Detecting plasmons using a metallurgical junction

Information

  • Patent Grant
  • 7586167
  • Patent Number
    7,586,167
  • Date Filed
    Friday, May 5, 2006
    18 years ago
  • Date Issued
    Tuesday, September 8, 2009
    15 years ago
Abstract
A sensor device includes a substrate having first and second regions of first and second conductivity types, respectively. A junction having a band-gap is formed between the first and second regions. A plasmon source generates plasmons having fields. At least a portion of the plasmon source is formed near the junction, and the fields reduce the band-gap to enable a current to flow through the device.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.


RELATED APPLICATIONS

The present invention is related to the following co-pending U.S. patent applications, each which is commonly owned with the present application at the time of filing, and the entire contents of each of which are incorporated herein by reference:

    • 1. U.S. application Ser. No. 10/917,571, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching”
    • 2. U.S. application Ser. No. 11/203,407, filed Aug. 15, 2005, entitled “Method of Patterning Ultra-Small Structures,”
    • 3. U.S. application Ser. No. 11/243,476, filed Oct. 5, 2005, entitled, “Structure and Methods for Coupling Energy from an Electromagnetic Wave;”
    • 4. U.S. application Ser. No. 11/243,477, filed Oct. 5, 2005, entitled, “Electron Beam Induced Resonance;”
    • 5. U.S. application Ser. No. 11/238,991, filed Sep. 30, 2005, entitled, “Light Emitting Free-Electron Micro-Resonant Structure;”
    • 6. U.S. application Ser. No. 11/302,471, filed Dec. 14, 2005, entitled, “Coupled Nano-Resonating Energy Emitting Structures;”
    • 7. U.S. application Ser. No. 11/325,432, filed Jan. 5, 2006, entitled, “Resonant Structure-Based Display;”
    • 8. U.S. application Ser. No. 11/325,448, filed Jan. 5, 2006, entitled, “Selectable Frequency Light Emitter;”
    • 9. U.S. application Ser. No. 11/325,571, filed Jan. 5, 2006, entitled, “Switching Micro-Resonant Structures by Modulating a Beam of Charged Particles;” and
    • 10. U.S. application Ser. No. 11/325,534, filed Jan. 5, 2006, entitled, “Switching Micro-Resonant Structures Using at Least One Director.”


FIELD OF THE INVENTION

This relates in general to detector devices and, more particularly, to detector devices having a metallurgical junction.


INTRODUCTION AND BACKGROUND

Coupling energy from electromagnetic radiation in the frequency range from about 0.1 terahertz (THz) (3000 microns) to about 7 petahertz (PHz) (0.4 nanometers), referred to as the terahertz portion of the electromagnetic spectrum, is finding use in numerous new applications. These applications include improved detection of concealed weapons and explosives, forensics, improved medical imaging, detection of biological materials, better characterization of semiconductors; and broadening the available bandwidth for wireless communications.


In solid materials the detection of electromagnetic radiation starts with absorption, which is the mechanism for transferring energy from an electromagnetic (EM) wave to an electron-hole pair. In particular, photoconductor semiconductor devices use the absorption mechanism on receiving the EM wave and transfer the received energy via electron-hole pairs by band-to-band transitions. In addition, extrinsic photoconductor devices use the absorption mechanism and operate having transitions across the forbidden-gap energy levels (S. M., Sze, “Semiconductor Devices Physics and Technology”, 2002, page 285).


Photodetectors include a range of semiconductor devices. These devices can include various types of photodiodes such as heterojunction, avalanche, P-I-N, and the like. The absorption coefficient is a property of a material and defines the extent to which the material absorbs energy in the form of electromagnetic radiation. Cut-off wavelength is the wavelength below which a material normally does not absorb electromagnetic radiation. Representative semiconductor materials such as Silicon(Si), Germanium (Ge) and Gallium Arsenide (GaAs) have cut-off wavelengths of about 1.1 microns, 1.9 microns and 0.87 microns, respectively. Hence, one particular semiconductor material normally cannot absorb energy in both the visible (i.e., about 0.39 microns to about 0.77 microns) and the infrared (i.e., about 0.77 microns to about 1 millimeter) portions of the electromagnetic spectrum.


