This application claims priority from United Kingdom Patent Application number GB 17 19 836.7, filed on 29 Nov. 2017, the whole contents of which are incorporated herein by reference.
The present invention relates to apparatus for detecting a mechanical interaction, and a method of detecting a mechanical interaction.
Matrix array sensors are known which include a plurality of scan lines which intersect with a plurality of drive lines to define a sensing array. Variably resistive elements can be provided at each intersection of the array, presenting a high resistance at each intersection until a mechanical pressure is applied, whereupon the resistance reduces significantly thereby allowing conduction to take place.
Known sensing arrays have a number of shortcomings which limit the flexibility and use of the sensors. In such arrangements, a current output is measured which provides relatively low current values which are difficult to measure without complex and expensive circuitry. This also means that arrays of this type lack sensitivity in terms of measurements thereby reducing the number of potential applications in which the arrays can be utilized.
Further, in passive sensing arrays, the resistive sensor is connected at the intersection with resistor terminals connected at both the row and the column. This approach is only suitable for small array sizes as larger sizes consequently experience problems with ghosting and non-uniformity.
According to an aspect of the present invention, there is provided an apparatus for detecting a mechanical interaction according to claim 1.
According to a further aspect of the present invention, there is provided a method of detecting a mechanical interaction in a sensing array according to claim 13.
Embodiments of the invention will be described, by way of example only, with reference to the accompanying drawings. The detailed embodiments show the best mode known to the inventor and provide support for the invention as claimed. However, they are only exemplary and should not be used to interpret or limit the scope of the claims. Their purpose is to provide a teaching to those skilled in the art. Components and processes distinguished by ordinal phrases such as “first” and “second” do not necessarily define an order or ranking of any sort.
The invention will be described by way of example only with reference to the accompanying drawings, of which:
An example electronic device which utilizes an apparatus for detecting a mechanical interaction, such as a matrix array sensor is depicted in
An apparatus for detecting a mechanical interaction is shown in a simplified diagrammatic form in
Apparatus 201 further comprises a plurality of sensing elements 210A, 210B, 210C and 210D. Each of the sensing elements comprises a variable resistance element and a voltage amplifier. In particular, sensing element 210A comprises a variable resistance element 211 and voltage amplifier 212. It is appreciated that the remaining sensing elements 210B, 210C and 210D also include their own variable resistance elements and voltage amplifiers.
Apparatus 201 further comprises a driving processor 213 which is configured to activate any one of the plurality of scan lines as required and an output processor 214 which is configured to determine a voltage output from each said output line from the plurality of sensing elements.
In use, the driving processor 213 activates any one of the scan lines and further activates the sensing element. The output processor is then able to determine the voltage output from the output lines. This process will be described in further detail with respect to
An example embodiment forming part of the invention will now be described with respect to
Sensing element 210A comprises first transistor 301 and a second transistor 302 which are arranged in series with each other. First and second transistors 301 and 302 combine to act as voltage amplifier 212 in the arrangement. Variable resistance element 211 is arranged in series with the transistors in a manner so as to block a flow of current through variable resistance element 211 as necessary. When blocked, and the voltage amplifier is considered off, the output impedance from the voltage amplifier is relatively high. In an embodiment, the output impedance is at least 1×109 ohms.
The source of transistor 301 is connected to the drain of transistor 302 via the variable resistive element 211 with the gates of each transistor being configured to receive input voltage VSCAN via scan line 202. Transistor 302 is grounded at its source. In the embodiment, transistors 301 and 302 are n-type or nMOS transistors as shown.
Variable resistance element 211 has a variable resistance R211 and comprises a pressure sensitive material. In an embodiment, the pressure sensitive material is a quantum tunneling material such as that sold by the present applicant under the brand name QTC®. In particular, this material is such that under an applied force or pressure, the resistance in the material varies. For example, with a higher pressure, the quantum tunneling material exhibits a reduction in electrical resistance.
In use, an input voltage VSCAN is transmitted via scan line 202 to the gates of each transistor 301 and 302. The output voltage VOUT at output line 204 from the sensing element 210A can be calculated in accordance with the equation 303 shown in
This relationship enables the sensing element 210A to be tailored for different applications. To achieve a high sensitivity voltage output from the sensing element, the drain-source resistance of transistor 302 needs to be large compared to the sum of the denominator of equation 303. This is achieved by ensuring that transistor 301 has a relatively large width to length ratio compared to transistor 302. The smaller width to length ratio of transistor 302 therefore results in a larger drain-source resistance R302. This relationship is illustrated further with respect to
In further embodiments, first and second transistors have substantially similar width to length ratios so as to produce appropriate variations in relation to the sensitivity and output voltage as required.
