Detecting short circuits in electrosurgical medical devices

Information

  • Patent Grant
  • 10932847
  • Patent Number
    10,932,847
  • Date Filed
    Tuesday, December 5, 2017
    6 years ago
  • Date Issued
    Tuesday, March 2, 2021
    3 years ago
Abstract
A control circuit for use with an electrosurgical system is disclosed. The control circuit is programmed to provide an electrosurgical signal comprising a plurality of pulses to first and second electrodes and receive a first reading of an impedance between the first and second electrodes. The control circuit is programmed to receive a second reading of the impedance between the first and second electrodes. The control circuit is programmed to determine a difference between the first and second readings and determine that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the first reading and the second reading. The control circuit is programmed to generate a signal indicating the short circuit between the first and second electrodes.
Description
BACKGROUND

Electrosurgical instruments are a type of surgical instrument used in many surgical operations. Electrosurgical instruments apply electrical energy to tissue in order to treat tissue. An electrosurgical instrument may comprise an instrument having a distally-mounted end effector comprising one or more electrodes. The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical instruments can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active (or source) electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flow through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical instrument sometimes also comprises a cutting member that is moveable relative to the tissue and the electrodes to transect the tissue.


Electrical energy applied by an electrosurgical instrument can be transmitted to the instrument by a generator. The generator may form an electrosurgical signal that is applied to an electrode or electrodes of the electrosurgical instrument. The generator may be external or integral to the electrosurgical instrument. The electrosurgical signal may be in the form of radio frequency (“RF”) energy. For example, RF energy may be provided at a frequency range of between 100 kHz and 1 MHz. During operation, an electrosurgical instrument can transmit RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.


Short circuits are a recurrent problem for electrosurgical instruments. For example, if a conductive clip, staple or other non-tissue conductive object is present between the electrodes of an electrosurgical instrument and touching both polarities simultaneously, electrosurgical energy can be shunted through the conductive object. Additionally, in the case of bipolar forceps, the electrodes can touch each other during normal usage. This contact shunts electrical energy away from the tissue and the surgeon has to open the forceps and re-grasp the tissue. This can result in several undesirable outcomes including, for example, incomplete tissue effect, excessive heating of the conductive object, a delay of the surgery, clinician inconvenience or frustration, etc. Existing methods for coping with short circuits utilize the generator or other suitable component to determine when the impedance between the electrodes falls below a threshold value, for example, for a threshold amount of time. When such an impedance drop is detected, the generator alerts the clinician, who can then reposition the electrodes and/or remove the conducting object. Existing methods, however, suffer when tissue impedance itself drops during treatment. For example, during electrosurgical treatment, localized tissue impedance can often fall as low as just a few ohms. Existing methods are often inadequate for distinguishing between short circuits and normally occurring low tissue impedance.


SUMMARY

A control circuit for use with an electrosurgical system is disclosed. The control circuit is programmed to provide an electrosurgical signal comprising a plurality of pulses to first and second electrodes and receive a first reading of an impedance between the first and second electrodes. The first reading is taken during the provision of a pulse of the electrosurgical signal. The control circuit is further programmed to receive a second reading of the impedance between the first and second electrodes. The second reading is taken during the provision of a subsequent pulse of the electrosurgical signal. The control circuit is further programmed to determine a difference between the first and second readings and determine that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the first reading and the second reading. The control circuit is further programmed to generate a signal indicating the short circuit between the first and second electrodes.





FIGURES

The features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1 shows a perspective view of one example embodiment of a surgical system shows a perspective view of one example embodiment of a surgical instrument system comprising an electrosurgical instrument and an external generator.



FIG. 2 shows a side view of one example embodiment of the handle of the surgical instrument of FIG. 1 with half of a first handle body removed to illustrate various components within the second handle body.



FIG. 3 shows a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 1 with the jaws open and the distal end of an axially moveable member in a retracted position.



FIG. 4 shows a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 1 with the jaws closed and the distal end of an axially moveable member in a partially advanced position.



FIG. 5 shows a perspective view of one embodiment of the axially moveable member of the surgical instrument of FIG. 1.



FIG. 6 shows a section view of one embodiment of the end effector of the surgical instrument of FIG. 1.



FIG. 7 shows a perspective view of one example embodiment of a surgical instrument system comprising a cordless electrical energy surgical instrument with an integral generator.



FIG. 8A shows a side view of a handle of one embodiment of the surgical instrument of FIG. 7 with half of the handle body removed to illustrate various components therein.



FIG. 8B shows one embodiment of an RF drive and control circuit.



FIG. 8C shows one embodiment of the main components of a control circuit.



FIG. 9 is a chart showing the voltage, current, power and impedance of an example electrosurgical signal provided to human tissue and exhibiting a low tissue impedance condition.



FIG. 10 is a chart showing voltage, current, power and impedance of an example electrosurgical signal provided to human tissue and exhibiting a short circuit.



FIG. 11 is a chart illustrating one example embodiment of an electrosurgical signal comprising a plurality of pulses.



FIG. 12 is a flow chart illustrating one embodiment of a process flow for detecting short circuits based on inter-pulse impedance comparisons.



FIG. 13 is a workflow showing one embodiment of a fuzzy logic algorithm that may be utilized according to various embodiments to detect a short circuit.



FIG. 14 is a diagram showing an example neural network for detecting short circuit conditions.



FIGS. 15 and 16 are plots of example implementations of equations for indicating results at the nodes of the neural network of FIG. 14.



FIG. 17 is a logic flow diagram of one form of an algorithm for training a neural network, such as the neural network of FIG. 14, utilizing back-propagation.



FIG. 18 is a logic flow diagram of one form of an algorithm for detecting a short circuit condition for an electrosurgical instrument utilizing a multi-variable model, such as the neural network described herein.



FIG. 19 is a workflow showing one embodiment of a neuro-fuzzy algorithm that may be utilized according to various embodiments to detect a short circuit.



FIG. 20 shows a logical diagram of a circuit for detecting a short circuit based on phase difference.



FIG. 21 is a flow chart showing one embodiment of a process flow for detecting a short circuit in an electrosurgical system.



FIG. 22 is a diagram showing one embodiment of the electrosurgical system of FIG. 1 comprising a fuse.



FIG. 23 is a flow chart showing one embodiment of a process flow for utilizing a fuse to generate an impedance threshold.



FIG. 24 is a diagram showing one embodiment of an adaptive filter for detecting short circuits.



FIG. 25 is a diagram showing one embodiment of an electrosurgical instrument circuit demonstrating tissue impedance management.



FIG. 26 is a diagram showing one embodiment of an electrosurgical device circuit with the output sampling network positioned on the patient-side of the DC blocking capacitors.





DESCRIPTION

Reference will now be made in detail to several embodiments, including embodiments showing example implementations of electrosurgical instruments for cutting and coagulating tissue. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict example embodiments of the disclosed electrosurgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.


Electrosurgical instruments utilize therapeutic and/or subtherapeutic electrical energy to treat tissue and/or provide feedback to the generators. The various electrosurgical instruments described herein are adapted for use in a manual or hand-operated manner, although electrosurgical instruments with the features described herein may be used in robotic applications as well. FIG. 1 shows a perspective view of one example embodiment of a surgical system 100 comprising an electrosurgical instrument 110 and an external generator 120. The electrosurgical instrument 110 may comprise a proximal handle 112, a distal working end or end effector 126 and an introducer or elongated shaft 114 disposed in-between.


The electrosurgical system 100 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously, for example. In one example embodiment, the electrosurgical system 100 includes the generator 120 in electrical communication with the electrosurgical instrument 110. The generator 120 is connected to the electrosurgical instrument 110 via a suitable transmission medium such as a cable 122. In one example embodiment, the generator 120 is coupled to a controller, such as a control circuit 125, for example. In various embodiments, the control circuit 125 may be formed integrally with the generator 120 or may be provided as a separate circuit module or device electrically coupled to the generator 120 (shown in phantom to illustrate this option). The control circuit 125 may comprise any suitable analog and/or digital hardware for controlling the generator 102 and/or the instrument 110 in the manner described herein. For example, in some embodiments, the control circuit 125 may comprise at least one processor and operatively associated memory. In some embodiments, the control circuit 125 may comprise a digital signal processor (DSP). Also, in addition to or instead of a processor, the control circuit 125 may comprise various other components including, for example, one or more field programmable gate arrays (FPGA's), application specific integrated circuits (ASIC's), etc.


Although in the presently disclosed embodiment, the generator 120 is shown separate from the electrosurgical instrument 110, in one example embodiment, the generator 120 (and/or the control circuit 125) may be formed integrally with the electrosurgical instrument 110 to form a unitary electrosurgical system 100, where a battery located within the electrosurgical instrument 110 is the energy source and a circuit coupled to the battery produces the suitable electrical energy, ultrasonic energy, or heat energy. One such example is described herein below in connection with FIGS. 7-8C. The generator 120 may comprise an input device 135 located on a front panel of the generator 120 console. The input device 135 may comprise any suitable device that generates signals suitable for programming the operation of the generator 120, such as a keyboard, or input port, for example.


Referring now to the end effector 126, electrodes in the first jaw 164a and the second jaw 164b may be coupled to the generator 120 via the handle 112 and cable 122. The cable 122 may comprise multiple electrical conductors for the application of electrical energy to positive (+) and negative (−) electrodes of the electrosurgical instrument 110. For example, the cable 122 may comprise at least one supply conductor 131 and at least one return conductor 133. In various embodiments, the supply conductor 131 and the return conductor 133 may comprise insulated wires and/or any other suitable type of conductor. In certain embodiments, as described below, the supply conductor 131 and the return conductor 133 may be contained within and/or may comprise the cable 122 extending between, or at least partially between, the generator 120 and the end effector 126 of the electrosurgical instrument 110. In any event, the generator 120 can be configured to apply a sufficient voltage differential between the supply conductor 131 and the return conductor 133 such that sufficient current can be supplied to the end effector 126.


The control circuit 125 may be used to activate the generator 120, which may serve as an electrical source. The generator may create an electrosurgical signal provided to the electrodes of the jaws 164a, 164b via the handle 112. In various embodiments, the generator 120 may comprise an RF or electrosurgical source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example, which may be activated independently or simultaneously.



FIG. 2 shows a side view of one example embodiment of the handle 112 of the surgical instrument 110 with half of a first handle body 112a (see FIG. 1) removed to illustrate various components within the second handle body 112b. The handle 112 may comprise a lever arm 121 (e.g., a trigger) which may be pulled along a path 33. The lever arm 121 may be coupled to an axially moveable member 178 (FIGS. 3-6) disposed within the elongated shaft 114 by a shuttle 184 operably engaged to an extension 198 of lever arm 121. The shuttle 184 may further be connected to a biasing device, such as a spring 188, which may also be connected to the second handle body 112b, to bias the shuttle 184 and thus the axially moveable member 178 in a proximal direction, thereby urging the jaws 164a and 164b to an open position as seen in FIG. 1. Also, referring to FIGS. 1-2, a locking member 190 (see FIG. 2) may be moved by a button 128 (see FIG. 1) between a locked position, where the shuttle 184 is substantially prevented from moving distally as illustrated, and an unlocked position, where the shuttle 184 may be allowed to freely move in the distal direction, toward the elongated shaft 114. The handle 112 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers or sliders for actuating the first jaw 164a and the second jaw 164b. In some embodiments, the handle 112 may comprise a pencil-style handle. The elongated shaft 114 may have a cylindrical or rectangular cross-section, for example, and can comprise a thin-wall tubular sleeve that extends from handle 112. The elongated shaft 114 may include a bore extending therethrough for carrying actuator mechanisms, for example, the axially moveable member 178, for actuating the jaws and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 126.


The end effector 126 may be adapted for capturing and transecting tissue and for contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). The first jaw 164a and the second jaw 164b may close to thereby capture or engage tissue about a longitudinal axis “T” defined by the axially moveable member 178. The first jaw 164a and second jaw 164b may also apply compression to the tissue. In some embodiments, the elongated shaft 114, along with the first jaw 164a and second jaw 164b, can be rotated a full 360° degrees, as shown by the arrow 196 (see FIG. 1), relative to the handle 112. For example, a rotation knob 148 may be rotatable about the longitudinal axis of the shaft 114 and may be coupled to the shaft 114 such that rotation of the knob 148 causes corresponding rotation of the shaft 114. The first jaw 164a and the second jaw 164b can remain openable and/or closeable while rotated. Also, in some embodiments, the elongated shaft 114 may be articulable, allowing for a further range of motion. Examples of surgical devices with articulable shafts are provided in U.S. Pat. No. 9,101,385, filed on Jun. 28, 2012, entitled, ELECTRODE CONNECTIONS FOR ROTARY DRIVEN SURGICAL TOOLS, the entire disclosure of which is incorporated herein by reference.