In a given metal the electron density is normally substantially uniform. Variation or modulation of the electron density is referred to as a charge density wave. Plasmons are a form of the charge density waves. By one definition, the particle name for the charge density wave is a plasmon. A particular type of plasmon typically occurs at an interface between a metal and a dielectric, or between a semiconductor and a dielectric, and is referred to as a surface plasmon. Measurement of features on a surface at ultra-high sensitivity can employ the use of surface plasmons. For example, the technology for measuring a microbe or a virus has recently developed through the use of surface plasmon detection.


One method, called the minimum reflection method, for detecting surface plasmons includes directing an electromagnetic wave at an angle incident to a dielectric-metal or dielectric-semiconductor interface. Generally, the EM wave is reflected off the dielectric-metal interface. As the angle of the incident EM wave is varied, a particular angle is reached where the reflected EM wave is substantially zero. At this particular angle, energy of the incident EM wave is generally transferred to the surface plasmons or plasmons. Hence, the angle at which the reflected EM wave is minimum indicates the detection of plasmons. A so-called Kretschmann-Raether configuration applies the minimum reflection method (above) and provides easy access by employing a prism that contacts a metal or semiconductor layer. An electromagnetic wave passes through the prism and can reflect off the layer. An Otto arrangement disposes a prism a distance from an interface of the metal or semiconductor layer and detects plasmons again using the minimum reflection technique. This arrangement presents a disadvantage, because the interface is difficult to access with the detector. In yet another configuration, a corrugated surface or grating can be used to detect the minimum reflection of the EM wave. Another method for detecting plasmons collects an image of the reflected EM wave. The image can be processed using digital signal processing (DSP) to provide an angle of resonance within a few microns. This method is generally costly. In U.S. Pat. No. 5,792,667, plasmons are detected by measuring a temperature rise on the metal or semiconductor layer by using an ultra-thin-film thermometer. This method has the disadvantages of requiring ideal temperature control and precise calibration of the thermometer.


We describe a structure for receiving electromagnetic radiation, stimulating plasmons and generating a current on detecting the plasmons. This structure can be used as a plasmon detector. Optionally, the structure can be used to detect electromagnetic radiation over a broader range than any particular semiconductor detector. A plasmon source can be formed within a semiconductor device, such as a diode or transistor with a P-N junction. The plasmon source can include a transmission line, a microstructure, a micro-resonant structure having a cavity, a portion of metallization within a microcircuit, and the like. An electromagnetic wave can be received at the plasmon source, thereby stimulating plasmons. Fields are generated by the stimulated plasmons and coupled near the junction. The fields interact with a built-in electric field that typically occurs across the junction. This changes the band-gap and enables a current to couple through the structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The following description, given with respect to the attached drawings, may be better understood with reference to the non-limiting examples of the drawings, wherein like reference numbers designate like elements, and wherein:



FIGS. 1-5 are enlarged cross-sectional side views showing the process steps of forming a detector device;



FIG. 6 is an enlarged top-view of the detector device of FIG. 5;



FIG. 7 is a diagram showing a band-gap of the detector device under bias; and



FIG. 8 is a diagram of the detector device showing a reduced band-gap under bias and receiving an EM wave.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

In general, an electromagnetic wave having a frequency below the plasma frequency of a metal is reflected. Electrons within the metal shield the electric field of the electromagnetic wave. On the other hand, an electromagnetic wave having a frequency above the plasma frequency is coupled through the metal. Here, the electrons are unable to respond fast enough to shield the metal from the electromagnetic wave. Silver (Ag) is a material having a plasma frequency of about 714 terahertz (0.42 microns) or in ultraviolet portion of the electromagnetic spectrum. Thus, silver reflects electromagnetic radiation over the entire visible portion of the spectrum and below. Gold (Au) has a plasma frequency in the blue portion of the visible spectrum around 612 terahertz (0.49 microns), and copper (Cu) has a plasma frequency of about 566 terahertz (0.53 microns) in the green portion of the visible spectrum. Hence, silver, gold and copper are at least some metals that interact with electromagnetic radiation within the visible portion of the electromagnetic spectrum and below.


In the following, references to plasmons are not limiting and can include the more general case of charge density waves.


Generally, devices and methods for detecting electromagnetic radiation and plasmons are described. A junction, such as a metallurgical junction or PN junction, is formed between two regions, which have distinct conductivity types. The junction creates an inherent field. A plasmon source is positioned generally near the junction and receives an electromagnetic wave. The plasmon source generates plasmons having a field. An interaction occurs between the inherent field and the field from the plasmons. This causes the band-gap to diminish and reduces the width of the depletion region. Hence, a current is coupled through the device and indicates energy in the form of plasmons is detected.



