Detecting multi-touch inputs

Information

  • Patent Grant
  • 10061453
  • Patent Number
    10,061,453
  • Date Filed
    Tuesday, April 12, 2016
    8 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
Determining a touch contact location is disclosed. A signal that has been disturbed by a touch input on a surface is received. The received signal is transformed to determine a spatial domain signal. The spatial domain signal is compared with an expected signal associated with a potential location of a source of a disturbance caused by the touch input. The touch contact location of the touch input is determined based at least in part on the comparison.
Description
BACKGROUND OF THE INVENTION

Various technologies have been used to detect a touch input on a display area. The most popular technologies today include capacitive and resistive touch detection technology. Using resistive touch technology, often a glass panel is coated with multiple conductive layers that register touches when physical pressure is applied to the layers to force the layers to make physical contact. Using capacitive touch technology, often a glass panel is coated with material that can hold an electrical charge sensitive to a human finger. By detecting the change in the electrical charge due to a touch, a touch location can be detected. However, with resistive and capacitive touch detection technologies, the glass screen is required to be coated with a material that reduces the clarity of the glass screen. Additionally, because the entire glass screen is required to be coated with a material, manufacturing and component costs can become prohibitively expensive as larger screens are desired.


Another type of touch detection technology includes bending wave technology. One example includes the Elo Touch Systems Acoustic Pulse Recognition, commonly called APR, manufactured by Elo Touch Systems of 301 Constitution Drive, Menlo Park, Calif. 94025. The APR system includes transducers attached to the edges of a touchscreen glass that pick up the sound emitted on the glass due to a touch. However, the surface glass may pick up other external sounds and vibrations that reduce the accuracy and effectiveness of the APR system to efficiently detect a touch input. Another example includes the Surface Acoustic Wave-based technology, commonly called SAW, such as the Elo IntelliTouch Plus™ of Elo Touch Systems. The SAW technology sends ultrasonic waves in a guided pattern using reflectors on the touch screen to detect a touch. However, sending the ultrasonic waves in the guided pattern increases costs and may be difficult to achieve. Detecting additional types of inputs, such as multi-touch inputs, may not be possible or may be difficult using SAW or APR technology. Therefore there exists a need for a better way to detect an input on a surface.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 is a block diagram illustrating an embodiment of a system for detecting a touch input surface disturbance.



FIG. 2 is a block diagram illustrating an embodiment of a system for detecting a touch input.



FIG. 3 is a flow chart illustrating an embodiment of a process for calibrating and validating touch detection.



FIG. 4 is a flow chart illustrating an embodiment of a process for detecting a user touch input.



FIG. 5 is a flow chart illustrating an embodiment of a process for determining a location associated with a disturbance on a surface.



FIG. 6 is a flow chart illustrating an embodiment of a process for determining time domain signal capturing of a disturbance caused by a touch input.



FIG. 7 is a flow chart illustrating an embodiment of a process comparing spatial domain signals with one or more expected signals to determine touch contact location(s) of a touch input.



FIG. 8 is a flow chart illustrating an embodiment of a process for selecting a selected hypothesis set of touch contact location(s).





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Determining a touch input location is disclosed. For example, a user touch input on the glass surface of a display screen is detected. In some embodiments, the touch input includes multiple simultaneous touch contacts (i.e., multi-touch input). For example, a user places two fingers on a touch screen display. In some embodiments, a signal such as an acoustic or ultrasonic signal is propagated freely through a propagating medium with a surface using a transmitter coupled to the medium. When the surface is touched, the propagated signal is disturbed (e.g., the touch causes an interference with the propagated signal). In some embodiments, the disturbed signal is received at a sensor coupled to the propagating medium. By processing the received signal and comparing it against an expected signal, one or more touch contact locations on the surface associated with the touch input are at least in part determined. For example, the disturbed signal is received at a plurality of sensors and a relative time difference between when the disturbed signal was received at different sensors is used to determine time domain signals representing the time differences. In some embodiments, the time domain signals are transformed to determine spatial domain signals representing total distances traveled on the propagating medium by the respective received signals. The spatial domain signals may be compared with one or more expected signals associated with different potential touch contact locations of the touch input to select a potential location that is associated with the closest matching expected signal as the touch contact location.


In some embodiments, the touch input location is used to determine one or more of the following associated with a touch input: a gesture, a coordinate position, a time, a time frame, a direction, a velocity, a force magnitude, a proximity magnitude, a pressure, a size, and other measurable or derived parameters. In some embodiments, by detecting disturbances of a freely propagated signal, touch input detection technology can be applied to larger surface regions with less or no additional costs due to a larger surface region as compared to certain previous touch detection technologies. Additionally, the optical transparency of a touch screen may not have to be affected as compared to resistive and capacitive touch technologies. Merely by way of example, the touch detection described herein can be applied to a variety of objects such as a kiosk, an ATM, a computing device, an entertainment device, a digital signage apparatus, a cell phone, a tablet computer, a point of sale terminal, a food and restaurant apparatus, a gaming device, a casino game and application, a piece of furniture, a vehicle, an industrial application, a financial application, a medical device, an appliance, and any other objects or devices having surfaces.



FIG. 1 is a block diagram illustrating an embodiment of a system for detecting a touch input surface disturbance. In some embodiments, the system shown in FIG. 1 is included in a kiosk, an ATM, a computing device, an entertainment device, a digital signage apparatus, a cell phone, a tablet computer, a point of sale terminal, a food and restaurant apparatus, a gaming device, a casino game and application, a piece of furniture, a vehicle, an industrial application, a financial application, a medical device, an appliance, and any other objects or devices having surfaces. Propagating signal medium 102 is coupled to transmitters 104, 106, 108, and 110 and sensors 112, 114, 116, and 118. The locations where transmitters 104, 106, 108, and 110 and sensors 112, 114, 116, and 118 have been coupled to propagating signal medium 102, as shown in FIG. 1, are merely an example. Other configuration of transmitter and sensor locations may exist in various embodiments. Although FIG. 1 shows sensors located adjacent to transmitters, sensors may be located apart from transmitters in other embodiments. In some embodiments, a single transducer is used as both a transmitter and a sensor. In various embodiments, the propagating medium includes one or more of the following: panel, table, glass, screen, door, floor, whiteboard, plastic, wood, steel, metal, semiconductor, insulator, conductor, and any medium that is able to propagate an acoustic or ultrasonic signal. For example, medium 102 is glass of a display screen. A first surface of medium 102 includes a surface area where a user may touch to provide a selection input and a substantially opposite surface of medium 102 is coupled to the transmitters and sensors shown in FIG. 1. In various embodiments, a surface of medium 102 is substantially flat, curved, or combinations thereof and may be configured in a variety of shapes such as rectangular, square, oval, circular, trapezoidal, annular, or any combination of these, and the like.