FIG. 3 shows a perspective view of one example embodiment of the end effector 126 with the jaws 164a, 164b open and the distal end of the axially moveable member 178 in a retracted position. FIG. 4 shows a perspective view of one embodiment of the end effector 126 with the jaws 164a, 164b closed and the distal end of the axially moveable member 178 in a partially advanced position. As noted above, the end effector 126 may comprise the upper first jaw 164a and the lower second jaw 164b, which may be straight or curved. The first jaw 164a and the second jaw 164b may each comprise an elongated slot or channel 162a and 162b, respectively, disposed outwardly along their respective middle portions. Further, the first jaw 164a and the second jaw 164b may each have tissue-gripping elements, such as teeth 163, disposed on the inner portions of the first jaw 164a and the second jaw 164b. The first jaw 164a may comprise an upper first jaw body with an upper first outward-facing surface 169a and an upper first energy delivery surface 165a. The second jaw 164b may comprise a lower second jaw body with a lower second outward-facing surface 169b and a lower second energy delivery surface 165b. The first energy delivery surface 165a and the second energy delivery surface 165b may both extend in a “U” shape about the distal end of the end effector 126.


The lever arm 121 of the handle 112 (FIG. 2) may be adapted to actuate the axially moveable member 178, which also may function as a jaw-closing mechanism. For example, the axially moveable member 178 may be urged distally as the lever arm 121 is pulled proximally along the path 33 via the shuttle 184, as shown in FIG. 2 and discussed above. FIG. 5 is a perspective view of one example embodiment of the axially moveable member 178 of the surgical instrument 110. The axially moveable member 178 may comprise one or several pieces, but in any event, may be moveable or translatable with respect to the elongated shaft 114 and/or the jaws 164a, 164b. Also, in at least one example embodiment, the axially moveable member 178 may be made of 17-4 precipitation hardened stainless steel. The distal end of axially moveable member 178 may comprise a flanged “I”-beam configured to slide within the channels 162a and 162b in jaws 164a and 164b. The axially moveable member 178 may slide within the channels 162a, 162b to open and close the first jaw 164a and the second jaw 164b. The distal end of the axially moveable member 178 may also comprise an upper flange or “c”-shaped portion 178a and a lower flange or “c”-shaped portion 178b. The flanges 178a, 178b respectively define inner cam surfaces 167a and 167b for engaging outward facing surfaces of the first jaw 164a and the second jaw 164b. The opening-closing of jaws 164a and 164b can apply very high compressive forces on tissue using cam mechanisms which may include moveable “I-beam” axially moveable member 178 and the outward facing surfaces 169a, 169b of jaws 164a, 164b.


More specifically, referring now to FIGS. 3-5, collectively, the inner cam surfaces 167a and 167b of the distal end of axially moveable member 178 may be adapted to slidably engage the first outward-facing surface 369a and the second outward-facing surface 169b of the first jaw 164a and the second jaw 164b, respectively. The channel 162a within first jaw 164a and the channel 162b within the second jaw 164b may be sized and configured to accommodate the movement of the axially moveable member 178, which may comprise a tissue-cutting element 171, for example, comprising a sharp distal edge. FIG. 4, for example, shows the distal end of the axially moveable member 178 advanced at least partially through channels 162a and 162b (FIG. 3). The advancement of the axially moveable member 178 may close the end effector 126 from the open configuration shown in FIG. 3. In the closed position shown by FIG. 4, the upper first jaw 164a and the lower second jaw 164b define a gap or dimension D between the first energy delivery surface 165a and second energy delivery surface 165b of the first jaw 164a and the second jaw 164b, respectively. In various embodiments, dimension the D can equal from about 0.0005″ to about 0.040″, for example, and in some embodiments, between about 0.001″ to about 0.010″, for example. Also, the edges of the first energy delivery surface 165a and the second energy delivery surface 165b may be rounded to prevent the dissection of tissue.



FIG. 6 is a section view of one example embodiment of the end effector 126 of the surgical instrument 110. The second energy delivery surface 165b of the lower jaw 164b is adapted to deliver energy to tissue, at least in part, through a conductive-resistive matrix, such as a variable resistive PTC body, as discussed in more detail below. At least one of the upper and lower jaws 164a, 164b may carry at least one electrode 173 configured to deliver the energy from the generator 120 to the captured tissue. The first energy delivery surface 165a of the upper jaw 164a may carry a similar conductive-resistive matrix (i.e., a PTC material), or in some embodiments the surface may be a conductive electrode or an insulative layer, for example. Alternatively, the engagement surfaces of the jaws can carry any of the energy delivery components disclosed in U.S. Pat. No. 6,773,409, filed Oct. 22, 2001, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, the entire disclosure of which is incorporated herein by reference.


The first energy delivery surface 165a and the second energy delivery surface 165b each may be in electrical communication with the generator 120. The first energy delivery surface 165a and the second energy delivery surface 165b may be configured to contact tissue and deliver electrosurgical energy to captured tissue which are adapted to seal or weld the tissue. The control circuit 125 regulates the electrical energy delivered by electrical generator 120 which in turn delivers electrosurgical energy to the first energy delivery surface 165a and the second energy delivery surface 165b. The energy delivery may be initiated by an activation button 128 (FIG. 2) operably engaged with the lever arm 121 and in electrical communication with the generator 120 via a cable 122. In one example embodiment, the electrosurgical instrument 110 may be energized by the generator 120 by way of a foot switch 129 (FIG. 1). When actuated, the foot switch 129 triggers the generator 120 to deliver electrical energy to the end effector 126, for example. The control circuit 125 may regulate the power generated by the generator 120 during activation. Although the foot switch 129 may be suitable in many circumstances, other suitable types of switches can be used, such as, for example, a thumb switch.


As mentioned above, the electrosurgical energy delivered by electrical generator 120 and regulated, or otherwise controlled, by the control circuit 125 may comprise radio frequency (RF) energy, or other suitable forms of electrical energy. Further, the opposing first and second energy delivery surfaces 165a and 165b may carry variable resistive PTC bodies that are in electrical communication with the generator 120 and the control circuit 125. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,112; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein by reference in their entirety and made part of this specification.


In one example embodiment, the generator 120 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one example embodiment, the ESU can be a bipolar ERBE ICC 150 sold by ERBE USA, Inc. of Marietta, Ga. and/or a GEN11 generator sold by Ethicon Endo-Surgery of Cincinnati, Ohio. In some embodiments, such as for bipolar electrosurgery applications, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, adjacent to and/or in electrical communication with, the tissue to be treated such that current can flow from the active electrode, through the PTC bodies and to the return electrode through the tissue. Thus, in various embodiments, the electrosurgical system 100 may comprise a supply path and a return path, where the captured tissue being treated completes, or closes, the circuit. In other embodiments, the operator may provide subtherapeutic RF energy levels for purposes of evaluating tissue conditions and providing feedback in the electrosurgical system 100. Such feed back may be employed to control the therapeutic RF energy output of the electrosurgical instrument 110.


During operation of electrosurgical instrument 110, the user generally grasps tissue, supplies energy to the grasped tissue to form a weld or a seal (e.g., by actuating button 128 and/or foot switch 129), and then drives a tissue-cutting element 171 at the distal end of the axially moveable member 178 through the grasped tissue. According to various embodiments, the translation of the axial movement of the axially moveable member 178 may be paced, or otherwise controlled, to aid in driving the axially moveable member 178 at a suitable rate of travel. By controlling the rate of the travel, the likelihood that the captured tissue has been properly and functionally sealed prior to transection with the cutting element 171 is increased.



FIG. 7 shows a perspective view of one example embodiment of a surgical instrument system 200 comprising a cordless electrical energy surgical instrument 210 with an integral generator (not shown in FIG. 7). The electrosurgical system 200 is similar to the electrosurgical system 100. The electrosurgical system 200 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously as described in connection with FIG. 1, for example. The electrosurgical instrument 210 may utilize the end effector 126 and elongated shaft 114 described here in conjunction with a cordless proximal handle 212. In one example embodiment, the handle 212 includes the integral generator circuit 220 (see FIG. 8A). The generator circuit 220 performs a function substantially similar to that of generator 120. In one example embodiment, the generator circuit 220 is coupled to a controller or control circuit (e.g., 281 in FIG. 8B). In the illustrated embodiment, the control circuit is integrated into the generator circuit 220. In other embodiments, the control circuit may be separate from the generator circuit 220.


In one example embodiment, various electrodes in the end effector 126 (including the first and second jaws 164a, 164b thereof) may be coupled to the generator circuit 220. The control circuit may be used to activate the generator 220, which may serve as an electrical source. In various embodiments, the generator 220 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example. In one example embodiment, a button 228 may be provided to activate the generator circuit 220 to provide energy to the end effector 126.



FIG. 8A shows a side view of one example embodiment of the handle 212 of the cordless surgical instrument 210 with half of a first handle body removed to illustrate various components within the second handle body 234. The handle 212 may comprise a lever arm 221 (e.g., a trigger) which may be pulled along a path 33 around a pivot point. The lever arm 221 may be coupled to an axially moveable member 278 disposed within the elongated shaft 114 by a shuttle operably engaged to an extension of lever arm 221. In one example embodiment, the lever arm 221 defines a shepherd's hook shape comprising a distal trigger hook 221a and a proximal trigger portion 221b. As illustrated, the distal trigger hook 221a may have a first length while the proximal trigger portion 221b may have a second length with the second length greater than the first length.


In one example embodiment, the cordless electrosurgical instrument comprises a battery 237. The battery 237 provides electrical energy to the generator circuit 220. The battery 237 may be any battery suitable for driving the generator circuit 220 at the desired energy levels. In one example embodiment, the battery 237 is a 1030 mAhr, triple-cell Lithium Ion Polymer battery. The battery may be fully charged prior to use in a surgical procedure, and may hold a voltage of about 12.6V. The battery 237 may have two fuses fitted to the cordless electrosurgical instrument 210, arranged in line with each battery terminal. In one example embodiment, a charging port 239 is provided to connect the battery 237 to a DC current source (not shown).


The generator circuit 220 may be configured in any suitable manner. In some embodiments, the generator circuit comprises an RF drive and control circuit 240 and a controller circuit 282. FIG. 8B shows one embodiment of an RF drive and control circuit 240. FIG. 8B is a part schematic part block diagram illustrating the RF drive and control circuitry 240 used in this embodiment to generate and control the RF electrical energy supplied to the end effector 126. In this embodiment, the drive circuitry 240 is a resonant mode RF amplifier comprising a parallel resonant network on the RF amplifier output and the control circuitry operates to control the operating frequency of the drive signal so that it is maintained at the resonant frequency of the drive circuit, which in turn controls the amount of power supplied to the end effector 126. The way that this is achieved will become apparent from the following description.


As shown in FIG. 8B, the RF drive and control circuit 240 comprises the above described battery 237 are arranged to supply, in this example, about 0V and about 12V rails. An input capacitor (Cin) 242 is connected between the 0V and the 12V for providing a low source impedance. A pair of FET switches 243-1 and 243-2 (both of which are N-channel in this embodiment to reduce power losses) is connected in series between the 0V rail and the 12V rail. FET gate drive circuitry 245 is provided that generates two drive signals—one for driving each of the two FET's 243. The FET gate drive circuitry 245 generates drive signals that causes the upper FET (243-1) to be on when the lower FET (243-2) is off and vice versa. This causes the node 247 to be alternately connected to the 12V rail (when the FET 243-1 is switched on) and the 0V rail (when the FET 243-2 is switched on). FIG. 8B also shows the internal parasitic diodes 248-1 and 248-2 of the corresponding FET's 243, which conduct during any periods that the FET's 243 are open.