FIG. 1 is an enlarged cross-sectional side-view showing a portion of a semiconductor component 100 near the beginning of fabrication. For example, a thin layer of a dielectric material can be formed on a major surface 4 of a substrate 2. The dielectric layer, commonly referred to as a screen oxide 7, can have a thickness of approximately 20 nanometers. The screen oxide 7 is a sacrificial layer that serves to collect dislodged particles resulting from subsequent processing employing an ion-implantation beam. The screen oxide 7 typically randomly scatters the beam to reduce channeling. A photoresist layer 3, for example, can be patterned having an opening 11 which exposes a portion of the screen oxide 7. Ion-implantation can be used to introduce a dopant into the substrate 2 to form a region 32. The dopant can include any suitable impurity material such as arsenic, antimony, phosphorus, or the like. In another embodiment (not shown), a dopant can be introduced using a diffusion method, without a screen oxide. Various diffusion techniques can be used and are well known to those skilled in the art. The substrate 2 can include compound semiconductors, silicon-on-insulator, silicon-on-sapphire, silicon-on-spinel, silicon-on-nitride, silicon-on-oxide, and the like. The type of material for making the substrate 2 and the method of introducing a dopant are not limiting.



FIG. 2 shows a portion of the device 100 after a drive-in oxidation step. The dopant comprising region 32 is driven deeper into the substrate 2 using various diffusion techniques well known to those in the art. For example, a wet or dry oxidation process step can be used. Similar to the process shown for FIG. 1, another dopant of an opposite conductivity type is introduced into the substrate 2 to form a region 36 above the region 32. This dopant can include any suitable impurity material such as boron, or the like. The photoresist 3 and screen oxide 7 are removed after the implantation steps. A final drive-in oxidation step can be used to redistribute the dopants of regions 32 and 36 and forms a dielectric layer 8. Some depletion of the dopant in region 36 can occur in the process of growing the dielectric layer 8. For this reason, the initial dose of the dopant in region 36 should allow for some loss in impurity concentration. After the final drive-in oxidation step, a junction 34 is established between the regions 32 and 36. The formation of dielectric layer 8 can include using other techniques such as chemical vapor deposition (CVD) and plasma enhanced vapor deposition (PECVD) and is not limiting.



FIG. 3 shows a portion the device 100 after further processing. A photoresist (not shown) is patterned and formed on the dielectric layer 8. Openings 15 are etched through the dielectric layer 8.


Referring now to FIG. 4, a plasmon source 14 is formed. The plasmon source can include a transmission line, a microstructure, a micro-resonant structure having a cavity, a portion of metallization within a microcircuit, and is not limiting. The plasmon source 14 can be formed on either side of the junction 34. The plasmon source 14 can include resonant, sub-wavelength and wavelength structures and can be sized to a multiple of the wavelength. The shape of the plasmon source 14 can include spherical, cubical, triangular-pyramidal and the like. In another embodiment (not shown), a plasmon source can extend over a range of distances from a junction and is not limiting. In yet another embodiment (not shown), a device, such as a transistor, can include a plasmon source near a junction and is not limiting as to the type of device. Portions of the region 36 exposed by the openings 15, shown in FIG. 3, are etched away using, for example, an anisotropic reactive ion etch. As shown in FIG. 4, the plasmon source 14 comprises microstructures 17A-17I and is formed above the junction 34. The microstructures 17A through 17I are formed in the etched away portions of the region 36 and fill up to a surface 5 of the dielectric layer 8 using, e.g., techniques described above. The microstructures 17A-17I can be made using materials that include at least gold, silver, copper, aluminum and the like.


A dielectric layer 9 is formed on the microstructures 17A-17I and the dielectric layer 8. The index of refraction of the dielectric layer 9 should be greater than the index of refraction of the dielectric layer 8. Generally, the preferred thickness of the dielectric layer 9 can include a broad range of thicknesses. For example, the thickness of the dielectric layer 9 can include a range of thicknesses from about 750 Angstroms to about 3,000 Angstroms. The material for the dielectric layer 9 can include various transparent or translucent materials such as silicon oxide, silicon carbide, and the like. The dielectric layer 9 can be formed using techniques commonly known in the semiconductor industry. These techniques can include various forms of chemical vapor deposition (CVD) and plasma enhanced vapor deposition (PECVD). The material and technique for making the dielectric layer 9 can take a variety of forms and is not limiting. The dielectric layer 9 can be planarized using Chemical Mechanical Polishing (CMP).


