This application is based on and claims the benefit of priority from earlier Japanese Patent Application No. 2011-012689 filed Jan. 25, 2011, the description of which is incorporated herein by reference.
1. Technical Field of the Invention
The present invention relates to a detection apparatus, and in particular to a detection apparatus that detects an amount of particulate matter in an exhaust gas that flows through the exhaust path of an internal combustion engine.
2. Related Art
Recently, internal combustion engines are required to have superior exhaust purification performance. In diesel engines, in particular, removal of so-called exhaust particulates (particulate matter (PM)), such as black smoke, exhausted from the engines is of increasing importance. In order to remove PM, diesel engines are most commonly equipped with a diesel particulate filter (DPF) in the middle of the exhaust pipe.
PM sensors are one of the means for detecting the amount of PM in an exhaust gas. For example, using a detection value derived from a PM sensor disposed downstream of a DPF, a failure of the DPF, if any, can be detected. Further, when such a PM sensor is disposed upstream of a DPF, the amount of PM accumulated in the DPF can be estimated from a detection value derived from the PM sensor. For example, JP-A-559-060018 discloses a system for estimating the amount of PM accumulated in a DPF by disposing a PM sensor in an exhaust pipe.
As shown in
The use of the PM sensor is required to burn PM attaching to the PM sensor so as to regenerate the PM sensor each time an amount of PM attached (deposited) to the PM sensor (its insulator) is judged to be too large.
As shown in
In the regeneration of the PM sensor, if a regeneration period is too short, a part of PM may remain after burning to thereby reduce accuracy of detecting the amount of PM. On the other hand, for example, if the regeneration period is too long, a failure of the DPF cannot be detected during the regeneration of the PM sensor. Therefore, an unnecessarily long length of the regeneration period is required to be avoided.
A temperature (electrode temperature) needed to burn PM during the regeneration of the PM sensor is controlled to follow a set target temperature. If the target temperature is too high, PM attaching to the PM sensor rapidly burns and the PM sensor may be damaged. In contrast, if the target temperature is too low, it takes a long time to burn PM and then a long regeneration period of the PM sensor is required. This is not desirable. Therefore, the target temperature is required to be properly set. In the related art, above-mentioned situations, where the length of the regeneration period and the target temperature are required to be properly set during the regeneration of the PM sensor, are not recognized as problem to be solved.
The present disclosure has been made in light of the problem set forth above, and provides, in a detection apparatus that detects an amount of particulate matter (or a correlation amount correlated with the amount of particulate matter) by an attachment of particulate matter emitted by an internal combustion engine, a detection apparatus which is able to properly set a length of a regeneration period and a target temperature in a regeneration process to burn particulate matter attached to the detection apparatus.
According to an exemplary aspect of the present disclosure, there is provided a detection apparatus, comprising: a detection unit that is disposed in an exhaust path of an internal combustion engine through which an exhaust gas flows, which includes an attachment element to which particulate matter in the exhaust gas attaches, and detects a correlation value that is correlated with an amount of particulate matter which is attached to the attachment element; a control unit that controls a temperature of the attachment element to follow a target temperature while a regeneration process is performed to heat the attachment element so as to burn particulate matter which attaches to the attachment element; a first setting unit that sets the target temperature to be lower, as an amount of particulate matter which attaches to the attachment element becomes larger; and a second setting unit that sets a completion timing of the regeneration process in such a manner that a period of the regeneration process becomes longer, as an amount of particulate matter which attaches to the attachment element becomes larger or a temperature of the attachment element becomes lower while the regeneration process is performed.
According to this, the detection apparatus that is disposed in the exhaust path of the internal combustion engine through which the exhaust gas flows detects a correlation value that is correlated with an amount of particulate matter which attaches to the attachment element. The target temperature, in the regeneration process in which the attachment element is heated, is set to become lower as the amount of particulate matter which attaches to the attachment element becomes larger. If the attached amount of particulate matter is large, the target temperature is set to become low, thereby being able to avoid the excess burning. If the attached amount of particulate matter is small, the target temperature is set to become high and then particulate matter is quickly burned, thereby being able to avoid the unnecessarily long length of the regeneration period. Further, as the amount of particulate matter which attaches to the attachment element becomes larger or the temperature of the attachment element becomes lower while the regeneration process is performed, the period of the regeneration process becomes longer. If the attached amount of particulate matter is large or the temperature of the attachment element is low, the length of the regeneration period is long, thereby being able to reduce a situation where a part of particulate matter remains after burning. If the attached amount of particulate matter is small or the temperature of the attachment element is high, the length of the regeneration period is short, thereby being able to avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set, thereby being able to realize a detection apparatus that can be regenerated with avoiding the excess burning, the unnecessarily long length of the regeneration period, and the situation where a part of particulate matter remains after burning.