As shown in FIG. 8B, the node 247 is connected to an inductor-inductor resonant circuit 250 formed by inductor Ls 252 and inductor Lm 254. The FET gate driving circuitry 245 is arranged to generate drive signals at a drive frequency (fd) that opens and crosses the FET switches 243 at the resonant frequency of the parallel resonant circuit 250. As a result of the resonant characteristic of the resonant circuit 250, the square wave voltage at node 247 will cause a substantially sinusoidal current at the drive frequency (fd) to flow within the resonant circuit 250. As illustrated in FIG. 8B, the inductor Lm 254 is the primary of a transformer 255, the secondary of which is formed by inductor Lsec 256. The inductor Lsec 256 of the transformer 255 secondary is connected to an inductor-capacitor-capacitor parallel resonant circuit 257 formed by inductor L2 258, capacitor C4 260, and capacitor C2 262. The transformer 255 up-converts the drive voltage (Vd) across the inductor Lm 254 to the voltage that is applied to the output parallel resonant circuit 257. The load voltage (VL) is output by the parallel resonant circuit 257 and is applied to the load (represented by the load resistance Rload 259 in FIG. 8B) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the end effector 126. As shown in FIG. 8B, a pair of DC blocking capacitors Cbl1 280-1 and Cbl2 280-2 is provided to prevent any DC signal being applied to the load 259.


In one embodiment, the transformer 255 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:


Core Diameter, D (mm)


D=19.9×10-3


Wire diameter, W (mm) for 22 AWG wire


W=7.366×10−4


Gap between secondary windings, in gap=0.125


G=gap/25.4


In this embodiment, the amount of electrical power supplied to the end effector 126 is controlled by varying the frequency of the switching signals used to switch the FET's 243. This works because the resonant circuit 250 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 250, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 250, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 245 is controlled by a controller 281 based on a desired power to be delivered to the load 259 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 283 and current sensing circuitry 285. The way that the controller 281 operates will be described in more detail below.


In one embodiment, the voltage sensing circuitry 283 and the current sensing circuitry 285 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 283 and the current sensing circuitry 285. In one-embodiment, a step-down regulator (e.g., LT1502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 237.



FIG. 8C shows the main components of the controller 281, according to one embodiment. In the embodiment illustrated in FIG. 8C, the controller 281 is a microprocessor based controller and so most of the components illustrated in FIG. 8c are software based components. Nevertheless, a hardware based controller 281 may be used instead such as, for example, a FPGA, ASIC, etc. As shown, the controller 281 includes synchronous I,Q sampling circuitry 291 that receives the sensed voltage and current signals from the sensing circuitry 283 and 285 and obtains corresponding samples which are passed to a power, Vrms and Irms calculation module 293. The calculation module 293 uses the received samples to calculate the RMS voltage and RMS current applied to the load 259 (FIG. 8B; end effector 126 and tissue/vessel gripped thereby) and from them the power that is presently being supplied to the load 259. The determined values are then passed to a frequency control module 295 and a medical device control module 297. The medical device control module 297 uses the values to determine the present impedance of the load 259 and based on this determined impedance and a pre-defined algorithm, determines what set point power (Pset) should be applied to the frequency control module 295. The medical device control module 297 is in turn controlled by signals received from a user input module 299 that receives inputs from the user (for example pressing buttons 228 or activating the control levers 221 on the handle 212) and also controls output devices (lights, a display, speaker or the like) on the handle 212 via a user output module 261.


The frequency control module 295 uses the values obtained from the calculation module 293 and the power set point (Pset) obtained from the medical device control module 297 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 263 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 295 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 263 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 263 is output to the FET gate drive circuitry 245, which amplifies the signal and then applies it to the FET 243-1. The FET gate drive circuitry 245 also inverts the signal applied to the FET 243-1 and applies the inverted signal to the FET 243-2.


The electrosurgical instrument 210 may comprise additional features as discussed with respect to the electrosurgical system 100 illustrated in FIGS. 1-6. Those skilled in the art will recognize that electrosurgical instrument 210 may include a rotation knob 148, an elongated shaft 114, and an end effector 126. These elements function in a substantially similar manner to that discussed above with respect to the electrosurgical system 100 illustrated in FIGS. 1-6. In one example embodiment, the cordless electrosurgical instrument 210 may include visual indicators 235. The visual indicators 235 may provide a visual indication signal to an operator. In one example embodiment, the visual indication signal may alert an operator that the device is on, or that the device is applying energy to the end effector. Those skilled in the art will recognize that the visual indicators 235 may be configured to provide information on multiple states of the device.


Various embodiments are directed to electrosurgical systems, such as 100 and 200 described above, that are capable of detecting short circuits between electrodes of an electrosurgical instrument. For example, it is desirable for a surgical system to distinguish between a short circuit and a low tissue impedance condition that occurs during tissue treatment. When a short circuit is encountered, it is typically desirable to halt the electrosurgical signal to allow the clinician to reposition the electrodes and/or remove the clip, staple or other non-tissue component causing the short. On the other hand, when a low tissue impedance condition is encountered, it is typically desirable to complete treatment.


Many electrosurgical systems detect short circuits by monitoring the impedance between the system electrodes, with a low impedance indicating a short. In various embodiments, a short circuit presents as a current sink, with minimal changes in voltage. This may be detected, for example, by monitoring impedance. For example, when impedance below a threshold impedance is detected and persists for a threshold time period, a short circuit may be indicated. The generator may cease providing the electrosurgical signal and give an audible and/or visual indication to the clinician to change the electrode placement and/or remove the short. Monitoring impedance between the electrodes alone, however, makes it difficult to distinguish short circuits from ordinary low tissue impedance conditions.



FIG. 9 is a chart 900 showing the voltage 902, current 904, power 906 and impedance 908 of an example electrosurgical signal provided to human tissue and exhibiting a low tissue impedance condition. The electrosurgical signal comprises a plurality of pulses 910, 912, 914, 916. A low tissue impedance condition is illustrated at 918. Here, the impedance (e.g., the impedance between the instrument electrodes in response to the signal) drops well below two ohms with no short circuit present. FIG. 10 is a chart 1000 showing voltage 1002, current 1004, power and impedance 1008 of an example electrosurgical signal provided to human tissue and exhibiting a short circuit. The signal provided in FIG. 10 is also formed of a series of pulses 1010, 1012, 1014, 1016, 1018. A short circuit occurs at 1020 when the electrodes encounter a line of conducting staples. As illustrated, current 1004 spikes while impedance 1008 and voltage 1002 drop sharply.


It has been determined that during a low tissue impedance condition, the impedance level between the electrodes tends to change slightly at equivalent points of successive pulses. For example, referring to FIG. 9, the impedance 908 at the beginning of the pulse 914 is greater than the impedance 908 at the beginning of the pulse 916. Also, as indicated in FIG. 9, the tissue impedance tends to follow a common “bathtub” pattern of rising near the beginning of a pulse, falling in the middle of the pulse, and then rising again near the end of the pulse. In contrast, when a short circuit is encountered, as illustrated in FIG. 10, the “bathtub” pattern of impedance is not encountered. Further, when a short circuit is encountered, impedance does not typically vary from pulse to pulse.


In various embodiments, these properties may be exploited to detect short circuits by comparing impedance values at different positions within a pulse. For example, FIG. 11 is a chart illustrating one example embodiment of an electrosurgical signal 1100 comprising a series of pulses 1102, 1104, 1106, 1108, 1110. The signal 1100, corresponding to the vertical axis, represents a current and/or voltage without considering load effects. Each of the pulses 1102 can be divided into a plurality of positions, indicated in FIG. 11 by A, B and C. Although three positions are shown for each pulse 1102, 1104, 1106, 1108, 1110, it will be appreciated that any suitable number of regions may be utilized. Also, for example, positions, such as A and C, that are adjacent to a rising or falling edge of the signal 1100 may be taken far enough away from the rising or falling edge so as to avoid capturing transient effects. Although five pulses are shown in FIG. 11, it will be appreciated that any suitable number of pulses may be used.


In practice, the surgical system may capture impedance readings at a plurality of points within each pulse. The surgical system (e.g., the generator 120, 220 or control circuit 125, 281, thereof) may detect a short circuit by comparing impedance values taken among the points. Various patterns may indicate a short circuit or simply a low tissue impedance condition. For example, if the impedance at position A is higher for a given pulse 1102, 1104, 1106, 1108, 1110 than it was a position A for the immediately preceding pulse, then the surgical system may conclude that it is experiencing a low tissue impedance condition rather than a short circuit. Also, for example, if the impedance at common positions among successive pulsing is changing, rather than constant, it may indicate a low tissue impedance condition rather than a short circuit.


Impedance readings, as described, may be used in this manner to detect short circuits in any suitable manner. For example, FIG. 12 is a flow chart illustrating one embodiment of a process flow 1200 for detecting short circuits based on inter-pulse impedance comparisons. The process flow 1200 may be executed, for example, by a generator, such as 120, 220 and/or a control circuit thereof, such as 125, 281, thereof. At 1202, the electrosurgical system may receive impedance (or “Z”) values based on an electrosurgical signal provided to the electrodes of the electrosurgical system. The electrosurgical system, in some embodiments, may first determine when the impedance drops below a threshold impedance (e.g. 0.5Ω-4Ω) for a threshold period of time (e.g., 50 ms 500 ms). If this condition is not detected at 1204, then the electrosurgical system may continue to provide the electrosurgical signal at 1202, for example, according to a predetermined algorithm. If the condition is detected at 1204, then the electrosurgical system may take additional impedance readings at 1206. The additional readings may be taken, for example, at predetermined pulse positions (similar to A, B, and C of FIG. 11). In some embodiments, the additional readings of 1206 may be taken as the original electrosurgical signal continues to be applied. Also, in some embodiments, the original electrosurgical signal may be paused at 1206 while a discrimination mode signal is provided for testing the condition of tissue between the electrodes. For example, the discrimination mode signal may comprise a series of discrete pulses (e.g., five pulses). In some embodiments, the impedance of the electrosurgical signal may be determined utilizing Ohm's law based on measured voltage and current.


Upon taking the impedance readings at 1206, the electrosurgical system may determine, at 1208, whether the impedance readings are consistent across pulses. If the readings are consistent, it may indicate a short circuit. This may cause the electrosurgical system to indicate the short at 1210, for example, by terminating the electrosurgical system and/or providing audible and/or visual feedback to the clinician. If the readings are not consistent, it may indicate a simple low tissue impedance condition. In response, the electrosurgical system may continue to provide the electrosurgical system, for example, according to a predefined algorithm. In some embodiments, upon detection of a simple low tissue impedance condition, the electrosurgical system may suspend the impedance thresholds of 1204 for a predetermined number of pulses and/or a predetermined time period in order to allow the tissue impedance to recover before again testing for a short circuit.


The electrosurgical system may determine whether the impedance readings are consistent in any suitable way using any suitable set of conditions. An example set of conditions is provided in TABLE 1 below, assuming that the impedance readings of 1206 are taken over five pulses. It will be appreciated that the readings of 1206 may be taken over more or fewer than five pulses. Also, although the conditions below indicate equality, it will be appreciated that the conditions may be true when the indicated values are substantially equal (e.g., within a threshold amount of one another.)












TABLE 1







Condition
Inference









1102A = 1104A
Short circuit



1102B = 1104B
Short circuit



1102C = 1104C
Short circuit



1104A = 1106A
Short circuit



1104B = 1106B
Short circuit



1104C = 1106C
Short circuit



1106A = 1108A
Short circuit



1106B = 1108B
Short circuit



1106C = 1108C
Short circuit



1108A = 1110A
Short circuit



1108B = 1110B
Short circuit



1108C = 1110C
Short circuit



Average of 1102A, B, C = Average of 1104A, B, C
Short circuit



Average of 1104A, B, C = Average of 1106A, B, C
Short circuit



Average of 1106A, B, C = Average of 1108A, B, C
Short circuit



Average of 1108A, B, C = Average of 1110A, B, C
Short circuit











It will be appreciated that other suitable permutations of conditions similar to those shown in TABLE 1 may be measured and utilized. Any suitable method for evaluating the conditions of TABLE 1 (or other suitable conditions) may be utilized. For example, a voting method may be used. When a threshold number of the conditions are true, then the electrosurgical system may indicate that a short circuit is present.