A graphical representation in logarithmic form of the relationship between the output voltage VOUT against the resistance of the variable resistance element R211 of the arrangement of
In the example, the width to length ratio of the first transistor 301 is calculated as the ratio of a constant multiplied by a given width to a given length. The width to length ratio of the second transistor 302 is calculated as the ratio of a given width to the same constant multiplied by a given length. This ensures that the width to length ratio of transistor 302 is small in comparison to the width to length ratio of transistor 301. The constant is varied to provide an indication of results for different sizes.
Line graphs 401, 402, 403 and 404 show the results for increasing values of the constant. For example, in test results, the constant value was identified as 1 for graph 401, 5 for graph 402, 10 for graph 403 and 20 for graph 404.
The graph illustrates that the output voltage varies non-linearly across the voltage range. For an increase in the value of the constant, the output voltage increases such that there is a larger output voltage for graph 404. Furthermore, the sensitivity of the arrangement is reduced for higher applied pressures, and consequently higher resistances of the variable resistance element.
A graphical representation of the relationship between the output voltage VOUT against the resistance of the variable resistance element R211 in linear form is shown in
Line graphs 501, 502, 503 and 504 correspond to line graphs 401, 402, 403 and 404 respectively. This highlights the variation in output voltage and the loss in sensitivity at higher resistances and input pressures for a single sensing element as in the case of the simplified embodiment of
An alternative embodiment to the example illustrated in respect of
Sensing element 601 forms part of a substantially similar apparatus to previously described apparatus 201 and includes a plurality of scan lines including scan line 602, and a plurality of output line, including output line 603.
Sensing element 601 comprises first transistor 604 and a second transistor 605 which are arranged in series with each other. As previously, first and second transistors 604 and 605 combine to act as a voltage amplifier in the arrangement. Variable resistance element 606 is arranged in series with the transistors in a manner so as to block a flow of current through variable resistance element 606 as necessary. When blocked, and the voltage amplifier is considered off, the output impedance from the voltage amplifier is relatively high. In an embodiment, the output impedance is at least 1×109 ohms.
The source of transistor 604 is connected to the drain of transistor 605 via the variable resistive element 606 with the gates of each transistor being configured to receive input voltage VSCAN via scan line 602. In the embodiment, transistors 604 and 606 are p-type or pMOS transistors as shown.
Variable resistance element 606 has a resistance R606 and comprises a pressure sensitive material. In an embodiment, the pressure sensitive material is a quantum tunneling material such as that sold by the present applicant under the brand name QTC®.
In use, an input voltage VSCAN is transmitted via scan line 602 to the gates of each transistor 604 and 605. The output voltage VOUT at output line 603 from sensing element 601 can be calculated in a similar manner to that of
Thus, the arrangement of
A method of detecting a mechanical interaction in a sensing array will now be described with respect to
In order to activate the apparatus as previously described, a mechanical interaction is applied by a user at step 701, for example a finger press in the manner indicated in
A scan line in the sensing array is activated by a driving processor at step 702. An input voltage is applied to the plurality of scan lines forming the sensing array at step 703 thereby providing power and activation to a voltage amplifier at step 704, along with providing power to the variable resistive element of the sensing element.
Once activated, current is permitted to flow through the variable resistive element, and consequently, it is appreciated that, when inactive, the flow of current through the variable resistive element is blocked by the voltage amplifier (or specifically, the transistors forming the voltage amplifier).
In operation, voltage outputs from the sensing array are determined in parallel by an output processor. Each scan line is therefore activated sequentially and thus, at step 705, a question is asked if a further scan line is required to be activated. If this question is answered in the affirmative, a further input voltage is applied to the next scan line, with the next voltage amplifier corresponding to that scan line being activated so that an output voltage can be determined. This cycle can be repeated for any number of rows of the sensing array. It is appreciated that, in alternative embodiments, the entire array is not scanned and the processor can be set to scan part of the array, rather than the whole array. Furthermore, in a still further embodiment, the array is not scanned sequentially and is instead scanned non-sequentially.
In any event, once all required scan lines have been activated and appropriate output voltage transmitted, the output voltage is determined in parallel at step 706.