Examples of transmitters 104, 106, 108, and 110 include piezoelectric transducers, electromagnetic transducers, transmitters, sensors, and/or any other transmitters and transducers capable of propagating a signal through medium 102. Examples of sensors 112, 114, 116, and 118 include piezoelectric transducers, electromagnetic transducers, laser vibrometers, transmitters, and/or any other sensors and transducers capable of detecting a signal on medium 102. In some embodiments, the transmitters and sensors shown in FIG. 1 are coupled to medium 102 in a manner that allows a user's input to be detected in a predetermined region of medium 102. Although four transmitters and four sensors are shown, any number of transmitters and any number of sensors may be used in other embodiments. For example, two transmitters and three sensors may be used. In some embodiments, a single transducer acts as both a transmitter and a sensor. For example, transmitter 104 and sensor 112 represent a single piezoelectric transducer. In the example shown, transmitter 104 may propagate a signal through medium 102. Sensors 112, 114, 116, and 118 receive the propagated signal. In another embodiment, the transmitters/sensors in FIG. 1 are attached to a flexible cable coupled to medium 102 via an encapsulant and/or glue material and/or fasteners.


Touch detector 120 is connected to the transmitters and sensors shown in FIG. 1. In some embodiments, detector 120 includes one or more of the following: an integrated circuit chip, a printed circuit board, a processor, and other electrical components and connectors. Detector 120 determines and sends a signal to be propagated by transmitters 104, 106, 108, and 110. Detector 120 also receives the signal detected by sensors 112, 114, 116, and 118. The received signals are processed by detector 120 to determine whether a disturbance associated with a user input has been detected at a location on a surface of medium 102 associated with the disturbance. Detector 120 is in communication with application system 122. Application system 122 uses information provided by detector 120. For example, application system 122 receives from detector 120 a coordinate associated with a user touch input that is used by application system 122 to control a software application of application system 122. In some embodiments, application system 122 includes a processor and/or memory/storage. In other embodiments, detector 120 and application system 122 are at least in part included/processed in a single processor. An example of data provided by detector 120 to application system 122 includes one or more of the following associated with a user indication: a location coordinate of a surface of medium 102, a gesture, simultaneous user indications (e.g., multi-touch input), a time, a status, a direction, a velocity, a force magnitude, a proximity magnitude, a pressure, a size, and other measurable or derived information.



FIG. 2 is a block diagram illustrating an embodiment of a system for detecting a touch input. In some embodiments, touch detector 202 is included in touch detector 120 of FIG. 1. In some embodiments, the system of FIG. 2 is integrated in an integrated circuit chip. Touch detector 202 includes system clock 204 that provides a synchronous system time source to one or more other components of detector 202. Controller 210 controls data flow and/or commands between microprocessor 206, interface 208, DSP engine 220, and signal generator 212. In some embodiments, microprocessor 206 processes instructions and/or calculations that can be used to program software/firmware and/or process data of detector 202. In some embodiments, a memory is coupled to microprocessor 206 and is configured to provide microprocessor 206 with instructions. Signal generator 212 generates a signal to be used to propagate a signal such as a signal propagated by transmitter 104 of FIG. 1. For example, signal generator 212 generates a pseudorandom binary sequence signal. Driver 214 receives the signal from generator 212 and drives one or more transmitters, such as transmitters 104, 106, 108, and 110 of FIG. 1, to propagate a signal through a medium.


A signal detected from a sensor such as sensor 112 of FIG. 1 is received by detector 202 and signal conditioner 216 conditions (e.g., filters) the received analog signal for further processing. For example, signal conditioner 216 receives the signal output by driver 214 and performs echo cancellation of the signal received by signal conditioner 216. The conditioned signal is converted to a digital signal by analog-to-digital converter 218. The converted signal is processed by digital signal processor engine 220. For example, DSP engine 220 correlates the converted signal against a reference signal to determine a time domain signal that represents a time delay caused by a touch input on a propagated signal. In some embodiments, DSP engine 220 performs dispersion compensation. For example, the time delay signal that results from correlation is compensated for dispersion in the touch input surface medium and translated to a spatial domain signal that represents a physical distance traveled by the propagated signal disturbed by the touch input. In some embodiments, DSP engine 220 performs basepulse correlation. For example, the spatial domain signal is filtered using a match filter to reduce noise in the signal.


A result of DSP engine 220 may be used by microprocessor 206 to determine a location associated with a user touch input. For example, microprocessor 206 determines a hypothesis location where a touch input may been received and calculates an expected signal that is expected to be generated if a touch input was received at the hypothesis location and the expected signal is compared with a result of DSP engine 220 to determine whether a touch input was provided at the hypothesis location.


Interface 208 provides an interface for microprocessor 206 and controller 210 that allows an external component to access and/or control detector 202. For example, interface 208 allows detector 202 to communicate with application system 122 of FIG. 1 and provides the application system with location information associated with a user touch input.



FIG. 3 is a flow chart illustrating an embodiment of a process for calibrating and validating touch detection. In some embodiments, the process of FIG. 3 is used at least in part to calibrate and validate the system of FIG. 1 and/or the system of FIG. 2. At 302, locations of signal transmitters and sensors with respect to a surface are determined. For example, locations of transmitters and sensors shown in FIG. 1 are determined with respect to their location on a surface of medium 102. In some embodiments, determining the locations includes receiving location information. In various embodiments, one or more of the locations may be fixed and/or variable.


At 304, signal transmitters and sensors are calibrated. In some embodiments, calibrating the transmitter includes calibrating a characteristic of a signal driver and/or transmitter (e.g., strength). In some embodiments, calibrating the sensor includes calibrating a characteristic of a sensor (e.g., sensitivity). In some embodiments, the calibration of 304 is performed to optimize the coverage and improve signal-to-noise transmission/detection of a signal (e.g., acoustic or ultrasonic) to be propagated through a medium and/or a disturbance to be detected. For example, one or more components of the system of FIG. 1 and/or the system of FIG. 2 are tuned to meet a signal-to-noise requirement. In some embodiments, the calibration of 304 depends on the size and type of a transmission/propagation medium and geometric configuration of the transmitters/sensors. In some embodiments, the calibration of step 304 includes detecting a failure or aging of a transmitter or sensor. In some embodiments, the calibration of step 304 includes cycling the transmitter and/or receiver. For example, to increase the stability and reliability of a piezoelectric transmitter and/or receiver, a burn-in cycle is performed using a burn-in signal. In some embodiments, the step of 304 includes configuring at least one sensing device within a vicinity of a predetermined spatial region to capture an indication associated with a disturbance using the sensing device. The disturbance is caused in a selected portion of the input signal corresponding to a selection portion of the predetermined spatial region.