A dielectric layer 10 is formed on the dielectric layer 9. The index of refraction of the dielectric layer 10 should be less than the index of refraction of the dielectric layer 9. The thickness of dielectric layer 10 can be similar to the thickness of the dielectric layer 9.


A dielectric layer 12 is formed on the dielectric layer 10 to provide isolation and has an index of refraction less than the dielectric layer 9. A photoresist layer (not shown) is patterned on the dielectric layer 12 to form openings 25 and 29 using techniques well known to those skilled in the art. For example, the opening 25 and 29 can be formed using an anisotropic reactive ion etch that stops on the surface 4. An opening 27 can be similarly formed to stop on the dielectric layer 8.


In FIG. 5, metallization 20 and 22 fills the respective openings 25 and 29 (see FIG. 4). A dielectric material 16 is formed in the opening 27 (see FIG. 4) using various techniques such as chemical vapor deposition (CVD) and plasma enhanced vapor deposition (PECVD). The dielectric material 16 should have an index of refraction similar to the index of refraction of the dielectric layer 9. The metallization 20 and 22 electrically connects to regions 36 and 32, respectively. The microstructures 17A-17I are shown in FIG. 5 respectively from left to right.


The dopant of region 32 provides excess carriers (e.g., electrons) that diffuse from the region 32 and combine with carriers (e.g., holes) in the region 36. In addition, the dopant from region 36 provides excess carriers (e.g., holes) that travel or diffuse and combine with carriers (e.g., electrons) in the region 32. This substantially reduces the population of carriers in a portion of the respective regions 32 and 36 in the vicinity of the junction 34. Hence, a portion of the regions 32 and 36 within the dashed lines shown near junction 34 is commonly referred to as a depletion region 40. Further, a portion of the carriers reaching their respective regions 32 and 36 across the junction 34 do not combine. These non-combining carriers are referred to as uncovered charges, which form space charge regions on each side of the junction 34. The uncovered charges generate an inherent field 38, which is directed from the uncovered charges (e.g., holes) across the junction 34. A potential barrier or built-in voltage Vbi occurs across the junction 34 from the inherent field 38, and for silicon is about 0.6 volt.


Electrodes 44 and 46 are formed on the respective metallization 20 and 22. The electrode 46 is shown connected to ground. A voltage source (not shown) is connected to the electrode 44. An applied voltage VB from the voltage source is generally within a range from about zero volts to a voltage of less than the built-in voltage Vbi such that a current does not couple across the junction 34.


A coupler 50 is for coupling an electromagnetic wave 24 (EM wave) to the microstructures 17A-17I and includes the dielectric material 16 and a portion of the dielectric layers 8, 9, 10 and 12. The dielectric layer 9 and the dielectric material 16 can serve as the core of the coupler 50. The dielectric layers 8, 10 and 12 function as the coupler's 50 cladding. The EM wave 24, shown traveling through the dielectric layer 9 of the coupler 50, can be provided by an external source (not shown) coupled to an end 49 of the coupler 50. A ferrule 48 as shown can be used to connect the external source to the coupler 50.


At least a portion of the microstructures 17A-17I is exposed to the core or the dielectric layer 9, which carries the EM wave 24. An interaction between the EM wave 24 and the microstructures 17A-17I stimulate plasmons having fields 26. The fields 26 can be intensified or concentrated at the corners 18 of the microstructures 17A-17I. By changing the size, shape and material of the microstructures 17A-17I, the EM wave 24 can interact with the microstructures 17A-17I over a range of frequencies.