The first setting unit may include a third setting unit that sets the target temperature to be lower, as the correlation value, which is detected by the detection unit before a start of the regeneration process, becomes larger.
According to this, as the correlation value before the start of the regeneration process becomes larger (i.e., the attached amount of particulate matter is large), the target temperature becomes lower. Due to this, before the start of the regeneration process, the target temperature can be set so that, if the attached amount of particulate matter is large, the target temperature is low, thereby being able to avoid the excess burning, and, if the attached amount is small, the target temperature is high, thereby being able to avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The detection apparatus may further comprise a calculation unit that calculates an attached amount of particulate matter which attaches to the attachment element while the regeneration process is performed. The first setting unit may include a fourth setting unit that sets the target temperature to be lower, as the attached amount of particulate matter calculated by the calculation unit becomes larger.
According to this, the attached amount of particulate matter, which attaches to the attachment element while the regeneration process is performed, is calculated, and, as the calculated value of the attached amount becomes larger, the target temperature is set to become lower. Due to this, while the regeneration process is performed, the target temperature can be set at any time so that, if the attached amount of particulate matter is large, the target temperature is low, thereby being able to avoid the excess burning, and, if the attached amount is small, the target temperature is high, thereby being able to avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set at any time while the regeneration process is performed, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The second setting unit may include a fifth setting unit that sets the completion timing of the regeneration process so that the period of the regeneration process becomes longer, as the correlation value, which is detected by the detection unit before a start of the regeneration process, becomes larger.
According to this, as the correlation value before the start of the regeneration process becomes larger (i.e., the attached amount of particulate matter is large), the regeneration period becomes shorter. Due to this, before the start of the regeneration process, the length of the regeneration period can be set so that, if the attached amount of particulate matter is large, the length of the regeneration period is long, thereby being able to avoid the excess burning, and, if the attached amount is small, the length of the regeneration period is short, thereby being able to avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The second setting unit may include a sixth setting unit that sets the completion timing of the regeneration process so that the period of the regeneration process becomes longer, as the temperature of the attachment element becomes lower while the regeneration process is performed.
According to this, as the temperature of the attachment element becomes lower, while the regeneration process is performed, the period of the regeneration process becomes longer. Due to this, while the regeneration process is performed, the period of the regeneration process can be set at any time so that, if the temperature of the attachment element is low, the period of the regeneration process is long, thereby being able to avoid the situation where a part of particulate matter remains after burning, and, if the temperature of the attachment element is high, the period of the regeneration process is short, thereby being able to avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set at any time while the regeneration process is performed, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The detection apparatus may further comprise a calculation unit that calculates an attached amount of particulate matter which attaches to the attachment element while the regeneration process is performed. The second setting unit may include a completion determination unit that determines that the regeneration process is completed when the attached amount of particulate matter, which is calculated by the calculation unit while the regeneration process is performed, becomes smaller than a predetermined value.
According to this, while the regeneration process is performed, the attached amount of particulate matter is calculated at any time, and, when the calculation value becomes smaller than the predetermined value, the regeneration process is completed. Due to this, the regeneration process can be completed at optimum timing using the attached amount of particulate matter of high accuracy that is calculated at any time while the regeneration process is performed. Therefore, the regeneration process can be completed at optimum timing, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The detection apparatus may further comprise a temperature detection unit that detects a temperature of the exhaust gas which flows through the exhaust path. The second setting unit may include a seventh setting unit that sets the completion timing of the regeneration process so that the period of the regeneration process becomes longer, as the temperature of the exhaust gas detected by the temperature detection unit becomes lower.
According to this, as the temperature of the exhaust gas becomes lower, the period of the regeneration process becomes longer. If the temperature of the exhaust gas is low, the period of the regeneration is long in consideration of burning being weakened, thereby being able to avoid the situation where a part of particulate matter remains after burning. If the temperature of the exhaust gas is high, the period of the regeneration is short, thereby being able to set the period of the regeneration process that can avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set based on the temperature of the exhaust gas, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The detection apparatus may further comprise a flow rate detection unit that detects a flow rate of the exhaust gas which flows through the exhaust path. The second setting unit may include a eighth setting unit that sets the completion timing of the regeneration process so that the period of the regeneration process becomes longer, as the flow rate of the exhaust gas detected by the flow rate detection unit becomes larger.