At 306, surface disturbance detection is calibrated. In some embodiments, a test signal is propagated through a medium such as medium 102 of FIG. 1 to determine an expected sensed signal when no disturbance has been applied. In some embodiments, a test signal is propagated through a medium to determine a sensed signal when one or more predetermined disturbances (e.g., predetermined touch) are applied at a predetermined location. Using the sensed signal, one or more components may be adjusted to calibrate the disturbance detection. In some embodiments, the test signal is used to determine a signal that can be later used to process/filter a detected signal disturbed by a touch input.


In some embodiments, data determined using one or more steps of FIG. 3 is used to determine data (e.g., formula, variable, coefficients, etc.) that can be used to calculate an expected signal that would result when a touch input is provided at a specific location on a touch input surface. For example, one or more predetermined test touch disturbances are applied at one or more specific locations on the touch input surface and a test propagating signal that has been disturbed by the test touch disturbance is used to determine the data (e.g., transmitter/sensor parameters) that is to be used to calculate an expected signal that would result when a touch input is provided at the one or more specific locations.


At 308, a validation of a touch detection system is performed. For example, the system of FIG. 1 and/or FIG. 2 is testing using predetermined disturbance patterns to determine detection accuracy, detection resolution, multi-touch detection, and/or response time. If the validation fails, the process of FIG. 3 may be at least in part repeated and/or one or more components may be adjusted before performing another validation.



FIG. 4 is a flow chart illustrating an embodiment of a process for detecting a user touch input. In some embodiments, the process of FIG. 4 is at least in part implemented on touch detector 120 of FIG. 1 and/or touch detector 202 of FIG. 2.


At 402, a signal that can be used to propagate an active signal through a surface region is sent. In some embodiments, sending the signal includes driving (e.g., using driver 214 of FIG. 2) a transmitter such as a transducer (e.g., transmitter 104 of FIG. 1) to propagate an active signal (e.g., acoustic or ultrasonic mechanical wave) through a propagating medium with the surface region. In some embodiments, the signal includes a sequence selected to optimize autocorrelation (e.g., resulting in narrow/short peaks) of the signal. For example, the signal includes a Zadoff-Chu sequence. In some embodiments, the signal includes a pseudorandom binary sequence with or without modulation. In some embodiments, the propagated signal is an acoustic signal. In some embodiments, the propagated signal is an ultrasonic signal (e.g., outside the range of human hearing). For example, the propagated signal is a signal above 20 kHz (e.g., within the range between 80 kHz to 100 kHz). In other embodiments, the propagated signal may be within the range of human hearing. In some embodiments, by using the active signal, a user input on or near the surface region can be detected by detecting disturbances in the active signal when it is received by a sensor on the propagating medium. By using an active signal rather than merely listening passively for a user touch indication on the surface, other vibrations and disturbances that are not likely associated with a user touch indication can be more easily discerned/filtered out. In some embodiments, the active signal is used in addition to receiving a passive signal from a user input to determine the user input.


At 404, the active signal that has been disturbed by a disturbance of the surface region is received. The disturbance may be associated with a user touch indication. In some embodiments, the disturbance causes the active signal that is propagating through a medium to be attenuated and/or delayed. In some embodiments, the disturbance in a selected portion of the active signal corresponds to a location on the surface that has been indicated (e.g., touched) by a user.


At 406, the received signal is processed to at least in part determine a location associated with the disturbance. In some embodiments, receiving the received signal and processing the received signal are performed on a periodic interval. For example, the received signal is captured in 5 ms intervals and processed. In some embodiments, determining the location includes extracting a desired signal from the received signal at least in part by removing or reducing undesired components of the received signal such as disturbances caused by extraneous noise and vibrations not useful in detecting a touch input. In some embodiments, determining the location includes processing the received signal and comparing the processed received signal with a calculated expected signal associated with a hypothesis touch contact location to determine whether a touch contact was received at the hypothesis location of the calculated expected signal. Multiple comparisons may be performed with various expected signals associated with different hypothesis locations until the expected signal that best matches the processed received signal is found and the hypothesis location of the matched expected signal is identified as the touch contact location(s) of a touch input. For example, signals received by sensors (e.g., sensors 112, 114, 116, and 118 of FIG. 1) from various transmitters (e.g., transmitters 104, 106, 108, and 110 of FIG. 1) are compared with corresponding expected signals to determine a touch input location (e.g., single or multi-touch locations) that minimizes the overall difference between all respective received and expected signals.


The location, in some embodiments, is one or more locations (e.g., location coordinate(s)) on the surface region where a user has provided a touch contact. In addition to determining the location, one or more of the following information associated with the disturbance may be determined at 406: a gesture, simultaneous user indications (e.g., multi-touch input), a time, a status, a direction, a velocity, a force magnitude, a proximity magnitude, a pressure, a size, and other measurable or derived information. In some embodiments, the location is not determined at 406 if a location cannot be determined using the received signal and/or the disturbance is determined to be not associated with a user input. Information determined at 406 may be provided and/or outputted.


Although FIG. 4 shows receiving and processing an active signal that has been disturbed, in some embodiments, a received signal has not been disturbed by a touch input and the received signal is processed to determine that a touch input has not been detected. An indication that a touch input has not been detected may be provided/outputted.



FIG. 5 is a flow chart illustrating an embodiment of a process for determining a location associated with a disturbance on a surface. In some embodiments, the process of FIG. 5 is included in 406 of FIG. 4. The process of FIG. 5 may be implemented in touch detector 120 of FIG. 1 and/or touch detector 202 of FIG. 2. In some embodiments, at least a portion of the process of FIG. 5 is repeated for each combination of transmitter and sensor pair. For example, for each active signal transmitted by a transmitter (e.g., transmitted by transmitter 104, 106, 108, or 110 of FIG. 1), at least a portion of the process of FIG. 5 is repeated for each sensor (e.g., sensors 112, 114, 116, and 118 of FIG. 1) receiving the active signal. In some embodiments, the process of FIG. 5 is performed periodically (e.g., 5 ms periodic interval).


At 502, a received signal is conditioned. In some embodiments, the received signal is a signal including a pseudorandom binary sequence that has been freely propagated through a medium with a surface that can be used to receive a user input. For example, the received signal is the signal that has been received at 404 of FIG. 4. In some embodiments, conditioning the signal includes filtering or otherwise modifying the received signal to improve signal quality (e.g., signal-to-noise ratio) for detection of a pseudorandom binary sequence included in the received signal and/or user touch input. In some embodiments, conditioning the received signal includes filtering out from the signal extraneous noise and/or vibrations not likely associated with a user touch indication.


At 504, an analog to digital signal conversion is performed on the signal that has been conditioned at 502. In various embodiments, any number of standard analog to digital signal converters may be used.