The fields 26 from the microstructures 17A-17I can buck or oppose the inherent field 38 across the junction 34. As a result, the band-gap is reduced, thereby allowing a current 28 to flow across the junction 34 and through the device 100. Hence, the current 28 is generated on detecting the plasmons. This provides an alternative method for detecting plasmons. Further, as mentioned above, no particular semiconductor can absorb electromagnetic radiation across the entire visible portion of the electromagnetic spectrum and below. In contrast, silver, for example, interacts with electromagnetic radiation generally across the visible spectrum and below. Thus, the device 100 can be formed using the microstructures 17A-17I made from silver, or a number of other materials that interact with electromagnetic radiation. The device 100 provides the advantage of using one structure to cover the entire visible spectrum and below. In contrast, semiconductor devices that use absorption to detect electromagnetic radiation cannot continuously function over the visible spectrum and below. Further, the response speed of semiconductor detectors is limited. Carriers within a semiconductor detector that are generated outside the depletion region are delayed, because they must travel to the junction. For this reason and to increase the absorption area, the width of the depletion region is typically increased. However, too wide a depletion region can also result in an increase of the travel-time of the carriers. In contrast, if the depletion region is biased too thin, capacitance will increase causing the response of the semiconductor detector to increase (S. M., Sze, “Semiconductor Devices Physics and Technology”, 2002, page 315).



FIG. 6 is an enlarged top-view of the device 100 shown in FIG. 5. FIG. 6 illustrates a microstructure array 31 forming rows 13, 19, 21, 23 and 29. In row 21, the microstructures 17A-17I are shown respectively from left to right. Electrodes 44 and 46 for respectively connecting to a voltage source and to ground are shown.



FIG. 7 is an energy diagram of a band-gap 30 between the top of the valence band EV and the bottom of the conduction band EC shown at an applied voltage of VB. Regions 32 and 36, junction 34 and the boundaries of the depletion region 40 are overlaid on the energy diagram. The applied voltage VB is shown connected to the electrode 44 in FIG. 5 and has a magnitude between zero and the built-in potential Vbi, (i.e., 0<VB<Vbi). The applied voltage VB provides a potential energy difference (i.e., q (Vbi−VB)) across the junction 34. The energy difference across the junction 34 is the charge (q) (e.g., coulombs) multiplied by built-in voltage Vbi minus the applied voltage VB (e.g., joule/coulomb). This decreases the total electrostatic potential across the junction 34 by the applied voltage VB. For example, a voltage of 0.3 volt is applied to the electrode 44 and opposes a built-in voltage Vbi of 0.6 resulting in a voltage of about 0.3 volt across the junction 34. The band-gap 30 is a function of a number of variables including the net electrostatic potential across the junction 34. The band-gap 30 can be increased or decreased by an applied voltage across the device 100. Here, the band-gap 30 is reduced by the applied voltage VB, because the field from the applied voltage VB opposes the inherent field 38 of the built-in voltage Vbi. For current to begin to flow, a carrier (e.g., electron) needs sufficient energy to reach the lowest energy level of the conduction band Ec. In other words, the carrier needs to overcome the energy difference (i.e., q (Vbi−VB) across the junction 34.



FIG. 8 is an energy diagram of the device 100 illustrating a reduced band-gap 30 on receiving the EM wave 24. The EM wave 24, as mentioned, stimulates plasmons that generate the field 26, which reduces the band-gap 30. In other words, the field 26 opposes the inherent field 38, thereby reducing the band-gap 30. The field 26 introduces a plasmon voltage VP. The corresponding potential energy difference (i.e., q (Vbi−VB−VP)) across the junction 34 is decreased by the plasmon voltage VP. Carriers (e.g., electrons) can now overcome the potential energy difference across the junction 34. Thus, the current 28 flows across the junction 34 and through the device 100.


Methods of making a device for detecting an electromagnetic wave as can be employed herein may use, e.g., the techniques described in related U.S. applications Ser. Nos. 10/917,571 and/or 11/203,407, each of which is described in greater detail above.


The devices described herein may also employ various similar or different example resonant structures like those described in one or more of the following, related applications, each of which was described in greater detail above: U.S. applications Ser. Nos. 11/243,476; 11/243,477; 11/238,991; 11/302,471; 11/325,432; 11/325,448; 11/325,571 and 11/325,534.


Thus are described devices and methods that detect plasmons. A metallurgical junction is formed and provides an inherent field across the junction. A built-in voltage results from the inherent field. A band-gap is established. The metallurgical junction can be biased between zero and the built-in voltage. A plasmon source is formed near the junction. An electromagnetic wave is received and channeled to expose the plasmon source, and plasmons are stimulated. A field occurs from the stimulated plasmons that oppose the inherent field. A net electrostatic potential across the junction is reduced. Thus, the band-gap is reduced, and a current is coupled across the junction and through the device on detecting the plasmons.