According to various embodiments, a fuzzy logic algorithm may be utilized to detect short circuits. FIG. 13 is a workflow showing one embodiment of a fuzzy logic algorithm 1300 that may be utilized according to various embodiments to detect a short circuit. The algorithm 1300 may receive as input various input variables 1302. The input variables may be any variable or condition that tends to indicate the presence or absence of a short circuit. For example, the input variables may comprise the instantaneous impedance between the electrodes, any of the conditions indicated above in TABLE 1, etc. In some embodiments, the input variables 1302 may include the results of other calculations, such as any of the other calculations for detecting a short circuit described herein. A processing stage 1304 may be utilized to covert the input variables 1302 into an output stage 1306 indicating the presence or absence of a short circuit. The processing stage 1304 may consider the input variables 1302 according to a set of “if-then” rules. A cut-off rule or set of rules may indicate that a short circuit and may be applied when the last tissue state measured by the processing stage 1304 indicated no short circuit. Once a short circuit is detected at the processing stage (e.g., once a short circuit state is assumed), the processing stage 1304 may apply an intermediate rule or set of rules. The intermediate rules may be less indicative of a short circuit than the cut-off rules. Taking an example from TABLE 1 above, a cut-off rule may be expressed as (A) below:

    • (A) IF: 1102A is within 0.25 ohms of 1104A; THEN indicate short circuit;


a. ELSE: Do not indicate a short circuit Once a short circuit is indicated, however, intermediate values may be used, for example, as indicated by rules (C) and (D) below:

    • (B) IF: Short circuit indicated; and 1102A is within 0.5 ohms of 1104A; THEN continue to indicate a short circuit


a. ELSE—Do not indicate a short circuit


In another example, a cut-off rule may be expressed by (C) below:






    • (C) IF: Impedance between the electrodes is less than 4Ω for 300 mS; THEN indicate a short circuit;





a. ELSE: Do not indicate a short circuit


A corresponding intermediate rule may be expressed as (D) below:






    • (D) IF: Short circuit indicated; AND impedance between the electrodes is less than 8Ω for 100 mS; THEN—continue to indicate a short circuit





a. ELSE—Do not indicate a short circuit.


In some embodiments, the fuzzy logic algorithm may be implemented in stages. For example, a fuzzy logic cut-off or intermediate rule may be applied for a number of input variables or conditions (e.g., the conditions set forth in TABLE 1). The results may be combined in one or more additional stages of fuzzy logic rules to determine the value of the output stage 1306.


In various embodiments, the electrosurgical system may utilize a neural network algorithm to detect short circuit conditions. For example, a neural network may be effective for recognizing complex patterns in input variables, which may make them well suited to detect short circuit conditions. FIG. 14 is a diagram showing an example neural network 1400 for detecting short circuit conditions. The neural network 1400 comprises a group of interconnected nodes 1402, 1404, 1406 referred to as neurons. Connections between different neurons indicate how data is passed through the network. Input neurons 1402 are assigned values from input data (e.g., various parameters of the electrosurgical instrument, the electrosurgical signal, etc.). In various forms, the input variables are scaled to values between zero and one. The values of the input neurons 1402 (e.g., the input variables) are then utilized to calculate values of various hidden neurons 1404, which are, in turn, used to find the value of one or more output neurons 1406. The value of the output neuron 1406 may indicate, or not indicate, a short circuit condition. In practice, the number of respective input nodes 1402, hidden nodes 1404 and output nodes 1406 may vary, sometimes considerably, from what is shown in FIG. 14. In various forms, a neural network is operated on a data cycle. During each cycle, input values are provided to the input neurons 1402 and output values are taken at the output node 1406.


Neural networks may be fully connected, as shown in FIG. 14, meaning that each input neuron 1402 is connected to each hidden neuron 1404. Some forms may utilize a neural network that is not fully connected. For example not all of the input nodes may be connected to each hidden neuron 1404. Values for the hidden nodes 1404 may be determined according to an activation function. In various forms, the outputs of the activation function range from 0 to 1. For example, the output function may be selected to generate outputs between 0 and 1 or, in some forms, results of the output function may be scaled. In some forms, it is advantageous to select functions that are continuous and differentiable. This may facilitate training of the neural network. For example, back-propagation training utilizing a gradient method may require computing partial derivatives of the output function, which may be simplified when the optimization functions are continuous and differentiable. One example of such a function that may be utilized as the activation functions is the sigmoid function, as indicated by Equation (1) below:

x=ω1ξ12ξ23ξ3+ . . . +θ  (1)


In Equation (1), corresponds to the values of the input neurons, w corresponds to the weights given to each input, θ corresponds to a constant. When the neural network is fully connected, the values of all input neurons are passed to all hidden neurons, meaning the activation function for each hidden neuron will include a term ξ corresponding to each input node. The weights given to each input (ω) may be unique for each hidden neuron and/or each input value. The constant θ may also be unique for each hidden neuron 1404. The results at each node may be given by Equations (2) and (3) below:










σ


(
x
)


=

1

1
+

e

-
x








(
2
)








FIG. 15 is a plot of one example implementation of Equation (2), demonstrating that the function is continuous and differentiable.

O=σ(x)  (3)

The output of the sigmoid function is illustrated in FIG. 16. For example, the output (O) may be calculated from the weighted sum of the input neurons plus theta (e.g., Equation (1)) applied to Equation (2).


In various forms, each hidden neuron has I inputs, which is equal to the number of inputs to the neural network. If there are J hidden neurons 1404, then there are I×J unique values for omega (ω) and J unique values for theta (θ). In some forms, the output neuron(s) 1406 may utilize the same activation equation. Accordingly, there may be J×K unique omega (ω) values connecting the hidden neurons 1404 to the output neuron 1406, where K is the number of output neurons, and K unique values of theta (θ) for the output node(s) 1406.


The output of the neural network may indicate the truth or falsity of a condition set comprising one or more conditions of the electrosurgical instrument, tissue acted upon by the surgical instrument, or some combination thereof. For example, a neural network may be used to model the presence or absence of a short circuit. Any suitable number or type of neurons 1402, 1404, 1406 may be used. For example, the neural network 1400 may comprise twelve input neurons 1402, (I=12), four hidden neurons (J=4), and one output neuron (K=1). The data cycle may be 10 milliseconds. Accordingly, values for the 12 inputs may be fed into the network 1400, and results calculated, every 10 milliseconds.


Input variables (e.g., variables corresponding to the input nodes 1402) may comprise any variables that could, in some circumstances, affect the value of an output node 1406. For example, input variables may include descriptors of the impedance between the first and second electrodes such as, for example, the impedance between the electrodes measured at any point of the various pulses, averages of the impedance across a pulse; averages of the impedance from one pulse to another, any of the conditions indicated at TABLE 1 above, including permutations thereof, etc. It will be appreciated that the input variables described herein may also be used any other suitable type of trainable model including, for example, genetic algorithm models, classification tree algorithm models, recursive Bayesian models, etc.


It will be appreciated that the neural network 1400 may utilize any of the input variables described herein above. In some forms, the neural network 1400 may be evaluated utilizing matrix algebra. For example, four matrices maybe used. A 1×I input matrix (O_i) may include (e.g., scaled) values for the I input neurons. An I×J hidden neuron omega matrix (W_ij) comprises omega (ω) values used to calculate values of hidden neurons 1404. A J×K output neuron omega matrix (W_jk) comprises omega (ω) values used to calculate the values of output neuron or neurons 1406. A 1×J hidden neuron constant matrix (O_j) comprises constant θ values for the hidden neurons 1404. A 1×K output neuron constant matrix (O_k) comprises constant θ values for the output neuron(s) 1406. For any given cycle, the output of the neural network may be calculated by evaluating the matrices as indicated by Equations (4)-(7) below:

x_j=O_i*W_ij+O_j  (4)

The result of Equation (4), x_j, may be the weighted sums of the input neuron values for each hidden neuron 1404. Matrix x_j may be processed element-by-element through an equation, such as Equation (5) below, resulting in a matrix of equal size, O_j.

O_j=(1+exp(−x_j))·{circumflex over ( )}(−1*Z)  (5)

The result of Equation (5), O_j may be the values for each of the hidden neurons 1404. In Equation (12), Z corresponds to an matrix of ones having a size K×J.

x_k=O_j*W_jk+O_k  (6)

The result of Equation (6), x_k, may be the weighted sums of the hidden neuron values for each output neuron 1406. Matrix x_k is processed element-by-element through an equation, e.g., Equation (7), resulting in a matrix of equal size, O_k.

O_k=(1+exp(−x_k)){circumflex over ( )}(−1*Z1)  (7)

The result of Equation (7), O_k, may be the output of the neural network. In Equation (6), Z1 may be a matrix of ones having a size K×1.


The neural network may be trained in any suitable manner. For example, in some forms, the neural network may be trained utilizing back-propagation. During back-propagation training, the data flow of the neural network is reversed. For example, values for error versus actual output are used to modify individual weight and constant parameters. FIG. 17 is a logic flow diagram of one form of an algorithm 1700 for training a neural network, such as the neural network 1400, utilizing back-propagation. At 1702, relevant data sets may be generated. In some forms, separate data sets are generated for training and testing to ensure that actual pattern recognition is taking place instead of the network merely learning the data files being used for training. Each data set may comprise, for example, all of the necessary inputs. Each data set may also comprise actual values describing the state of the instrument and/or tissue corresponding to each set of input values, which represent the value modeled by the neural network. For example, in some forms, the actual values may comprise impedance data or other electrosurgical instrument descriptors, where each data set representing a set of input conditions is associated with an indication of whether a short circuit accompanied the input conditions. Neural networks trained in this manner may provide an output indicating whether a short circuit is present.


At 1704, the neural network may be created and trained. For example, the values for the weights and constants of the various neurons 1404, 1406 maybe randomly initialized (e.g., utilizing the MATLAB “rand” function, which generates a uniform distribution). In some forms, a value range of −2.5 to 2.5 may be utilized as these values tend to result in outputs in the range of 0-1 when processed by a sigmoid activation function. At 1706, the network 1400 may be run forward on the input data to generate a predicted output (or outputs if there are multiple output nodes). At 1708, an error may be calculated. The error is a difference between the predicted output from 1706 and the actual value of the tissue or instrument property, as described herein. In various forms, the output or outputs may be denoted as binary numbers where one (1) corresponds to the existence or truth of the condition and zero (0) corresponds to the non-existence or falsity of the condition. For example, when the condition is a short circuit, the output should be one (1) when a short circuit is present and zero (0) when no short circuit is present. In some forms, the condition may be considered true when the output of the neural network 1400 exceeds a threshold value (e.g., 0.85).


At 1710, the weights for each node are evaluated. For example, for each weight a partial derivative is found of the output or error (E) with respect to the weight (omega (ω)). This may be represented as δE/δ ωij for connections between the input layer 1402 and the hidden layer 1404 and as δE/δ ωjk for connections between the hidden layer 1404 and the output layer 1406. At 1712, the constants for each node are evaluated. For example, for each constant, a partial derivative is found of the output or error (E) with respect to the constant θ. This may be represented as δE/δ θi for connections between the input layer 1402 and the hidden layer 1404 and to δE/δ θj for connections between the hidden layer 1404 and output layer 1406. At 1714, deltas may be calculated for each weight and constant. The deltas may found by multiplying each partial derivative by a gradient constant, η. In some forms, a value of 0.1 may be used for η. The deltas may then be added to the original values of each weight and constant. Actions 1706, 1708, 1710, 1712, and 1714 may be repeated for subsequent cycles of the input data. In some form, the network 1400, once trained, may be tested. For example, the network 1400 may be tested, as described herein, on a testing data set distinct from the training data set. In various forms, a neural network or other multi-variable model may be pre-trained. Resulting model parameters (e.g., network configuration, values for weights and constants, etc.) may be determined and stored at a generator and/or instrument. The values may be utilized to execute the model during use.


It will be appreciated that various other signal processing and/or machine learning techniques may be used detect a short-circuit condition. Examples include naïve Bayes methods, support vector machine methods, decision tree methods, random forest methods, linear regression, adaptive filtering, etc. Many of these methods rely on common feature selection techniques including, but not limited to, mutual information and singular value decomposition. Some of these methods may also rely on common model selection techniques, which include, Akaike Information Criterea (AIC) or Bayesian information criteria. Some of these methods may also utilize metaheuristic concepts for searching a large parameter space, such as (and not limited to) simulated annealing.