At 506, a time domain signal capturing a received signal time delay caused by a touch input disturbance is determined. In some embodiments, determining the time domain signal includes correlating the received signal (e.g., signal resulting from 504) to locate a time offset in the converted signal (e.g., perform pseudorandom binary sequence deconvolution) where a signal portion that likely corresponds to a reference signal (e.g., reference pseudorandom binary sequence that has been transmitted through the medium) is located. For example, a result of the correlation can be plotted as a graph of time within the received and converted signal (e.g., time-lag between the signals) vs. a measure of similarity. In some embodiments, performing the correlation includes performing a plurality of correlations. For example, a coarse correlation is first performed then a second level of fine correlation is performed. In some embodiments, a baseline signal that has not been disturbed by a touch input disturbance is removed in the resulting time domain signal. For example, a baseline signal (e.g., determined at 306 of FIG. 3) representing a measured signal (e.g., a baseline time domain signal) associated with a received active signal that has not been disturbed by a touch input disturbance is subtracted from a result of the correlation to further isolate effects of the touch input disturbance by removing components of the steady state baseline signal not affected by the touch input disturbance.


At 508, the time domain signal is converted to a spatial domain signal. In some embodiments, converting the time domain signal includes converting the time domain signal determined at 506 into a spatial domain signal that translates the time delay represented in the time domain signal to a distance traveled by the received signal in the propagating medium due to the touch input disturbance. For example, a time domain signal that can be graphed as time within the received and converted signal vs. a measure of similarity is converted to a spatial domain signal that can be graphed as distance traveled in the medium vs. the measure of similarity.


In some embodiments, performing the conversion includes performing dispersion compensation. For example, using a dispersion curve characterizing the propagating medium, time values of the time domain signal are translated to distance values in the spatial domain signal. In some embodiments, a resulting curve of the time domain signal representing a distance likely traveled by the received signal due to a touch input disturbance is narrower than the curve contained in the time domain signal representing the time delay likely caused by the touch input disturbance. In some embodiments, the time domain signal is filtered using a match filter to reduce undesired noise in the signal. For example, using a template signal that represents an ideal shape of a spatial domain signal, the converted spatial domain signal is match filtered (e.g., spatial domain signal correlated with the template signal) to reduce noise not contained in the bandwidth of the template signal. The template signal may be predetermined (e.g., determined at 306 of FIG. 3) by applying a sample touch input to a touch input surface and measuring a received signal.


At 510, the spatial domain signal is compared with one or more expected signals to determine a touch input captured by the received signal. In some embodiments, comparing the spatial domain signal with the expected signal includes generating expected signals that would result if a touch contact was received at hypothesis locations. For example, a hypothesis set of one or more locations (e.g., single touch or multi-touch locations) where a touch input might have been received on a touch input surface is determined, and an expected spatial domain signal that would result at 508 if touch contacts were received at the hypothesis set of location(s) is determined (e.g., determined for a specific transmitter and sensor pair using data measured at 306 of FIG. 3). The expected spatial domain signal may be compared with the actual spatial signal determined at 508. The hypothesis set of one or more locations may be one of a plurality of hypothesis sets of locations (e.g., exhaustive set of possible touch contact locations on a coordinate grid dividing a touch input surface).


The proximity of location(s) of a hypothesis set to the actual touch contact location(s) captured by the received signal may be proportional to the degree of similarity between the expected signal of the hypothesis set and the spatial signal determined at 508. In some embodiments, signals received by sensors (e.g., sensors 112, 114, 116, and 118 of FIG. 1) from transmitters (e.g., transmitters 104, 106, 108, and 110 of FIG. 1) are compared with corresponding expected signals for each sensor/transmitter pair to select a hypothesis set that minimizes the overall difference between all respective detected and expected signals. In some embodiments, once a hypothesis set is selected, another comparison between the determined spatial domain signals and one or more new expected signals associated with finer resolution hypothesis touch location(s) (e.g., locations on a new coordinate grid with more resolution than the coordinate grid used by the selected hypothesis set) near the location(s) of the selected hypothesis set is determined.



FIG. 6 is a flow chart illustrating an embodiment of a process for determining time domain signal capturing of a disturbance caused by a touch input. In some embodiments, the process of FIG. 6 is included in 506 of FIG. 5. The process of FIG. 6 may be implemented in touch detector 120 of FIG. 1 and/or touch detector 202 of FIG. 2.


At 602, a first correlation is performed. In some embodiments, performing the first correlation includes correlating a received signal (e.g., resulting converted signal determined at 504 of FIG. 5) with a reference signal. Performing the correlation includes cross-correlating or determining a convolution (e.g., interferometry) of the converted signal with a reference signal to measure the similarity of the two signals as a time-lag is applied to one of the signals. By performing the correlation, the location of a portion of the converted signal that most corresponds to the reference signal can be located. For example, a result of the correlation can be plotted as a graph of time within the received and converted signal (e.g., time-lag between the signals) vs. a measure of similarity. The associated time value of the largest value of the measure of similarity corresponds to the location where the two signals most correspond. By comparing this measured time value against a reference time value (e.g., at 306 of FIG. 3) not associated with a touch indication disturbance, a time delay/offset or phase difference caused on the received signal due to a disturbance caused by a touch input can be determined. In some embodiments, by measuring the amplitude/intensity difference of the received signal at the determined time vs. a reference signal, a force associated with a touch indication may be determined. In some embodiments, the reference signal is determined based at least in part on the signal that was propagated through a medium (e.g., based on a source pseudorandom binary sequence signal that was propagated). In some embodiments, the reference signal is at least in part determined using information determined during calibration at 306 of FIG. 3. The reference signal may be chosen so that calculations required to be performed during the correlation may be simplified. For example, the reference signal is a simplified reference signal that can be used to efficiently correlate the reference signal over a relatively large time difference (e.g., lag-time) between the received and converted signal and the reference signal.


At 604, a second correlation is performed based on a result of the first correlation. Performing the second correlation includes correlating (e.g., cross-correlation or convolution similar to step 602) a received signal (e.g., resulting converted signal determined at 504 of FIG. 5) with a second reference signal. The second reference signal is a more complex/detailed (e.g., more computationally intensive) reference signal as compared to the first reference signal used in 602. In some embodiments, the second correlation is performed because using the second reference signal in 602 may be too computationally intensive for the time interval required to be correlated in 602. Performing the second correlation based on the result of the first correlation includes using one or more time values determined as a result of the first correlation. For example, using a result of the first correlation, a range of likely time values (e.g., time-lag) that most correlate between the received signal and the first reference signal is determined and the second correlation is performed using the second reference signal only across the determined range of time values to fine tune and determine the time value that most corresponds to where the second reference signal (and, by association, also the first reference signal) matched the received signal. In various embodiments, the first and second correlations have been used to determine a portion within the received signal that corresponds to a disturbance caused by a touch input at a location on a surface of a propagating medium. In other embodiments, the second correlation is optional. For example, only a single correlation step is performed. Any number of levels of correlations may be performed in other embodiments.