An apparatus in accordance with the present invention showing a sensing array 801 is illustrated in
Each of the sensing elements comprises two transistors forming a voltage amplifier and a variable resistance element. Each variable resistance element comprises a pressure sensitive material such as a quantum tunneling material which exhibits variable resistance.
In the embodiment, the sensing elements form a plurality of rows 802 and a plurality of columns 803 which are fed an input voltage VSCAN via a plurality of scan lines and provide an output voltage via a plurality of output lines VOUT. In the embodiment, the ground point of each row is shared with the scan line of the next row so as to reduce the complexity of the required circuitry. Scan line 804, which receives an input voltage VSCAN41 is held at ground potential.
Given that each sensing element is held at a high impedance when inactive, this ensures that each sensing element in a given column only provides an output voltage when it has been activated by a mechanical interaction. In this way, the output voltage line is driven only by the active resistive divider of the activated row.
A timing diagram utilized for scanning the sensing array 801 is shown in
As noted previously, the resistance of each of the variable resistance elements affects the value of the output voltage VOUT and this can consequently be used to determine positional properties as required. Each output voltage is determined in parallel given that the inactive sensing elements have high impedance when they are switched off. The output voltage can be calculated in a substantially similar manner to that as described in respect of
Corresponding line graphs for sensing array 801 for output voltage against the resistance of the variable resistance element are shown in
A graphical representation in logarithmic form of the relationship between the output voltage VOUT against the resistance of the variable resistance element R of the arrangement of
The width to length ratios of the transistors of the sensing array 801 are calculated in a substantially similar manner to the manner of
Line graphs 1001, 1002, 1003, 1004, 1005, 1006 and 1007 show the results for increasing values of a similar constant. In this example, the constant value is identified as 1 for graph 1001, 2 for graph 1002, 5 for graph 1003, 10 for graph 1004, 20 for graph 1005, 50 for graph 1006 and 100 for graph 1007.
The graph again illustrates that the output voltage varies non-linearly across the voltage range. For an increase in the value of the constant, the output voltage increases such that there is a larger output voltage for graph 1007. Furthermore, the sensitivity of the arrangement is reduced for higher applied pressures, and consequently higher resistances of the variable resistance element.
A graphical representation of the relationship between the output voltage VOUT against the resistance of the variable resistance element R in linear form is shown in
Line graphs 1101, 1102, 1103, 1104, 1105, 1106 and 1107 correspond to line graphs 1001, 1002, 1003, 1004, 1005, 1006 and 1007 respectively. This highlights the variation in output voltage and the loss in sensitivity at higher resistances and input pressures. It is particularly noted that at high resistances, whereby a lower input voltage is provided and the sensing element is in a high-impedance state, the output voltage is also low which leads to the loss in sensitivity.
Graph 1007 is considered to give an unrealistic measure for the width to length ratios (with first and second transistors having width to length ratios of 1000/10 and 10/1000 respectively), as, as noted in respect of
A graphical representation of the variation of the output voltage sensitivity to the resistance of the variable resistance element is shown in
The graph again shows various line graphs for alternative values of width to length ratios with each of the line graphs 1201, 1202, 1203, 1204, 1205 and 1206 relating to higher values of the constant.
What is noted from
In the embodiment previously shown in
A diagrammatic example of such an array is illustrated in
In contrast, a further plurality of sensing elements 1304 have been sized to include transistors having particular width to length ratios based on a second constant value. Thus, the first transistor in these sensing elements would have a value of its width to length ratio multiplied by a second constant and the second transistor in these sensing elements would have a value of its width to length ratio multiplied by the inverse of the second constant.
Thus, in this way, the plurality of sensing elements 1303 each have a first sensitivity and the plurality of sensing elements 1304 each have a second sensitivity. This means that each plurality of sensing elements can be configured to have a particular property to include the flexibility of the sensing array.
For example, in an embodiment, the first plurality of sensing elements can be sensitive primarily to low forces, and the second plurality of sensing elements can be sensitive primarily to high forces to give a variation across a sensing array. This can effectively extend the dynamic range of the array.
An example application of a sensing array arranged in the manner of
Electronic device 1401 comprises a plurality of input devices in the form of buttons. In this illustrated example, button 1402 is configured to respond to a high force and button 1403 is configured to response to a low force. Thus, the variable sensitivity of the sensing array forming part of the electronic device provides input devices requiring various input forces.
Number | Date | Country | Kind |
---|---|---|---|
1719836.7 | Nov 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2018/000151 | 11/28/2018 | WO | 00 |