FIG. 18 is a logic flow diagram of one form of an algorithm 1800 for detecting a short circuit condition for an electrosurgical instrument utilizing a multi-variable model, such as the neural network 1400 described herein. As with the other instrument control algorithms described herein, the algorithm 1800 is described as being executed by a generator, such as generator 120, 220 described herein. Also, although a neural network is described herein, it will be appreciated that the algorithm 1800 may be executed utilizing any suitable type of model including, for example, genetic algorithm models, classification tree algorithm models, recursive Bayesian models, etc. At 1802, the electrosurgical system may execute the multi-variable model. Executing the multi-variable model may comprise providing input values to the model, processing the input values, and generating an output. For example, a process for executing an example neural network is described herein above in conjunction with Equations (4)-(7). At 1804, the generator may determine whether the modeled condition set is met. In the example above, this may involve determining whether a short circuit condition is present. If not, the model may continue to execute at 1802. If so, the short circuit condition may be indicated at 1806. For example, the electrosurgical instrument may cease the electrosurgical signal, provide visual and/or audible indications of the short circuit to the clinician, etc.


According to various embodiments, the electrosurgical system may utilize a neuro-fuzzy algorithm to detect short circuits. FIG. 19 is a workflow showing one embodiment of a neuro-fuzzy algorithm 1900 that may be utilized according to various embodiments to detect a short circuit. A neuro-fuzzy algorithm may be based on neural networking and reinforced learning techniques. Such an algorithm may be referred to as an “Adaptive Neuro-Fuzzy Inference System” and may utilize Sugeno and Tsukamoto fuzzy models. These models are based on the number of inputs and can be multiple orders, with a series of rules and may also utilize back-propagation to train the network. For example, the algorithm 1900 may utilize output equations 1908 that are functions of the different inputs 1902 and layers 1906. This can result in multiple layers 1906 between in the inputs 1902 and the outputs 1910. This may be different than the neural network 1400 described herein above.


Depending on the nature of the inputs, different sets of statistical relationships may be used for conditioning of the signal. Example statistical relationships that may be used in some embodiments include a bell function, a Gaussian distribution, a trapezoidal distribution, etc. It will be appreciated that a statistical relationship or relationships may be selected to best match the inputs 1902 and learned outputs 1910. The selected statistical relationship or relationships are incorporated into one or more of the layers 1906 in the algorithm 1900. Due to the complexity of the “layers” 1906, some embodiments of the algorithm 1900 do not require that each layer be a function of all the layers before/after it. Layers that have multiple inputs but lead directly into a single layer (instead of nodes in a layer), may be used to determine firing strength, then a second set of calculations 1908 takes place. This final step then leads into a summation (single node) 1910, which is the final layer.


In some embodiments, the algorithm 1900 may be trained utilizing back propagation, for example, as described herein. Back propagation may be implemented utilizing various modes including, for example, batch mode and/or pattern mode. A pattern mode may require less storage when updating parameters in back propagation, however, a batch mode may result in better estimates of the calculated gradients. Both pattern and batch modes may rely on learning-rate parameters to be small.


Another obstacle to detecting short circuits is a regulatory requirement that a direct current (DC) blocking capacitor be used to prevent the transmission of a direct current voltage directly to the patient. For example, the International Electrotechnical Commission (IEC) regulation IEC60601-2-2 requires that a DC blocking capacitor of 47 nanofarads (nF) be placed in series with the electrosurgical signal to prevent transmission of a DC signal directly to the patient. The impedance of the blocking capacitor, therefore, is placed in series with the load, adding an impedance of: −jωC, where j is the square root of −1, ω is the frequency of the electrosurgical signal in radians, or 2 π multipled by the frequency in Hertz, and C is the capacitance in Farads. The total impedance presented to the generator, then may be expressed as:

Total Impedance=Impedance between electrodes−jωC  (8)


For a 47 nF capacitor, the imaginary component comes to an impedance of −j6.77Ω at an electrosurgical signal frequency of 500 kHz. This makes it difficult to use a low cost output measurement circuit, such as a peak detection circuit, to measure the output phasor. For example, lowest voltage-to-current (V/I) ratio would be about seven ohms (7/Ω), and a short circuit is typically not indicated unless the impedance is less than approximately four ohms (4Ω).


Various embodiments address this issue by measuring the phase difference or angle of the electrosurgical signal. When the impedance between the electrodes is greater than about ten ohms (10Ω), the real component of the total impedance swamps the imaginary component due to the blocking capacitor and there is a relatively low phase angle between the current and the voltage of the current of the electrosurgical signal (e.g., less than about 45°). For example, when the impedance between the electrodes is equal to ten ohms (10Ω), then the phase angle is about 34°. The calculation changes, however, when a short circuit condition exists between the electrodes. In this case, the real component of the impedance drops to zero, and the total impedance is 0−jωC, causing the phase angle between voltage and current to approach 90°. Phase shifts of this magnitude may be detected without the need for precise measurement, for example, by measuring the time between zero crossings for voltage and current of the electrosurgical signal. Because the actual value of the phase shift is not calculated, such a method may be robust regardless of the actual frequency of the electrosurgical signal.



FIG. 20 shows a logical diagram of a circuit 2000 for detecting a short circuit based on phase difference. The circuit 2000 may be executed by a generator 120, 220 or control circuit 125, 281 thereof. The circuit 2000 may be embodied by distinct components. Alternatively, in some embodiments, some or all of the components of the circuit 2000 may be implemented by a digital signal processor (DSP) or other microprocessor. The Output Voltage and Output Current of the electrosurgical signal may be provided to respective comparators 2002, 2004. For example, the Output Voltage and Output Current signals may be converted from analog to digital at respective A/D converters 2001, 2003. Comparators 2002, 2004 may be configured to detect rising and falling edges of respective Output Voltage and Output Current signals. For example, the comparator 2002 may have its input connected to provide, at a comparator output, indications of the zero crossings, (e.g., both rising and falling) of the voltage of the electrosurgical signal. The comparator 2002 may be configured to compare a scaled voltage signal representing the output current. The output of the comparator 2002 may represent the zero crossings, both rising and falling, of the current of the electrosurgical signal. In some embodiments, the comparators 2002, 2004 may be implemented with hysteresis, as shown in FIG. 20. In this way, the outputs of the comparators 2002, 2004 may be less sensitive to signal bounce and, therefore, less likely to falsely indicate a rising or falling edge.


Outputs of the comparators 2002, 2004 may be provided to implementation logic 2006. The implementation logic 2006 may also receive a clock input 2008. The implementation logic 2006 may be configured to measure the number of clock cycles between corresponding rising and/or falling edges of the Output Voltage and Output Current signals. When this indicates a phase difference of greater than a short threshold (e.g., 45°), the output 2010 of the implementation logic 2006 may indicate a short circuit. When a phase difference of less than the threshold is detected, the output 2010 of the implementation logic 2006 may indicate no short circuit. Because the circuit 2000 need not calculate actual phase differences, it may be implemented with relatively slower and less expensive components. For example, the A/D converters 2001, 2003 may be low-cost, low-speed converters. Also, the implementation logic 2006 may be executed utilizing simple gate logic and/or an inexpensive microprocessor.


In some embodiments, an adaptive short threshold may be used. For example, the generator 102 may utilize different phase different thresholds to indicate short circuits based on other parameters. For example, in some embodiments, the short threshold may vary based on the first derivative of the phase difference. For example, if the phase difference is rapidly increasing, a lower short threshold may be used. This may allow the electrosurgical system 100 to respond to short circuits faster, decreasing the amount of energy that is provided to the patient during the short.



FIG. 21 is a flow chart showing one embodiment of a process flow 2100 for detecting a short circuit in an electrosurgical system. The process flow 2100 may be implemented by any suitable component of an electrosurgical system such as, for example, a generator 120, 220 or control circuit 125, 281 thereof. In various embodiments, the process flow 2100 may be executed during the provision of an electrosurgical signal between the electrodes of the electrosurgical system. For example, the electrosurgical signal may be a pulsed signal, as described herein. At 2102, the electrosurgical system may determine if the impedance between the electrodes has dropped below a threshold impedance. This may be determined in any suitable manner. For example, a drop in tissue impedance may be indirectly sensed by monitoring differences in other electrical parameters (e.g., current, voltage, etc.), averages of various electrical parameters and/or cumulative measures of various electrical parameters over time. In some embodiments, the electrosurgical system may also determine whether the impedance between the electrodes has dropped below the threshold impedance for a threshold amount of time, for example, as described herein above. The decision 2102 may indicate a low tissue impedance event between the electrodes. This may be caused by a short circuit and/or by a low tissue impedance condition exhibited by tissue between the electrodes. Additional actions may be taken to distinguish between these possibilities. For example, if the decision 2102 is determined in the affirmative, the electrosurgical system may consider additional signal conditions at 2104. The additional signal conditions 2106 may be any conditions that tend to indicate the presence or absence of a short circuit. Example conditions A-D are shown in FIG. 21.


In some example embodiments, the conditions 2106 may comprise a change in impedance, an average impedance over time, a change in the average impedance, and an energy delivered between the electrodes. The change in impedance may indicate a short circuit, for example, if it exhibits a sudden drop in impedance. Such a sudden drop may correlate to a conductive staple, clip or other component coming into contact with both electrodes. The average impedance may be utilized, for example, in conjunction with a currently measured impedance. For example, if the currently measured impedance is less than the average impedance by greater than a threshold amount, it may indicate a short circuit. The change in average impedance may also indicate a short circuit. For example, a drop in the average impedance may indicate the presence of a short circuit. The energy and/or power provided between the electrodes may also be used to indicate a short circuit. For example, when a low impedance condition is due to tissue effects, the electrosurgical signal may still provide energy to the tissue. On the other hand, when a low-impedance condition is due to a conductive staple, clip or other object shorting between the electrodes, little energy is delivered. Accordingly, low energy levels may tend to indicate a short circuit. Various permutations of the conditions 2106 may also be considered. For example, conditions 2106 may be considered between adjacent pulses, averaged over multiple pulses, at different positions in a single pulse, etc. Also, in addition to or instead of some or all of the conditions shown, the conditions 2106 may include any suitable combination of changes, averages, or other statistical analysis of the current, voltage, impedance, power and/or energy delivered between the electrodes.


At 2116, the electrosurgical system may determine whether a short circuit is present considering the conditions 2106. The decision at 2116 may be made in any suitable manner using any logical construct. For example, each of the conditions 2106 may be assigned an inference based on the condition's value. Any logical calculation may be utilized to determine whether the totality of the conditions indicate a short circuit. For example, if all of the conditions 2106 indicate a short circuit, then a short circuit may be considered present. In some embodiments, if a majority of the conditions indicate a short circuit, then a short circuit may be considered present. If a short is present at 2116, the electrosurgical system may indicate the short at 2118, for example, as described herein.


According to various embodiments, the electrosurgical system may utilize a fuse to accurately determine the impedance of various components of the system including, for example, the generator 102, the instrument 110, the cable 122, etc. When a short circuit is present, the impedance between the electrodes in the jaws 164a, 164b may be zero, or very close to zero. The total system impedance, however, will not be zero. Impedance components due to the generator 102, the instrument 110, the cable 122 and, potentially, other system components may still be in place. To accurately measure and compensate for these impedances, the electrosurgical system may utilize a low-current fuse. FIG. 22 is a diagram showing one embodiment of the electrosurgical system 100 comprising a fuse 2200. The fuse 2200 may be physically positioned in the instrument 110 (e.g., in the handle 112 of the instrument 110) in such a position to allow the system to measure enough of the impedance of the cable 122 and internal electrical wiring and connections to accurately portray the intrinsic impedance of the entire electrosurgical system 100 and electrically connected between the supply conductor 131 and the return conductor 133.


Prior to clearing, the fuse 2200 may effectively short the electrodes of the instrument 110, allowing the generator 102 to determine the impedance of the cable 122, generator 102 and instrument 110 portions of the system 100. The measured impedance of the generator 102, cable 122 and instrument 110 may be utilized to set an impedance threshold for determining short circuits. For example, when the total impedance of the system 110 falls to within a threshold value of the sum of the instrument 110 impedance, the cable 122 impedance and the generator 102 impedance, it may indicate a short circuit. The resulting impedance threshold may be used in any suitable manner. For example, the generator 102 may apply the calculated impedance threshold in a straight manner. That is, if the measured impedance between the electrodes is less than the threshold, then a short circuit may be indicated. Also, in some embodiments, the calculated impedance threshold may be utilized as input to another algorithm such as, for example, the process flow 1200, the fuzzy logic algorithm 1300, the process flow 2100, etc.