FIG. 7 is a flow chart illustrating an embodiment of a process comparing spatial domain signals with one or more expected signals to determine touch contact location(s) of a touch input. In some embodiments, the process of FIG. 7 is included in 510 of FIG. 5. The process of FIG. 7 may be implemented in touch detector 120 of FIG. 1 and/or touch detector 202 of FIG. 2.


At 702, a hypothesis of a number of simultaneous touch contacts included in a touch input is determined. In some embodiments, when detecting a location of a touch contact, the number of simultaneous contacts being made to a touch input surface (e.g., surface of medium 102 of FIG. 1) is desired to be determined. For example, it is desired to determine the number of fingers touching a touch input surface (e.g., single touch or multi-touch). In some embodiments, in order to determine the number of simultaneous touch contacts, the hypothesis number is determined and the hypothesis number is tested to determine whether the hypothesis number is correct. In some embodiments, the hypothesis number is initially determined as zero (e.g., associated with no touch input being provided). In some embodiments, determining the hypothesis number of simultaneous touch contacts includes initializing the hypothesis number to be a previously determined number of touch contacts. For example, a previous execution of the process of FIG. 7 determined that two touch contacts are being provided simultaneously and the hypothesis number is set as two. In some embodiments, determining the hypothesis number includes incrementing or decrementing a previously determined hypothesis number of touch contacts. For example, a previously determined hypothesis number is 2 and determining the hypothesis number includes incrementing the previously determined number and determining the hypothesis number as the incremented number (i.e., 3). In some embodiments, each time a new hypothesis number is determined, a previously determined hypothesis number is iteratively incremented and/or decremented unless a threshold maximum (e.g., 10) and/or threshold minimum (e.g., 0) value has been reached.


At 704, one or more hypothesis sets of one or more touch contact locations associated with the hypothesis number of simultaneous touch contacts are determined. In some embodiments, it is desired to determine the coordinate locations of fingers touching a touch input surface. In some embodiments, in order to determine the touch contact locations, one or more hypothesis sets are determined on potential location(s) of touch contact(s) and each hypothesis set is tested to determine which hypothesis set is most consistent with a detected data.


In some embodiments, determining the hypothesis set of potential touch contact locations includes dividing a touch input surface into a constrained number of points (e.g., divide into a coordinate grid) where a touch contact may be detected. For example, in order to initially constrain the number of hypothesis sets to be tested, the touch input surface is divided into a coordinate grid with relatively large spacing between the possible coordinates. Each hypothesis set includes a number of location identifiers (e.g., location coordinates) that match the hypothesis number determined in 702. For example, if two was determined to be the hypothesis number in 702, each hypothesis set includes two location coordinates on the determined coordinate grid that correspond to potential locations of touch contacts of a received touch input. In some embodiments, determining the one or more hypothesis sets includes determining exhaustive hypothesis sets that exhaustively cover all possible touch contact location combinations on the determined coordinate grid for the determined hypothesis number of simultaneous touch contacts. In some embodiments, a previously determined touch contact location(s) of a previous determined touch input is initialized as the touch contact location(s) of a hypothesis set.


At 706, a selected hypothesis set is selected among the one or more hypothesis sets of touch contact location(s) as best corresponding to touch contact locations captured by detected signal(s). In some embodiments, one or more propagated active signals (e.g., signal transmitted at 402 of FIG. 4) that have been disturbed by a touch input on a touch input surface are received (e.g., received at 404 of FIG. 4) by one or more sensors such as sensors 112, 114, 116, and 118 of FIG. 1. Each active signal transmitted from each transmitter (e.g., different active signals each transmitted by transmitters 104, 106, 108, and 110 of FIG. 1) is received by each sensor (e.g., sensors 112, 114, 116, and 118 of FIG. 1) and may be processed to determine a detected signal (e.g., spatial domain signal determined at 508 of FIG. 5) that characterizes a signal disturbance caused by the touch input. In some embodiments, for each hypothesis set of touch contact location(s), an expected signal is determined for each signal expected to be received at one or more sensors. The expected signal may be determined using a predetermined function that utilizes one or more predetermined coefficients (e.g., coefficient determined for a specific sensor and/or transmitter transmitting a signal to be received at the sensor) and the corresponding hypothesis set of touch contact location(s). The expected signal(s) may be compared with corresponding detected signal(s) to determine an indicator of a difference between all the expected signal(s) for a specific hypothesis set and the corresponding detected signals. By comparing the indicators for each of the one or more hypothesis sets, the selected hypothesis set may be selected (e.g., hypothesis set with the smallest indicated difference is seletcted).


At 708, it is determined whether additional optimization is to be performed. In some embodiments, determining whether additional optimization is to be performed includes determining whether any new hypothesis set(s) of touch contact location(s) should be analyzed in order to attempt to determine a better selected hypothesis set. For example, a first execution of step 706 utilizes hypothesis sets determined using locations on a larger distance increment coordinate grid overlaid on a touch input surface and additional optimization is to be performed using new hypothesis sets that include locations from a coordinate grid with smaller distance increments. Additional optimizations may be performed any number of times. In some embodiments, the number of times additional optimizations are performed is predetermined. In some embodiments, the number of times additional optimizations are performed is dynamically determined. For example, additional optimizations are performed until a comparison threshold indicator value for the selected hypothesis set is reached and/or a comparison indicator for the selected hypothesis does not improve by a threshold amount. In some embodiments, for each optimization iteration, optimization may be performed for only a single touch contact location of the selected hypothesis set and other touch contact locations of the selected hypothesis may be optimized in a subsequent iteration of optimization.


If at 708 it is determined that additional optimization should be performed, at 710, one or more new hypothesis sets of one or more touch contact locations associated with the hypothesis number of the touch contacts are determined based on the selected hypothesis set. In some embodiments, determining the new hypothesis sets includes determining location points (e.g., more detailed resolution locations on a coordinate grid with smaller distance increments) near one of the touch contact locations of the selected hypothesis set in an attempt to refine the one of the touch contact locations of the selected hypothesis set. The new hypothesis sets may each include one of the newly determined location points, and the other touch contact location(s), if any, of a new hypothesis set may be the same locations as the previously selected hypothesis set. In some embodiments, the new hypothesis sets may attempt to refine all touch contact locations of the selected hypothesis set. The process proceeds back to 706, whether or not a newly selected hypothesis set (e.g., if previously selected hypothesis set still best corresponds to detected signal(s), the previously selected hypothesis set is retained as the new selected hypothesis set) is selected among the newly determined hypothesis sets of touch contact location(s).


