky, Max, et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael, et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].