FIG. 23 is a flow chart showing one embodiment of a process flow 2300 for utilizing a fuse 2200 to generate an impedance threshold. At 2302, the electrosurgical system 100 receives an activation instruction. The activation instruction may be a request (e.g., initiated by the clinician) to provide RF energy to tissue. The instruction may be received, for example, via the button 128, 228. Upon receipt of the activation instruction, the generator 102 may, at 2304, provide a drive signal to the device 110 (and the fuse 2200). The drive signal may be provided at a current that is below a clearing threshold of the fuse 2200. At 2306, the generator 102 may measure the impedance of the generator 102, cable 122 and instrument 110, as described herein. Based on the measured impedances, the generator 102 may determine an impedance threshold at 2308. The impedance threshold may be applied at 2310, for example, as a straight threshold and/or as an input to another algorithm such as, for example, the process flow 1200, the fuzzy logic algorithm 1300, the process flow 2100, etc. Before clinical use, the fuse 2200 may be cleared. For example, the current of the drive signal may be raised above the clearing threshold of the fuse 2200.


In some embodiments, the fuse 2200 may be a single use fuse. Accordingly, the process flow 2300 may be executed once on the first activation of the electrosurgical system 100. Also, in some embodiments, the fuse 2200 is a resettable fuse that may be utilized multiple times. In such cases, the process flow 2300 may be executed each time the electrosurgical system 100 is activated. Between activations, the fuse 2200 may be reset in any suitable manner. For example, the generator 102 may provide a reset signal to the fuse 2200 between activations. Also, in some embodiments, the fuse 2200 may be configured to self-reset upon termination of an electrosurgical signal. Also, it will be appreciated that a fuse may be utilized to measure the impedance of various components of the system 100 in ways other than those described by the process flow 2300. For example, in some embodiments, the detection of the impedances of the various system components may be initiated when the instrument 110 is connected to the generator 102 rather than when the activation instruction is received. Also, in some embodiments, the fuse 2200 may be positioned in the cable 122 instead of in the instrument 110. This may reduce the number of electrical connections made in the instrument 110 itself and may also simplify the cleaning and/or sterilizing of the instrument 110 between uses. Positioning the fuse 2200 in the cable, however, may also prevent the generator 102 from measuring the impedance of the instrument 110 itself, as the fuse 2200, when positioned in the cable 122, may completely short out the instrument 110.


In some embodiments, a fuse 2200 may be utilized to measure the impedance of the instrument 110 and/or cable with the electrodes effectively shorted during the manufacturing and/or testing process. For example, the fuse 2200 may be utilized, as described herein, to measure the impedance during the manufacturing process. An indication of the measured impedance may be stored in the instrument 110 and/or cable 122 utilizing any sort of storage device including, for example, a potentiometer, a ferroelectric random-access memory (FRAM), a dynamic random access memory (DRAM), an electrically erasable programmable read only memory (EPROM), or any other non-volatile storage. The storage device may be positioned in the cable 122, in the instrument 110 or at any other suitable location. The fuse 2200 may be cleared before the manufacturing process is complete. In addition to, or instead of a storage device, the measured impedance and/or threshold may be physically indicated on the device, for example using text, a bar code, etc.


In some embodiments, the fuse 2200 may be omitted. The impedance of the instrument 110, cable 122 and/or other components of the system may be measured by shunting the electrodes of the instrument, for example, during the manufacturing or testing process. While the electrodes are shunted, a drive signal may be provided, as described above with respect to FIG. 23. A short threshold impedance may be found based on the measured system impedance. The measured system impedance and/or the calculated short threshold impedance may be stored with the device, for example, as described above. The shunt may be any conductive material such as, for example, a piece of foil or another metallic conductor. The shunt may be placed in any suitable position. For example, the shunt may be placed directly between the electrodes in the first and second jaws 164a, 164b.


According to various embodiments, an adaptive filter may be utilized to detect a short circuit. The output of an adaptive filter may be determined by a transfer function with a defined structure based on variables that change based on an error signal. The adaptive filter receives two input signals, a desired response signal and an actual output signal. An error is defined as the difference between the desired response signal and the output signal. The error is provided back to the adaptive filter, which based on its transfer function, determines changes to be made to minimize the error signal. An adaptive filter may be implemented by the generator 102 and/or instrument 110 in analog and/or digital form. For example, an adaptive filter may be implemented utilizing appropriate analog components with feedback loops and may be implemented as a complete package on a field-programmable gate array (FPGA). Also, an adaptive filter may be implemented by a digital device such as a digital signal processor or any other suitable processor of the generator 102 or instrument 110.



FIG. 24 is a diagram showing one embodiment of an adaptive filter 2400 for detecting short circuits. The filter 2400 may receive an input signal x(n), where x(n) represents the drive signal of the electrosurgical system 100 as a function of time, n. The unknown system 2402 represents the electrosurgical system 100, with an output of the unknown system 2402 corresponding to the system impedance. The output d(n) may, in some embodiments, be affected by a noise signal η(n). Accordingly, the measured impedance of the electrosurgical system 100, including noise, is represented by d(n). The adaptive filter 2404 may also receive the drive signal x(n). An output y(n) of the adaptive filter 2404 indicates an estimate of the impedance of the system 100. An error signal e(n) represents the difference between the output y(n) of the adaptive filter 2404 and the actual impedance of the electrosurgical system 100. The error signal e(n) is received by the adaptive filter 2404, which adjusts the output y(n) to drive the error signal e(n) towards zero.


In various embodiments, one of the input parameters of the transfer function of the adaptive filter 2404 is an “acceptable level” below the short-circuit threshold that the measured impedance of the system d(n) can reach before a short circuit is indicated. In some embodiments, as the adaptive filter operates, the generator 102 may monitor the value of the acceptable level parameter. If the acceptable parameter level changes too quickly, the generator 102 may determine that a short circuit is present.


It will be appreciated that the transfer function of the adaptive filter 2404 may have any suitable form. For example, in some embodiments, the transfer function of the adaptive filter 2404 utilizes what is known as a method of steepest decent transfer function. A transfer function of this form may minimize changes in the output of the adaptive filter 2404. In various embodiments, this allows for tight bounds for applying energy to tissue and may quickly report a short circuit. In various embodiments, the adaptive filter 2404 may operate in real time or in near or pseudo-real time. For example, the adaptive filter 2404 may be set to operate at a speed matching the speed of data acquisition (e.g., the speed at which the generator 102 samples the drive signal to determine the system impedance). In some embodiments, changes to the adaptive filter 2404 may be made on a cycle-by-cycle basis meaning that affects in one sample or set of data may be corrected for in the next data set. This may allow the generator 102 to minimize the amount of energy provided to the instrument 110 and/or the patient after the creation of a short circuit. In some embodiments, the sampling rate of the generator 102, and therefore the time resolution of the adaptive filter 2404, is on the order of one microsecond.


According to various embodiments, detection of short circuits may be enhanced by measuring impedance on the patient side of the generator. For example, FIG. 25 is a diagram showing one embodiment of an electrosurgical device circuit 2500 demonstrating tissue impedance management. The circuit 2500 comprises a generator 2502, an output sampling network 2504, direct current (DC) blocking capacitors 2506, electrodes 2520, 2522, and signal sensing circuit 2510. A tissue impedance (Rload(tissue)) may be present between the electrodes 2520, 2522 when the device is in use. It will be appreciated that the various components of the circuit 2500 may be components of the generator 120, 220 and/or part of the instrument depending on the implementation. The generator 2502 may produce an electrosurgical drive signal, which may be provided to the electrodes 2520, 2522, for example, as described herein. The DC blocking capacitors 2506 may be positioned in series between the generator 2502 and the electrodes 2520, 2522 to prevent unintended DC stimulation of the patient. Accordingly, the circuit 2500 comprises a generator-side portion and a patient-side portion. The DC capacitors 2506 serve to isolate the patient-side portion from DC signals generated (e.g., inadvertently) by the generator-side.


An output sampling network 2504 may be positioned to sample the electrosurgical drive signal and provide an output to the signal sensing circuit 2510. For example, the output sampling network 2504 may comprise a resistive divider network. For example, the output sampling network may step down the voltage of the electrosurgical drive signal to a scale that can be sampled by the signal sensing circuit 2510. The signal sensing circuit may comprise, for example, an analog-to-digital (A/D) converter and any suitable processor or other digital circuit for measuring the provided voltage. From the voltage of the electrosurgical drive signal, for example, as measured through the output sampling network 2504, the tissue impedance 2508 may be derived. In some embodiments, the output sampling network 2504 may be omitted and the signal sensing circuit 2510 may directly receive the electrosurgical drive signal.


Because the output sampling network 2504 and signal sensing circuit 2510 are on the generator-side of the circuit, however, the voltage drop across the network 2504 indicates the impedance of both the load 2508 and the DC blocking capacitors 2506. For example, in some embodiments, the DC blocking capacitors may have a capacitance of fifty (50) nanofarads (nF). At an example drive signal frequency of 330 Hz, this generates a reactance of 1/(jωC) ohms, in this case −j10.26 ohms. It will be appreciated that when the tissue impedance 2508 is low, for example, during a tissue short condition, the reactance of the DC blocking capacitors 2506 may dominate, leading to less accuracy in the impedance measurement made by the signal sensing circuit 2510.



FIG. 26 is a diagram showing one embodiment of an electrosurgical device circuit 2600 with the output sampling network 2504 positioned on the patient-side of the DC blocking capacitors 2506. For example, the output sampling network 2504 may be electrically coupled to the electrode 2520 on the same side of the DC blocking capacitors 2506 as the electrode 2520. In this configuration, the output sampling circuit 2504 directly measures the tissue impedance 2508, thereby reducing distortion due to the DC blocking capacitors 2506. Placing the output sampling circuit 2504 on the patient-side of the DC blocking capacitors 2506, however, may lead to additional blocking capacitors 2512. For example, blocking capacitors 2512 are positioned, as shown, to isolate the signal sensing circuit 2510 from the patient-side. In some embodiments, multiple blocking capacitors 2512 may be used to prevent the passage of DC current to the patient in the event of capacitor failure. In various embodiments, the blocking capacitors 2512 need not have a capacitance as large as that of the DC blocking capacitors 2506. This may be because the signal sensing circuit 2510 may not have a limited ability to generate inadvertent DC signals. For example, in some embodiments, the capacitors 2512 may have a capacitance of 47 nF and/or 294 nF. It will be appreciated that, in some embodiments of the circuits 2500, 2600, the output sampling network 2504 may be omitted and the signal sensing circuit may receive an input direction from the generator 2502, for example, on the generator side of the circuit 2500 and the patient-side of the circuit 2600.


It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.


Various embodiments of surgical instruments and robotic surgical systems are described herein. It will be understood by those skilled in the art that the various embodiments described herein may be used with the described surgical instruments and robotic surgical systems. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed embodiments are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one example embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example embodiment may be combined, in whole or in part, with features, structures, or characteristics of one or more other embodiments without limitation.


While various embodiments herein have been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, it is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present invention has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to an instrument for use only in conjunction with an endoscopic tube (e.g., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.


It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.


While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


1. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


a control circuit, wherein the control circuit is programmed to:


provide the electrosurgical signal to first and second electrodes, wherein the electrosurgical signal defines a plurality of pulses;


receive a first reading of an impedance between the first and second electrodes, wherein the first reading is taken at a first point of a first pulse of the electrosurgical signal;


receive a second reading of the impedance between the first and second electrodes, wherein the second reading is taken at a first point of a second pulse of the electrosurgical signal, wherein the first point of the first pulse and the first point of the second pulse are at equivalent positions within the first and second pulses;


based on a comparison of the first reading and the second reading, determine that a short circuit is present between the first and second electrodes;


generate a signal indicating the short circuit between the first and second electrodes.


2. The electrosurgical system of clause 1, wherein the first pulse and the second pulse are adjacent pulses within the electrosurgical signal.


3. The electrosurgical system of clause 1, wherein the control circuit is further programmed to:


receive a third reading of the impedance between the first and second electrodes at a second point of the first pulse;


receive a fourth reading of the impedance between the first and second electrodes at a second point of the second pulse, wherein the second point of the first pulse and the second point of the second pulse are at equivalent positions within the first and second pulses, and wherein the determining that the short circuit is present between the first and second electrodes is also based on the third reading and the fourth reading.