According to this, as the flow rate of the exhaust gas becomes larger, the period of the regeneration process becomes longer. If the flow rate of the exhaust gas is large, the period of the regeneration is long in consideration of heat that is removed by the exhaust gas flow, thereby being able to avoid the situation where a part of particulate matter remains after burning. If the flow rate of the exhaust gas is small, the period of the regeneration is short, thereby being able to set the period of the regeneration process that can avoid the unnecessarily long length of the regeneration period. Therefore, the target temperature and the length of the regeneration period are properly set based on the flow rate of the exhaust gas, thereby being able to realize a detection apparatus that can be regenerated, avoiding excess PM burning, unnecessarily long regeneration periods, and PM remaining after PM sensor regeneration.
The correlation value may be a value of current flowing in particulate matter which attaches to the attachment element. The detection apparatus may further comprise a correction unit that, while the regeneration process is performed, corrects the correlation value based on the temperature of the attachment element to calculate the attached amount of particulate matter in the attachment element.
According to this, the detection unit detects the value of current flowing in particulate matter which attaches to the attachment element, and subsequently an output of the detection unit is corrected based on the temperature of the attachment element. Due to this, the output value is corrected appropriately by using a property that, as the temperature of the attachment element becomes higher, the electric resistance of attached particulate matter changes. Therefore, even if the output value of the detection unit is influenced by the change in the electric resistance due to the temperature, the output value is properly corrected and the influence is removed, thereby being able to calculate the attached amount of particulate matter during the regeneration process with a high degree of accuracy.
The calculation unit may include: a estimation unit that estimates a burned amount of particulate matter per unit time while the regeneration process is performed; and a subtraction unit that subtracts the burned amount estimated by the estimation unit from an amount of particulate matter corresponding to the correlation value which is detected by the detection unit before a start of the regeneration process so as to calculate the attached amount of particulate matter while the regeneration process is performed.
According to this, the estimated value of burned amount during the regeneration process is subtracted from the attached amount of particulate matter before the start of the regeneration process to thereby calculate the attached amount of particulate matter during the regeneration process. Due to this, the attached amount of particulate matter during the regeneration process is calculated with a high degree of accuracy, without using the output of the detection unit during the regeneration.
In the accompanying drawings:
With reference to the accompanying drawings, hereinafter are described some embodiments of the present invention.
The detection system 1 is a system that detects an amount of PM flowing through an exhaust pipe (exhaust path) 4 of a diesel engine 2 (engine) that is an internal combustion engine. The detection system 1 includes an intake pipe 3, the exhaust pipe 4, a PM sensor 5, and an electronic control unit 6. Through the intake pipe 3, intake gas (air) is supplied to the engine 2. The intake pipe 3 is provided with an air flow meter 30 that detects an intake volume (e.g., a mass flow rate per unit time). In a cylinder of the engine 2, fuel is injected by an injector 20.
The exhaust pipe 4 is provided with a DPF 40, a differential-pressure meter 41, and an exhaust gas temperature sensor 40. The DPF 40 collects PM emitted by the engine 2. The differential-pressure meter 41 detects a pressure difference between inlet and outlet of DPF 40 (a difference value between a pressure at an upstream side and a pressure at downstream side of DPF 40). The PM sensor 5 is arranged at a downstream side of the DPF 40 in the exhaust pipe 4 and detects an amount of PM passing through the DPF 40.
The DPF 40 may have, as an example of a typical structure, so called honeycomb structure whose inlet and outlet are alternately closed. Particulate matter (PM) is included in the exhaust gas that is emitted from the engine 2 in operation thereof, and, when the exhaust gas passes through a wall of the DPF 40 having the above structure, PM is collected at the inside and the surface of the wall of the DPF 40, and then the exhaust gas, which is emitted to the outside of, e.g., the automotive vehicle, is purified. The DPF 40 may be, for example, a DPF that supports oxidation catalysis.
Each time an amount of PM accumulated in the DPF 40 becomes sufficiently large, the accumulated PM is burned and removed, thereby regenerating the DPF 40. An example of a method for estimating the amount of PM accumulated may be a method that comprises: obtaining in advance a functional relationship (map) between the amount of PM accumulated and the pressure difference between inlet and outlet of DPF 40 to store the map in the memory 61; and estimating the amount of PM accumulated based on an detection value of the differential-pressure meter 41 and the map stored in the memory 61. The map has, as a typical property, such a relationship that has a shape of a parallelogram in which the amount of PM accumulated is allocated to the horizontal axis of the map and the pressure difference between inlet and outlet of DPF 40 is allocated to the vertical axis of the map, and the PM/pressure relationship makes a circuit of the parallelogram, when PM is accumulated and is burned.