If at 708 it is determined that additional optimization should not be performed, at 712, it is determined whether a threshold has been reached. In some embodiments, determining whether a threshold has been reached includes determining whether the determined hypothesis number of contact points should be modified to test whether a different number of contact points has been received for the touch input. In some embodiments, determining whether the threshold has been reached includes determining whether a comparison threshold indicator value for the selected hypothesis set has been reached and/or a comparison indicator for the selected hypothesis did not improve by a threshold amount since a previous determination of a comparison indicator for a previously selected hypothesis set. In some embodiments, determining whether the threshold has been reached includes determining whether a threshold amount of energy still remains in a detected signal after accounting for the expected signal of the selected hypothesis set. For example, a threshold amount of energy still remains if an additional touch contact needs be included in the selected hypothesis set.


If at 712, it is determined that the threshold has not been reached, the process continues to 702 where a new hypothesis number of touch inputs is determined. The new hypothesis number may be based on the previous hypothesis number. For example, the previous hypothesis number is incremented by one as the new hypothesis number.


If at 712, it is determined that the threshold has been reached, at 714, the selected hypothesis set is indicated as the detected location(s) of touch contact(s) of the touch input. For example, a location coordinate(s) of a touch contact(s) is provided.



FIG. 8 is a flow chart illustrating an embodiment of a process for selecting a selected hypothesis set of touch contact location(s). In some embodiments, the process of FIG. 8 is included in 706 of FIG. 7. The process of FIG. 8 may be implemented in touch detector 120 of FIG. 1 and/or touch detector 202 of FIG. 2.


At 802, for each hypothesis set (e.g., determined at 704 of FIG. 7), an expected signal that would result if a touch contact was received at the contact location(s) of the hypothesis set is determined for each detected signal and for each touch contact location of the hypothesis set. In some embodiments, determining the expected signal includes using a function and one or more function coefficients to generate/simulate the expected signal. The function and/or one or more function coefficients may be predetermined (e.g., determined at 306 of FIG. 3) and/or dynamically determined (e.g., determined based on one or more provided touch contact locations). In some embodiments, the function and/or one or more function coefficients may be determined/selected specifically for a particular transmitter and/or sensor of a detected signal. For example, the expected signal is to be compared to a detected signal and the expected signal is generated using a function coefficient determined specifically for the pair of transmitter and sensor of the detected signal. In some embodiments, the function and/or one or more function coefficients may be dynamically determined.


In some embodiments, in the event the hypothesis set includes more than one touch contact location (e.g., multi-touch input), expected signal for each individual touch contact location is determined separately and combined together. For example, an expected signal that would result if a touch contact was provided at a single touch contact location is added with other single touch contact expected signals (e.g., effects from multiple simultaneous touch contacts add linearly) to generate a single expected signal that would result if the touch contacts of the added signals were provided simultaneously.


In some embodiments, the expected signal for a single touch contact is modeled as the function:

C*P (x−d)

where C is a function coefficient (e.g., complex coefficient) and P(x) is a function and d is the total path distance between a transmitter (e.g., transmitter of a signal desired to be simulated) to a touch input location and between the touch input location and a sensor (e.g., receiver of the signal desired to be simulated).


In some embodiments, the expected signal for one or more touch contacts is modeled as the function:









j
=
1

N




C
j



P


(

x
-

d
j


)








where j indicates which touch contact and N is the number of total simultaneous touch contacts being modeled (e.g., hypothesis number determined at 702 of FIG. 7).


At 804, corresponding detected signals are compared with corresponding expected signals. In some embodiments, the detected signals include spatial domain signals determined at 508 of FIG. 5. In some embodiments, comparing the signals includes determining a mean square error between the signals. In some embodiments, comparing the signals includes determining a cost function that indicates the similarly/difference between the signals. In some embodiments, the cost function for a hypothesis set (e.g., hypothesis set determined at 704 of FIG. 7) analyzed for a single transmitter/sensor pair is modeled as:







ɛ


(


r
x

,

t
x


)


=





q


(
x
)


-




j
=
1

N




C
j



P


(

x
-

d
j


)







2






where ε(rx, tx) is the cost function, q(x) is the detected signal, and Σj=1NCj P(x−dj) is the expected signal. In some embodiments, the global cost function for a hypothesis set analyzed for more than one (e.g., all) transmitter/sensor pairs is modeled as:






ɛ
=




i
=
1

Z




ɛ


(


r
x

,

t
x


)


i







where ε is the global cost function, Z is the number of total transmitter/sensor pairs, i indicates the particular transmitter/sensor pair, and ε(rx, tx)i is the cost function of the particular transmitter/sensor pair.