Although certain preferred embodiments and methods have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods may be made without departing from the spirit and scope of the invention. It is intended that the invention shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.

Claims
  • 1. A device for detecting the presence of plasmons in response to electromagnetic radiation, comprising: a substrate having first and second regions of first and second conductivity types, respectively;a voltage source establishing a voltage difference between the first and second regions;a junction region between the first and second regions having a band-gap that in an undetecting state limits current flow between the first and second regions and creates an inherent field;a plasmon source near the junction to receive the electromagnetic radiation and thereby be stimulated by the electromagnetic radiation to generate plasmons having second fields that oppose the inherent field to reduce the band-gap to enable a current to flow between the first and second regions as a detection of the presence of the plasmons, the plasmon source including a plurality of microstructures of metallic material; anda first dielectric layer formed on the first region of the substrate, the plurality of microstructures being formed into both the first region of the substrate and the first dielectric layer.
  • 2. The device of claim 1, further including a first dielectric layer formed on the first region of the substrate.
  • 3. The device of claim 2, further including a second dielectric layer formed on the first dielectric layer to sandwich the first dielectric layer between the second dielectric layer and the first region of the substrate, the second dielectric layer having an index of refraction greater than the first dielectric layer.
  • 4. The device of claim 3, further including a third dielectric layer formed on the second dielectric layer to sandwich the second dielectric layer between the first dielectric layer and the third dielectric layer, the third dielectric layer having an index of refraction less than the second dielectric layer.
  • 5. The device of claim 4, wherein portions of the first, second and third dielectric layers respectively form first and second openings, the device further including first and second metallization fillings, respectively in the first and second openings.
  • 6. The device of claim 5, wherein the first metallization filling is electrically coupled to the first region of the substrate and the second metallization filling is electrically coupled to the second region of the substrate.
  • 7. The device of claim 6, further including first and second electrodes electrically connected to, respectively, the first and second metallization fillings, the voltage difference being established between, respectively the first and second electrodes.
  • 8. The device of claim 7, wherein the plasmon source includes a plurality of microstructures of metallic material.
  • 9. The device of claim 8, wherein the microstructures are formed into both the first region of the substrate and the first dielectric layer.
  • 10. The device of claim 9 further including a core region sandwiched between the first and third dielectric layers to channel the electromagnetic wave near the microstructures.
US Referenced Citations (292)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3297905 Rockwell et al. Jan 1967 A
3315117 Udelson Apr 1967 A
3387169 Famey Jun 1968 A
3543147 Kovarik Nov 1970 A
3546524 Stark Dec 1970 A
3560694 White Feb 1971 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4053845 Gould Oct 1977 A
4282436 Kapetanakos Aug 1981 A
4450554 Steensma et al. May 1984 A
4482779 Anderson Nov 1984 A
4528659 Jones, Jr. Jul 1985 A
4589107 Middleton et al. May 1986 A
4598397 Nelson et al. Jul 1986 A
4630262 Callens et al. Dec 1986 A
4652703 Lu et al. Mar 1987 A
4661783 Gover et al. Apr 1987 A
4704583 Gould Nov 1987 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740963 Eckley Apr 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4761059 Yeh et al. Aug 1988 A
4782485 Gollub Nov 1988 A
4789945 Niijima Dec 1988 A
4806859 Hetrick Feb 1989 A
4809271 Kondo et al. Feb 1989 A
4813040 Futato Mar 1989 A
4819228 Baran et al. Apr 1989 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4841538 Yanabu et al. Jun 1989 A
4864131 Rich et al. Sep 1989 A
4866704 Bergman Sep 1989 A
4866732 Carey et al. Sep 1989 A
4873715 Shibata Oct 1989 A
4887265 Felix Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4898022 Yumoto et al. Feb 1990 A
4912705 Paneth et al. Mar 1990 A
4932022 Keeney et al. Jun 1990 A
4981371 Gurak et al. Jan 1991 A
5023563 Harvey et al. Jun 1991 A
5036513 Greenblatt Jul 1991 A
5065425 Lecomte et al. Nov 1991 A
5113141 Swenson May 1992 A