4. The electrosurgical system of clause 1, wherein the control circuit is programmed to, prior to receiving the first and second readings, determine that the impedance between the first and second electrodes has fallen below a threshold impedance for a threshold amount of time.


5. The electrosurgical system of clause 1, wherein the electrosurgical signal is a measurement electrosurgical signal, and wherein the control circuit is further programmed to:


provide a first electrosurgical signal to the plurality of electrodes;


receive an indication of the impedance between the first and second electrodes during provision of the first electrosurgical signal; and


provide the measurement electrosurgical signal when the tissue impedance during provision of the standard electrosurgical signal drops below a threshold impedance for a threshold amount of time.


6. The electrosurgical system of clause 1, wherein the control circuit is further programmed to:


receive a third reading of the impedance between the first and second electrodes taken at a first point of a third pulse of the electrosurgical signal;


receive a fourth reading of the impedance between the first and second electrodes taken a first point of a fourth pulse of the electrosurgical signal, wherein the first point of the third pulse and the first point of the fourth pulse are at positions within the third and fourth pulses equivalent to the positions of the first point of the first pulse and the first point of the second pulse, and wherein the determining that the short circuit is present between the first and second electrodes is also based on a comparison of the first, second, third and fourth tissue impedances.


7. The electrosurgical system of clause 6, wherein determining that the short circuit is present between the first and second electrodes comprises:


counting a first number of tissue impedances selected from the first, second, third and fourth tissue impedances that are within a threshold impedance value of one another; and


when the first number of tissue impedance exceeds a threshold value, indicate a short circuit between the first and second electrodes.


8. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


a control circuit comprising, wherein the control circuit is programmed to:


provide the electrosurgical signal to first and second electrodes, wherein the electrosurgical signal is described by a voltage and a current;


measure a phase difference between the voltage of the electrosurgical signal and the current of the electrosurgical signal;


when the phase difference between the voltage of the electrosurgical signal and the current of the electrosurgical signal exceed a threshold phase difference, determine that a short circuit is present between the first and second electrodes; and generate a signal indicating the short circuit between the first and second electrodes.


9. The electrosurgical system of clause 8, wherein the threshold phase difference is less than 45 degrees.


10. The electrosurgical system of clause 8, wherein the control circuit is further programmed to generate the threshold phase difference based on a rate of change of the phase difference between the voltage of the electrosurgical signal and the current of the electrosurgical signal.


11. The electrosurgical system of clause 8, wherein the control circuit comprises: a voltage comparator connected to provide a voltage comparator output indicative of the voltage of the electrosurgical signal;


a current comparator connected to provide a current comparator output indicative of the current of the electrosurgical signal;


a logic circuit configured to receive the voltage comparator output and the current comparator output and provide a logic circuit output, wherein the logic circuit output is asserted when the phase difference between the voltage of the electrosurgical signal and the current of the electrosurgical signal exceeds the threshold phase difference and is un-asserted when the phase difference between the voltage of the electrosurgical signal and the current of the electrosurgical signal does not exceed the threshold phase difference.


12. The electrosurgical system of clause 11, wherein the voltage comparator and the current comparator are configured to provide a hysteresis function on the voltage comparator output and the current comparator output.


13. The electrosurgical system of clause 11, wherein the control circuit further comprises a clock, and wherein the logic circuit output is asserted when a number of clock cycles between a rising edge of the voltage comparator output and a rising edge of the current comparator output exceeds a threshold number.


14. The electrosurgical system of clause 11, wherein the control circuit further comprises a clock, and wherein the logic circuit output is asserted when a number of clock cycles between a rising edge of the voltage comparator output and a falling edge of the current comparator output exceeds a threshold number.


15. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


a control circuit, wherein the control circuit is programmed to:


provide the electrosurgical signal to first and second electrodes, wherein the electrosurgical signal defines a plurality of pulses;


when an impedance between the first and second electrodes is less than an impedance threshold value, determine whether a short circuit is present between the first and second electrodes, wherein the determining comprises comparing an energy delivered between the first and second electrodes to an energy threshold value; and


when the energy delivered between the first and second electrodes is less than the threshold value, generate a signal indicating the short circuit between the first and second electrodes.


16. The electrosurgical system of clause 15, wherein the determining whether the short circuit is present between the first and second electrodes further comprises considering a change in the impedance between the first and second electrodes.


17. The electrosurgical system of clause 15, wherein the determining whether the short circuit is present between the first and second electrodes further comprises considering an average impedance between the first and second electrodes over a first time period.


18. The electrosurgical system of clause 15, wherein the determining whether the short circuit is present between the first and second electrodes further comprises considering a change in an average impedance between the first and second electrodes.


19. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


a control circuit, wherein the control circuit is programmed to:


provide the electrosurgical signal to first and second electrodes;


monitor an impedance between the first and second electrodes during the provision of the electrosurgical signal;


apply at least one cut-off rule to the impedance to indicate a short circuit, wherein the rule indicates a non-short condition between the first and second electrodes when the impedance meets a first set of conditions;


indicate the non-short condition; and


after indicating the non-short condition, apply at least one intermediate rule to the impedance, wherein the intermediate rule indicates a non-short condition between the first and second electrodes when the impedance meets a second set of conditions, wherein the second set of conditions is less indicative of a non-short condition than the first set of conditions.


20. The electrosurgical system of clause 19, wherein the at least one cut-off rule indicates a short circuit when the impedance between the first and second electrodes at a first point of a first pulse is within a first threshold of the impedance between the first and second electrodes at the first point of a second pulse, and wherein the at least one intermediate rule indicates a short circuit when the impedance between the first and second electrodes at the first point of a third pulse is within a second threshold of the impedance between the first and second electrodes at the first point of a fourth pulse, wherein the second threshold is greater than the first.


21. The electrosurgical system of clause 19, wherein the at least one cut-off rule indicates a short circuit when the impedance between the first and second electrodes is less than a first threshold impedance for a first threshold time, wherein the at least one intermediate rule indicates a short circuit when the impedance between the first and second electrodes is less than a second threshold impedance for a second threshold time, wherein the first threshold impedance is less than the second threshold impedance.


22. The electrosurgical system of clause 22, wherein the first threshold time is longer than the second threshold time.


23. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


a control circuit, wherein the control circuit is programmed to:


provide the electrosurgical signal to first and second electrodes;


monitor an impedance between the first and second electrodes during the provision of the electrosurgical signal;


generate a plurality of descriptors of the impedance;


apply a trainable model wherein the descriptors of the impedance are inputs to the trainable model, and wherein the output of the trainable model is an indication of the presence or absence of a short circuit.


24. The electrosurgical system of clause 23, wherein the trainable model is a neural network.


25. The electrosurgical system of clause 24, wherein the descriptors of the impedance comprise at least one value selected from the group consisting of: a value for the impedance at a first position of a pulse; an average of the impedance across a pulse; an average of the impedance at the first position across a plurality of pulses, and a condition indicating an equality between the impedance at the first point of a first pulse and the first point of a second pulse.


26. The electrosurgical system of clause 24, wherein the neural network is a neuro-fuzzy network.


27. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


an electrosurgical instrument comprising an end effector, wherein the end effector comprises a first electrode and a second electrode;


an electrosurgical generator coupled to the electrosurgical instrument via a cable;


a fuse electrically connected between the first and second electrodes; and


a control circuit, wherein the control circuit is programmed to:


provide an electrosurgical signal to the electrosurgical instrument at a current below a clearing threshold of the fuse;


based on at least one property of the electrosurgical signal, determine an impedance of at least one of the electrosurgical generator, the electrosurgical instrument, and the cable; and


determine a short circuit impedance threshold considering the impedance of at least one of the electrosurgical generator, the electrosurgical instrument, and the cable.


28. The electrosurgical system of clause 27, wherein the control circuit is further programmed to provide the electrosurgical signal in response to an activation instruction.


29. The electrosurgical system of clause 28, wherein the fuse is a single use fuse.


30. The electrosurgical system of clause 28, wherein the fuse is a resettable fuse, and wherein the control circuit is further configured to:


receive a second activation instruction;


in response to the second activation instruction, provide a second electrosurgical signal to the electrosurgical instrument at a current below a clearing threshold of the fuse;


based on at least one property of the second electrosurgical signal, determine an impedance of at least one of the electrosurgical generator, the electrosurgical instrument, and the cable; and


determine a second short circuit impedance threshold considering the impedance of at least one of the electrosurgical generator, the electrosurgical instrument, and the cable.


31. A method of configuring an electrosurgical system for providing an electrosurgical signal to a patient, the electrosurgical instrument comprising first and second electrodes, the method comprising:


creating an electrical short between the first and second electrodes;


while the electrical short is present between the first and second electrodes, providing a drive signal to the first and second electrodes;


measuring an impedance of the surgical system based on the drive signal; and


recording an indication of the impedance of the surgical system at the surgical system.


32. The method of clause 31, wherein creating the electrical short comprises providing a fuse creating an electrical connection between the first and second electrodes, wherein the method further comprises, after measuring the impedance of the surgical system, clearing the fuse.


33. The method of clause 31, wherein creating the electrical short comprises providing a shunt between the first electrode and the second electrode.


34. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


an electrosurgical instrument comprising an end effector, wherein the end effector comprises a first electrode and a second electrode;


an electrosurgical generator coupled to the electrosurgical instrument via a cable; and


a control circuit, wherein the control circuit is programmed to:


implement an adaptive filter, wherein a first input of the adaptive filter is a drive signal of the electrosurgical system, an output of the adaptive filter is an estimate of the impedance of the electrosurgical system, and a second input of the adaptive filter is an error signal between the estimate of the impedance of the electrosurgical system and a measured impedance of the electrosurgical system, and wherein a transfer function of the adaptive filter comprises an input variable representing an acceptable level below a short-circuit threshold that the measured impedance of the electrosurgical system may reach before a short circuit is indicated; and


when a change in the input variable exceeds a threshold, indicate a short circuit.


35. An electrosurgical system for providing an electrosurgical signal to a patient, the system comprising:


an electrosurgical instrument comprising an end effector, wherein the end effector comprises a first electrode and a second electrode;


an electrosurgical generator electrically coupled to the first and second electrodes to provide an electrosurgical drive signal to the first and second electrodes, wherein the electrosurgical generator comprises:


at least one direct current (DC) blocking capacitor positioned in series between the generator and the first electrode; and


a signal conditioning circuit positioned to receive a signal indicative of a voltage potential between the at least one DC blocking capacitor and the first electrode, wherein the signal conditioning circuit is electrically coupled to the first electrode on the same side of the at least one DC blocking capacitor as the first electrode; and


a second at least one DC blocking capacitor positioned in series between the first electrode and the signal conditioning circuit.


36. The electrosurgical system of clause 35, further comprising an output sampling network electrically coupled between the first electrode and the signal conditioning circuit.


37. The electrosurgical system of clause 35, wherein the output sampling circuit comprises a resistive divider network configured to step down a voltage of the electrosurgical drive signal.


38. The electrosurgical system of clause 35, wherein the electrosurgical system is a monopolar system and the second electrode is a return electrode configured to be electrically coupled to a patient.