At 806, a selected hypothesis set of touch contact location(s) is selected among the one or more hypothesis sets of touch contact location(s) as best corresponding to detected signal(s). In some embodiments, the selected hypothesis set is selected among hypothesis sets determined at 704 or 710 of FIG. 7. In some embodiments, selecting the selected hypothesis set includes determining the global cost function (e.g., function ε described above) for each hypothesis set in the group of hypothesis sets and selecting the hypothesis set that results in the smallest global cost function value.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A system for determining a touch contact location, comprising: a communication interface configured to receive a signal that has been disturbed by a touch input on a surface, wherein the signal was propagating in a medium of the surface prior to the touch input; anda processor coupled with the communication interface and configured to: correlate the received signal to determine a time domain signal encoding a time delay represented in the received signal;process the time domain signal to determine a spatial domain signal, wherein processing the time domain signal includes translating the time delay encoded in the time domain signal to a physical distance encoded in the spatial domain signal;compare the spatial domain signal with an expected signal, wherein the spatial domain signal encodes the physical distance at least in part traveled by the received signal due to the disturbance caused by the touch input and the expected signal encodes a variable with respect to a measure of distance; anddetermine the touch contact location of the touch input based at least in part on the comparison.
  • 2. The system of claim 1, wherein the received signal was detected by a transducer.
  • 3. The system of claim 1, wherein the received signal is an active signal that has been propagated through a medium of the surface.
  • 4. The system of claim 1, wherein the received signal is an ultrasonic signal.
  • 5. The system of claim 1, wherein the received signal includes a pseudorandom binary sequence.
  • 6. The system of claim 1, wherein the time domain signal captures a time delay caused by the disturbance of the touch input.
  • 7. The system of claim 1, wherein correlating the time domain signal includes cross-correlating the time domain signal with a reference signal.
  • 8. The system of claim 1, wherein the spatial domain signal captures a distance traveled by the received signal through a medium of the surface due to the disturbance of the touch input.
  • 9. The system of claim 1, wherein processing the time domain signal to determine the spatial domain signal includes compensating the time domain signal for dispersion through a medium of the surface.
  • 10. The system of claim 1, wherein the processor is further configured to match filter the spatial domain signal using a template signal.
  • 11. The system of claim 1, wherein the processor is further configured to generate the expected signal to simulate an ideal spatial domain signal that would result if a touch contact was received at the potential location.
  • 12. The system of claim 1, wherein the expected signal is associated with a plurality of potential simultaneous touch contact locations of the touch input.
  • 13. The system of claim 1, wherein the expected signal is one of a plurality of expected signals compared with the spatial domain signal.
  • 14. The system of claim 1, wherein comparing the signals includes determining a mean square error of the spatial domain signal and the expected signal.
  • 15. The system of claim 1, wherein comparing the spatial domain signal with the expected signal includes determining whether a hypothesis number of simultaneous touch contacts of the touch input is likely an actual number of simultaneous touch contacts of the touch input.
  • 16. The system of claim 1, wherein comparing the spatial domain signal with the expected signal includes determining a result of a cost function comparing a plurality of spatial domain signals with corresponding expected signals for a plurality of pairs of transmitters and sensors coupled to a medium of the surface.
  • 17. The system of claim 1, wherein determining the touch contact location includes selecting a potential location among a plurality of potential locations as the touch contact location.
  • 18. A method for determining a touch contact location, comprising: receiving a signal that has been disturbed by a touch input on a surface, wherein the signal was propagating in a medium of the surface prior to the touch input;correlating the received signal to determine a time domain signal encoding a time delay represented in the received signal;processing the time domain signal to determine a spatial domain signal, wherein processing the time domain signal includes translating the time delay encoded in the time domain signal to a physical distance encoded in the spatial domain signal;using a processor to compare the spatial domain signal with an expected signal, wherein the spatial domain signal encodes the physical distance at least in part traveled by the received signal due to the disturbance caused by the touch input and the expected signal encodes a variable with respect to a measure of distance; anddetermining the touch contact location of the touch input based at least in part on the comparison.
  • 19. The method of claim 18, wherein the received signal includes a pseudorandom binary sequence.
  • 20. A computer program product for determining a touch contact location, the computer program product being embodied in a non-transitory computer readable storage medium and comprising computer instructions for: receiving a signal that has been disturbed by a touch input on a surface, wherein the signal was propagating in a medium of the surface prior to the touch input;correlating the received signal to determine a time domain signal encoding a time delay represented in the received signal;processing the time domain signal to determine a spatial domain signal, wherein processing the time domain signal includes translating the time delay encoded in the time domain signal to a physical distance encoded in the spatial domain signal;comparing the spatial domain signal with an expected signal, wherein the spatial domain signal encodes the physical distance at least in part traveled by the received signal due to the disturbance caused by the touch input and the expected signal encodes a variable with respect to a measure of distance; anddetermining the touch contact location of the touch input based at least in part on the comparison.
CROSS REFERENCE TO OTHER APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 13/913,092, entitled DETECTING MULTI-TOUCH INPUTS filed Jun. 7, 2013 which is incorporated herein by reference for all purposes.