5121385 Tominaga et al. Jun 1992 A
5127001 Steagall et al. Jun 1992 A
5128729 Alonas et al. Jul 1992 A
5130985 Kondo et al. Jul 1992 A
5150410 Bertrand Sep 1992 A
5155726 Spinney et al. Oct 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5187591 Guy et al. Feb 1993 A
5199918 Kumar Apr 1993 A
5214650 Renner et al. May 1993 A
5233623 Chang Aug 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5282197 Kreitzer Jan 1994 A
5283819 Glick et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5302240 Hori et al. Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5341374 Lewen et al. Aug 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5604352 Schuetz Feb 1997 A
5608263 Drayton et al. Mar 1997 A
5663971 Carlsten Sep 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5780970 Singh et al. Jul 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5889449 Fiedziuszko Mar 1999 A
5889797 Nguyen Mar 1999 A
5902489 Yasuda et al. May 1999 A
5963857 Greywall Oct 1999 A
6005347 Lee Dec 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6139760 Shim et al. Oct 2000 A
6180415 Schultz et al. Jan 2001 B1
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6301041 Yamada Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6448850 Yamada Sep 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6525477 Small Feb 2003 B2
6534766 Abe et al. Mar 2003 B2
6545425 Victor Apr 2003 B2
6552320 Pan Apr 2003 B1
6577040 Nguyen Jun 2003 B2
6580075 Kametani et al. Jun 2003 B2
6603781 Stinson et al. Aug 2003 B1
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636185 Spitzer et al. Oct 2003 B1
6636534 Madey et al. Oct 2003 B2
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6687034 Wine et al. Feb 2004 B2
6724486 Shull et al. Apr 2004 B1
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6800877 Victor et al. Oct 2004 B2
6801002 Victor et al. Oct 2004 B2
6819432 Pepper et al. Nov 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6871025 Levi et al. Mar 2005 B2
6885262 Nishimura et al. Apr 2005 B2
6900447 Gerlach et al. May 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops Jun 2005 B1
6924920 Zhilkov Aug 2005 B2
6936981 Gesley Aug 2005 B2
6943650 Ramprasad et al. Sep 2005 B2
6944369 Deliwala Sep 2005 B2
6952492 Tanaka et al. Oct 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7064500 Victor et al. Jun 2006 B2
7068948 Wei et al. Jun 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7130102 Rabinowitz Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7230201 Miley et al. Jun 2007 B1
7253426 Gorrell et al. Aug 2007 B2
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7309953 Tiberi et al. Dec 2007 B2
7342441 Gorrell et al. Mar 2008 B2
7362972 Yavor et al. Apr 2008 B2
7375631 Moskowitz et al. Aug 2008 B2
7436177 Gorrell et al. Oct 2008 B2
7442940 Gorrell et al. Oct 2008 B2
7443358 Gorrell et al. Oct 2008 B2
7470920 Gorrell et al. Dec 2008 B2
7473917 Singh Jan 2009 B2
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020068018 Pepper et al. Jun 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020135665 Gardner Sep 2002 A1
20020191650 Madey et al. Dec 2002 A1
20030010979 Pardo Jan 2003 A1
20030012925 Gorrell Jan 2003 A1
20030016412 Small Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburu et al. Feb 2003 A1
20030103150 Catrysse et al. Jun 2003 A1
20030106998 Colbert et al. Jun 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040080285 Victor et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040092104 Gunn, III et al. May 2004 A1
20040108471 Luo et al. Jun 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040218651 Iwasaki et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050104684 Wojcik May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050152635 Paddon et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060050269 Brownell Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060131695 Kuekes et al. Jun 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060187794 Harvey et al. Aug 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070146704 Schmidt et al. Jun 2007 A1
20070152176 Gorrell et al. Jul 2007 A1
20070154846 Gorrell et al. Jul 2007 A1
20070194357 Oohashi et al. Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070252983 Tong et al. Nov 2007 A1
20070258690 Gorrell et al. Nov 2007 A1
20070264023 Gorrell et al. Nov 2007 A1
20070264030 Gorrell et al. Nov 2007 A1
20070284527 Zani et al. Dec 2007 A1
20080069509 Gorrell et al. Mar 2008 A1
20080302963 Nakasuji et al. Dec 2008 A1
Foreign Referenced Citations (11)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 0072413 Nov 2000 WO
WO 0225785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2005098966 Oct 2005 WO
WO 2006042239 Apr 2006 WO
Related Publications (1)
Number Date Country
20070257328 A1 Nov 2007 US