Claims
  • 1. A control circuit for use with an electrosurgical system, wherein the control circuit is programmed to: provide an electrosurgical signal comprising a plurality of pulses to first and second electrodes;receive a first reading of an impedance between the first and second electrodes, wherein the first reading is taken during the provision of a first pulse of the electrosurgical signal among the plurality of pulses;receive a second reading of the impedance between the first and second electrodes, wherein the second reading is taken during the provision of a subsequent second pulse of the electrosurgical signal among the plurality of pulses;determine a difference between the first and second readings; determine that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the first reading and the second reading; andgenerate a signal indicating the short circuit between the first and second electrodes.
  • 2. The control circuit of claim 1, wherein the first pulse and the subsequent second pulse are adjacent pulses of the electrosurgical signal.
  • 3. The control circuit of claim 1, wherein the control circuit is further programmed to: receive a third reading of the impedance between the first and second electrodes during the provision of the first pulse; andreceive a fourth reading of the impedance between the first and second electrodes during the provision of the subsequent second pulse; determine a difference between the third and fourth readings; anddetermine that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the third reading and the fourth reading.
  • 4. The control circuit of claim 3, wherein the control circuit is further configured to: count a first number of tissue impedances selected from the first, second, third and fourth readings that are within a threshold impedance value of one another; andindicate a short circuit between the first and second electrodes when the first number of tissue impedances exceeds a threshold value.
  • 5. The control circuit of claim 3, wherein the control circuit is further programmed to: compute a first average of the first and third readings and a second average of the second and fourth readings; andcompare the first average with the second average by computing a difference between the first average and the second average, wherein the determination that the short circuit is present between the first and second electrodes is further based on determining that the difference between the first average and the second average is less than a predetermined impedance threshold value.
  • 6. The control circuit of claim 1, wherein the control circuit is programmed to determine that the impedance between the first and second electrodes has fallen below a threshold impedance for a threshold amount of time prior to receiving the first and second readings.
  • 7. The control circuit of claim 1, wherein the electrosurgical signal is a measurement electrosurgical signal, and wherein the control circuit is further programmed to: provide a first electrosurgical signal to the first and second electrodes;receive an indication of the impedance between the first and second electrodes during the provision of the first pulse of the electrosurgical signal; andprovide the measurement electrosurgical signal when the impedance between the first and second electrodes drops below a threshold impedance for a threshold amount of time during the provision of the first electrosurgical signal.
  • 8. The control circuit of claim 1, wherein the control circuit is further programmed to terminate the electrosurgical system in response to the determination that the short circuit is present.
  • 9. A method of a control circuit for use with an electrosurgical system, the method comprising: providing an electrosurgical signal comprising a plurality of pulses to first and second electrodes;receiving a first reading of an impedance between the first and second electrodes, wherein the first reading is taken during the provision of a first pulse of the electrosurgical signal among the plurality of pulses;receiving a second reading of the impedance between the first and second electrodes, wherein the second reading is taken during the provision of a subsequent pulse of the electrosurgical signal;determining a difference between the first and second readings;determining that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the first reading and the second reading; andgenerating a signal indicating the short circuit between the first and second electrodes.
  • 10. The method of claim 9, wherein the first pulse and the subsequent second pulse are adjacent pulses of the electrosurgical signal.
  • 11. The method of claim 9, further comprising: receiving a third reading of the impedance between the first and second electrodes during the provision of the first pulse;receiving a fourth reading of the impedance between the first and second electrodes during the provision of the subsequent second pulse;determining a difference between the third and fourth readings; anddetermining that a short circuit is present between the first and second electrodes based on a magnitude of the difference between the third reading and the fourth reading.
  • 12. The method of claim 11, further comprising: counting a first number of tissue impedances selected from the first, second, third and fourth readings that are within a threshold impedance value of one another; andindicating a short circuit between the first and second electrodes when the first number of tissue impedances exceeds a threshold value.
  • 13. The method of claim 11, further comprising: computing a first average of the first and third readings and a second average of the second and fourth readings; andcomparing the first average with the second average by computing a difference between the first average and the second average, wherein the determination that the short circuit is present between the first and second electrodes is further based on determining that the difference between the first average and the second average is less than a predetermined impedance threshold value.
  • 14. The method of claim 9, further comprising determining that the impedance between the first and second electrodes has fallen below a threshold impedance for a threshold amount of time prior to receiving the first and second readings.
  • 15. The method of claim 9, wherein the electrosurgical signal is a measurement electrosurgical signal, and the method further comprises: providing a first electrosurgical signal to the first and second electrodes;receiving an indication of the impedance between the first and second electrodes during the provision of the first pulse of the electrosurgical signal; andproviding the measurement electrosurgical signal when the impedance between the first and second electrodes drops below a threshold impedance for a threshold amount of time during the provision of the first electrosurgical signal.
  • 16. The method of claim 9, further comprising terminating the electrosurgical system in response to the determination that the short circuit is present.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/396,197, entitled DETECTING SHORT CIRCUITS IN ELECTROSURGICAL MEDICAL DEVICES, filed Dec. 30, 2016, which issued on Sep. 22, 2020 as U.S. Pat. No. 10,779,879, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 14/218,558, entitled DETECTING SHORT CIRCUITS IN ELECTROSURGICAL MEDICAL DEVICES, filed Mar. 18, 2014, which issued on Jan. 31, 2017 as U.S. Pat. No. 9,554,854, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (2607)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4244371 Farin Jan 1981 A
4281785 Brooks Aug 1981 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4353371 Cosman Oct 1982 A
4409981 Lundberg Oct 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4593691 Lindstrom et al. Jun 1986 A
4608981 Rothfuss et al. Sep 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5009661 Michelson Apr 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451161 Sharp Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5626608 Cuny et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5854590 Dalstein Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5987344 West Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205383 Hermann Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6232899 Craven May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405184 Bohme et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6459363 Walker et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6632221 Edwards et al. Oct 2003 B1
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6730080 Harano et al. May 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083613 Treat Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7113831 Hooven Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7166103 Carmel et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226447 Uchida et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507239 Shadduck Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7649410 Andersen et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7744615 Couture Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815238 Cao Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7862561 Swanson et al. Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8002770 Swanson et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8055208 Lilla et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8170717 Sutherland et al. May 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8221418 Prakash et al. Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398394 Sauter et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430874 Newton et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8437832 Govari et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8471685 Shingai Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512337 Francischelli et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535308 Govari et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8597287 Benamou et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8617194 Beaupre Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663214 Weinberg et al. Mar 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8777945 Floume et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8874220 Draghici et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968296 McPherson Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
8998891 Garito et al. Apr 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9037259 Mathur May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066720 Ballakur et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072538 Suzuki et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198718 Marczyk et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364171 Harris et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9393070 Gelfand et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9427279 Muniz-Medina et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9442288 Tanimura Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9474568 Akagane Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603669 Govari et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9636167 Gregg May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9649173 Choi et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724120 Faller et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861381 Johnson Jan 2018 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9878184 Beaupre Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901383 Hassler, Jr. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080609 Hancock et al. Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10123835 Keller et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
10154848 Chernov et al. Dec 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172665 Heckel et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10188455 Hancock et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10194999 Bacher et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10245104 McKenna et al. Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10271840 Sapre Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10285750 Coulson et al. May 2019 B2
10299810 Robertson et al. May 2019 B2
10299821 Shelton, IV et al. May 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10335182 Stulen et al. Jul 2019 B2
10335183 Worrell et al. Jul 2019 B2
10335614 Messerly et al. Jul 2019 B2
10342602 Strobl et al. Jul 2019 B2
10342606 Cosman et al. Jul 2019 B2
10349999 Yates et al. Jul 2019 B2
10357303 Conlon et al. Jul 2019 B2
10363084 Friedrichs Jul 2019 B2
10376305 Yates et al. Aug 2019 B2
10398466 Stulen et al. Sep 2019 B2
10398497 Batross et al. Sep 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420579 Wiener et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426507 Wiener et al. Oct 2019 B2
10426978 Akagane Oct 2019 B2
10433865 Witt et al. Oct 2019 B2
10433866 Witt et al. Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441308 Robertson Oct 2019 B2
10441310 Olson et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10448986 Zikorus et al. Oct 2019 B2
10456193 Yates et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10463887 Witt et al. Nov 2019 B2
10485607 Strobl et al. Nov 2019 B2
10492849 Juergens et al. Dec 2019 B2
10512795 Voegele et al. Dec 2019 B2
10517627 Timm et al. Dec 2019 B2
10524854 Woodruff et al. Jan 2020 B2
10524872 Stewart et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10543008 Vakharia et al. Jan 2020 B2
10548655 Scheib et al. Feb 2020 B2
10555769 Worrell et al. Feb 2020 B2
10561560 Boutoussov et al. Feb 2020 B2
10575892 Danziger et al. Mar 2020 B2
10617420 Shelton, IV et al. Apr 2020 B2
RE47996 Turner et al. May 2020 E
10677764 Ross et al. Jun 2020 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20020177862 Aranyi et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109778 Rashidi Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107777 West et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Iino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iljima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060259026 Godara et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070066971 Podhajsky Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20070299895 Johnson et al. Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090204114 Odom Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110015650 Choi et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110071523 Dickhans Mar 2011 A1
20110106141 Nakamura May 2011 A1
20110112400 Emery et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110273465 Konishi et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120136279 Tanaka et al. May 2012 A1
20120136386 Kishida et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120191091 Allen Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296325 Takashino Nov 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140180274 Kabaya et al. Jun 2014 A1
20140194868 Sanai et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140276754 Gilbert et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276806 Heim Sep 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150282879 Ruelas Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20150320481 Cosman, Jr. et al. Nov 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199125 Jones Jul 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160324537 Green et al. Nov 2016 A1
20160367281 Gee et al. Dec 2016 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170000554 Yates et al. Jan 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170086910 Wiener et al. Mar 2017 A1
20170086911 Wiener et al. Mar 2017 A1
20170086912 Wiener et al. Mar 2017 A1
20170086913 Yates et al. Mar 2017 A1
20170086914 Wiener et al. Mar 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170105791 Yates et al. Apr 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164994 Smith Jun 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170202609 Shelton, IV et al. Jul 2017 A1
20170207467 Shelton, IV et al. Jul 2017 A1
20170209167 Nield Jul 2017 A1
20170245875 Timm et al. Aug 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325874 Noack et al. Nov 2017 A1
20170360468 Eichmann et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180064961 Wiener et al. Mar 2018 A1
20180078277 Illizaliturri-Sanchez et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180146976 Clauda et al. May 2018 A1
20180161112 Weir et al. Jun 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20180280083 Parihar et al. Oct 2018 A1
20190021783 Asher et al. Jan 2019 A1
20190105067 Boudreaux et al. Apr 2019 A1
20190201048 Stulen et al. Jul 2019 A1
20190209201 Boudreaux et al. Jul 2019 A1
20190262030 Faller et al. Aug 2019 A1
20190274700 Robertson et al. Sep 2019 A1
20190282288 Boudreaux Sep 2019 A1
20190282292 Wiener et al. Sep 2019 A1
20200015883 Batross et al. Jan 2020 A1
20200022724 Worrell et al. Jan 2020 A1
20200030021 Yates et al. Jan 2020 A1
20200054382 Yates et al. Feb 2020 A1
20200078085 Yates et al. Mar 2020 A1
20200078609 Messerly et al. Mar 2020 A1
20200085465 Timm et al. Mar 2020 A1
20200113624 Worrell et al. Apr 2020 A1
20200138473 Shelton, IV et al. May 2020 A1
20200222135 Stulen et al. Jul 2020 A1
20200229833 Vakharia et al. Jul 2020 A1
20200229834 Olson et al. Jul 2020 A1
20200237434 Scheib et al. Jul 2020 A1
20200261141 Wiener et al. Aug 2020 A1
20200268433 Wiener et al. Aug 2020 A1
Foreign Referenced Citations (145)
Number Date Country
2535467 Apr 1993 CA
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
101474081 Jul 2009 CN
102100582 Jun 2011 CN
202027624 Nov 2011 CN
103281982 Sep 2013 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
102012109037 Apr 2014 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0705571 Apr 1996 EP
1698289 Sep 2006 EP
1862133 Dec 2007 EP
1972264 Sep 2008 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
2131760 Dec 2009 EP
1214913 Jul 2010 EP
1946708 Jun 2011 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2668922 Dec 2013 EP
2076195 Dec 2015 EP
2510891 Jun 2016 EP
2032221 Apr 1980 GB
2317566 Apr 1998 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04152942 May 1992 JP
H 0541716 Feb 1993 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336545 Dec 1996 JP
H09130655 May 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
10127654 May 1998 JP
H10295700 Nov 1998 JP
H11128238 May 1999 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2002059380 Feb 2002 JP
2002186901 Jul 2002 JP
2002263579 Sep 2002 JP
2002330977 Nov 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005074088 Mar 2005 JP
2005337119 Dec 2005 JP
2006068396 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006217716 Aug 2006 JP
2006288431 Oct 2006 JP
2007037568 Feb 2007 JP
200801876 Jan 2008 JP
200833644 Feb 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2010009686 Jan 2010 JP
2010121865 Jun 2010 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2405603 Dec 2010 RU
2013119977 Nov 2014 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9639086 Dec 1996 WO
WO-9800069 Jan 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0128444 Apr 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-03095028 Nov 2003 WO
WO-2004037095 May 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2007008710 Jan 2007 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012150567 Nov 2012 WO
Non-Patent Literature Citations (53)
Entry
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220.
Related Publications (1)
Number Date Country
20180098808 A1 Apr 2018 US
Divisions (1)
Number Date Country
Parent 14218558 Mar 2014 US
Child 15396197 US
Continuations (1)
Number Date Country
Parent 15396197 Dec 2016 US
Child 15832229 US