US Referenced Citations (200)
Number Name Date Kind
4488000 Glenn Dec 1984 A
4594695 Garconnat Jun 1986 A
4966150 Etienne Oct 1990 A
5334805 Knowles Aug 1994 A
5451723 Huang Sep 1995 A
5563849 Hall Oct 1996 A
5573077 Knowles Nov 1996 A
5635643 Maji Jun 1997 A
5637839 Yamaguchi Jun 1997 A
5708460 Young Jan 1998 A
5854450 Kent Dec 1998 A
5912659 Rutledge Jun 1999 A
6232960 Goldman May 2001 B1
6236391 Kent May 2001 B1
6307942 Azima Oct 2001 B1
6492979 Kent Dec 2002 B1
6498603 Wallace Dec 2002 B1
6633280 Matsumoto et al. Oct 2003 B1
6788296 Ikeda Sep 2004 B2
6798403 Kitada Sep 2004 B2
7218248 Kong May 2007 B2
RE39881 Flowers Oct 2007 E
7554246 Maruyama Jun 2009 B2
7880721 Suzuki Feb 2011 B2
8358277 Mosby Jan 2013 B2
8436806 Almalki May 2013 B2
8787599 Grattan Jul 2014 B2
8917249 Buuck Dec 2014 B1
9030436 Ikeda May 2015 B2
9099971 Lynn Aug 2015 B2
9189109 Sheng Nov 2015 B2
9348468 Altekar May 2016 B2
9594450 Lynn Mar 2017 B2
9983718 Sheng May 2018 B2
20010050677 Tosaya Dec 2001 A1
20020047833 Kitada Apr 2002 A1
20020185981 Dietz Dec 2002 A1
20030161484 Kanamori Aug 2003 A1
20030197691 Fujiwara Oct 2003 A1
20030206162 Roberts Nov 2003 A1
20040133366 Sullivan Jul 2004 A1
20040160421 Sullivan Aug 2004 A1
20040183788 Kurashima Sep 2004 A1
20040203594 Kotzin Oct 2004 A1
20040239649 Ludtke Dec 2004 A1
20040246239 Knowles Dec 2004 A1
20050063553 Ozawa Mar 2005 A1
20050146511 Hill et al. Jul 2005 A1
20050146512 Hill Jul 2005 A1
20050174338 Ing Aug 2005 A1
20050226455 Aubauer Oct 2005 A1
20050248540 Newton Nov 2005 A1
20060071912 Hill Apr 2006 A1
20060109261 Chou May 2006 A1
20060114233 Radivojevic Jun 2006 A1
20060139340 Geaghan Jun 2006 A1
20060152499 Roberts Jul 2006 A1
20060166681 Lohbihler Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060262104 Sullivan Nov 2006 A1
20060279548 Geaghan Dec 2006 A1
20070019825 Marumoto Jan 2007 A1
20070109274 Reynolds May 2007 A1
20070165009 Sakurai Jul 2007 A1
20070171212 Sakurai Jul 2007 A1
20070211022 Boillot Sep 2007 A1
20070214462 Boillot Sep 2007 A1
20070229479 Choo Oct 2007 A1
20070279398 Tsumura Dec 2007 A1
20080018618 Hill Jan 2008 A1
20080030479 Lowles Feb 2008 A1
20080062151 Kent Mar 2008 A1
20080081671 Wang Apr 2008 A1
20080105470 Van De Ven May 2008 A1
20080111788 Rosenberg May 2008 A1
20080169132 Ding et al. Jul 2008 A1
20080174565 Chang Jul 2008 A1
20080198145 Knowles Aug 2008 A1
20080231612 Hill Sep 2008 A1
20080259030 Holtzman et al. Oct 2008 A1
20080266266 Kent et al. Oct 2008 A1
20080284755 Hardie-Bick Nov 2008 A1
20090009488 D' Souza Jan 2009 A1
20090103853 Daniel Apr 2009 A1
20090116661 Hetherington May 2009 A1
20090146533 Leskinen Jun 2009 A1
20090160728 Emrick Jun 2009 A1
20090167704 Terlizzi Jul 2009 A1
20090237372 Kim Sep 2009 A1
20090271004 Zecchin Oct 2009 A1
20090273583 Norhammar Nov 2009 A1
20090315848 Ku Dec 2009 A1
20100026667 Bernstein Feb 2010 A1
20100027810 Marton Feb 2010 A1
20100044121 Simon Feb 2010 A1
20100045635 Soo Feb 2010 A1
20100079264 Hoellwarth Apr 2010 A1
20100117933 Gothard May 2010 A1
20100141408 Doy Jun 2010 A1
20100156818 Burrough Jun 2010 A1
20100165215 Shim Jul 2010 A1
20100185989 Shiplacoff Jul 2010 A1
20100188356 Vu Jul 2010 A1
20100245265 Sato Sep 2010 A1
20100269040 Lee Oct 2010 A1
20100277431 Klinghult Nov 2010 A1
20100315373 Steinhauser Dec 2010 A1
20100321312 Han Dec 2010 A1
20100321325 Springer Dec 2010 A1
20100321337 Liao Dec 2010 A1
20110001707 Faubert Jan 2011 A1
20110001708 Sleeman Jan 2011 A1
20110012717 Pance Jan 2011 A1
20110018695 Bells Jan 2011 A1
20110025649 Sheikhzadeh Feb 2011 A1
20110042152 Wu Feb 2011 A1
20110057903 Yamano Mar 2011 A1
20110063228 St. Pierre et al. Mar 2011 A1
20110080350 Almalki Apr 2011 A1
20110084912 Almalki Apr 2011 A1
20110084937 Chang Apr 2011 A1
20110155479 Oda Jun 2011 A1
20110156967 Oh Jun 2011 A1
20110167391 Momeyer Jul 2011 A1
20110175813 Sarwar Jul 2011 A1
20110182443 Gant Jul 2011 A1
20110191680 Chae Aug 2011 A1
20110199342 Vartanian Aug 2011 A1
20110213223 Kruglick Sep 2011 A1
20110222372 O'Donovan Sep 2011 A1
20110234545 Tanaka et al. Sep 2011 A1
20110260990 Ali Oct 2011 A1
20110279382 Pertuit Nov 2011 A1
20110298670 Jung Dec 2011 A1
20110300845 Lee Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110316790 Ollila Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120007837 Kent Jan 2012 A1
20120026114 Lee Feb 2012 A1
20120050230 Harris Mar 2012 A1
20120062564 Miyashita Mar 2012 A1
20120068939 Pemberton-Pigott Mar 2012 A1
20120068970 Pemberton-Pigott Mar 2012 A1
20120081337 Camp, Jr. Apr 2012 A1
20120088548 Yun Apr 2012 A1
20120092964 Badiey Apr 2012 A1
20120120031 Thuillier May 2012 A1
20120126962 Ujii May 2012 A1
20120127088 Pance May 2012 A1
20120140954 Ranta Jun 2012 A1
20120149437 Zurek Jun 2012 A1
20120188194 Sulem Jul 2012 A1
20120188889 Sambhwani Jul 2012 A1
20120194466 Posamentier Aug 2012 A1
20120200517 Nikolovski Aug 2012 A1
20120229407 Harris Sep 2012 A1
20120232834 Roche Sep 2012 A1
20120242603 Engelhardt Sep 2012 A1
20120270605 Garrone Oct 2012 A1
20120272089 Hatfield Oct 2012 A1
20120278490 Sennett Nov 2012 A1
20120282944 Zhao Nov 2012 A1
20120300956 Horii Nov 2012 A1
20120306823 Pance Dec 2012 A1
20130011144 Amiri Farahani Jan 2013 A1
20130050133 Brakensiek Feb 2013 A1
20130050154 Guy Feb 2013 A1
20130057491 Chu Mar 2013 A1
20130059532 Mahanfar Mar 2013 A1
20130082970 Frey Apr 2013 A1
20130141365 Lynn Jun 2013 A1
20130194208 Miyanaka Aug 2013 A1
20130249831 Harris Sep 2013 A1
20140028576 Shahparnia Jan 2014 A1
20140078070 Armstrong-Muntner Mar 2014 A1
20140078086 Bledsoe Mar 2014 A1
20140078109 Armstrong-Muntner Mar 2014 A1
20140078112 Sheng Mar 2014 A1
20140185834 Frömel Jul 2014 A1
20140247230 Sheng Sep 2014 A1
20140247250 Sheng Sep 2014 A1
20140317722 Tartz Oct 2014 A1
20140368464 Singnurkar Dec 2014 A1
20150002415 Lee Jan 2015 A1
20150009185 Shi Jan 2015 A1
20150109239 Mao Apr 2015 A1
20150199035 Chang Jul 2015 A1
20150253895 Kim Sep 2015 A1
20150346850 Vandermeijden Dec 2015 A1
20160070404 Kerr Mar 2016 A1
20160091308 Oliaei Mar 2016 A1
20160162044 Ciou Jun 2016 A1
20160179249 Ballan Jun 2016 A1
20160209944 Shim Jul 2016 A1
20160282965 Jensen Sep 2016 A1
20160349922 Choi Dec 2016 A1
20170010697 Jiang Jan 2017 A1
20170083164 Sheng Mar 2017 A1
20180032211 King Feb 2018 A1
Foreign Referenced Citations (18)
Number Date Country
101373415 Feb 2009 CN
101669088 Mar 2010 CN
2315101 Apr 2011 EP
2315101 Jan 2014 EP
2948787 Feb 2011 FR
20040017272 Feb 2004 KR
20070005580 Jan 2007 KR
20080005990 Jan 2008 KR
20110001839 Jan 2011 KR
WO-03005292 Jan 2003 WO
WO-2006115947 Jun 2007 WO
WO-2011010037 Jan 2011 WO
WO-2011024434 Mar 2011 WO
WO-2011048433 Apr 2011 WO
WO-2011051722 May 2011 WO
WO-2012010912 Jan 2012 WO
WO-2014209757 Dec 2014 WO
WO-2015027017 Feb 2015 WO
Non-Patent Literature Citations (2)
Entry
Liu et al., ‘Acoustic Wave Approach for Multi-Touch Tactile Sensing’, Micro-NanoMechatronics and Human Science, 2009. MHS 2009. International Symposium, Nov. 9-11, 2009.
T Benedict et al. ‘The joint estimation of signal and noise from the sum envelope.’ IEEE Transactions on Information Theory 13.3, pp. 447-454. Jul. 1, 1967.
Related Publications (1)
Number Date Country
20160224162 A1 Aug 2016 US
Continuations (1)
Number Date Country
Parent 13913092 Jun 2013 US
Child 15096587 US