The electronic control unit (ECU) 6 has a configuration similar to that of a normally used computer and includes a CPU (central processing unit) for carrying out several calculations and a memory 60 for storing various pieces of information. The ECU 6 performs various controls to, e.g., obtain detection values of the above various sensors, and instruct an amount of fuel injection of the injector 20. The ECU 6 also adjusts a regeneration period and a target temperature in the regeneration of the PM sensor 5, which correspond to the exemplary main object of the present embodiment.
A DC power supply 54 applies voltage across the electrodes 51 and 52. When the electrically conductive PM is accumulated on the insulator 50 and an electrically conductive state is created across the electrodes 51 and 52, current passes across the electrodes 51 and 52. The current is measured by an ammeter 55 and its measured current value is supplied, as a sensor output, from the PM sensor 5 to the ECU 6. The current value outputted by the PM sensor 5 is an amount that is correlated with an attached amount of PM attached on the insulator 50 (and an amount of PM that flows through the exhaust pipe 4). The DC power supply 54 may be a battery of the vehicle.
A heater 53 is located on the opposite side of the insulator 50 with respect to the electrodes 51 and 52. The heater 53 may be, for example, a metal wire (conductor wire). Under the control of the ECU 6, current is passed through the heater 53 to raise the temperature of the heater 53 with its electrical resistance. Thus, the PM accumulated on the surface of the insulator 50 is burned and removed. As a result, the PM sensor 5 is regenerated.
The ECU 6 detects a voltage value and current value of current passing through the heater 53 to obtain an electric resistance of the heater 53 through a division calculation based on the detected voltage value and current value. As is well known, the electrical resistance changes depending on temperature. Thus, as shown in an example of
In the above configuration, the detection system 1 according to the present embodiment performs a control for a completion of a regeneration process of the PM sensor 5 and a target temperature during the regeneration. Its procedure of the detection system 1 is shown in a flowchart of
In the process of
Then, at step S15, the ECU 6 calculates a length of the regeneration period (burning and removal period). An example of its concrete calculation method is shown in
Then, at step S30, the ECU 6 calculates a target temperature of the electrode portion during a period of burning and removal of PM. This calculation process is performed based on, for example,
Then, at step S40, the ECU 6 detects an electrode temperature. Here, the temperature of the heater 53 may be regarded as the electrode temperature. The temperature of the heater 53 is calculated based on the electric resistance of the heater 53 calculated as mentioned above and the property of
Then, at step S70, the ECU 6 determines whether or not the regeneration process of the PM sensor 5 (the burning and removal of PM attaching to the PM sensor 5) is completed. As a result, if the regeneration process is completed (YES in step S70), the process of
The above is the first embodiment. As mentioned above, according to the first embodiment, the length of the regeneration period (step S15) and the target temperature (step S30) is set before the start of the regeneration process of the PM sensor 5. Here, as the attached amount of PM just before the start of the regeneration process becomes larger, the length of the regeneration period becomes longer, thereby being able to avoid the situation where a part of PM remains after burning. As the attached amount of PM just before the start of the regeneration process becomes larger, the target temperature becomes lower, thereby being able to avoid the excess burning and to achieve quick burning.
Next, a second embodiment of the present invention is described. In the second embodiment, while the regeneration process is performed, the attached amount of the remaining PM in the PM sensor is calculated, the target electrode temperature is adjusted based on the attached amount of the remaining PM during the regeneration, and the regeneration period is also adjusted based on the electrode temperature during the regeneration.
The configuration of
At step S20, the ECU 6 calculates the attached amount of PM based on the detection value of the PM sensor 5 just before the start of the regeneration process. In order to perform the process, a map, which shows a relationship between the output value of the PM sensor 5 and the attached amount of PM in the insulator 50, may be stored in advance in the memory 60 and be used in step S20.
At step S30 of
At step S60, the ECU 6 calculates the burning and removal period (the regeneration period) based on the electrode temperature obtained in step S40. A concrete calculation method is performed based on
Subsequently, at step S65, the ECU 6 calculates the attached amount of the remaining PM during the burning. A concrete calculation in step S65 is performed by using a method based on e.g.,
Specifically, in the process of
Accordingly, the current value of the PM sensor 5 during the regeneration process of the PM sensor 5 does not always reflect the attached amount of PM with maximum accuracy, and then it is desirable to correct the output value of the PM sensor 5 so as to eliminate (remove) the effect of a change in the electric resistance due to temperature. At step S651, the ECU 6 performs such a correction. For example, a map that shows a relationship between a temperature and a correction coefficient may be stored in advance in the memory 60, and then, at step S651, the ECU 6 may obtain the correction coefficient based on this map and the electrode temperature obtained in step S40 and correct the output value of the PM sensor 5 based on the correction coefficient, e.g., multiply the output value of the PM sensor 5 by the correction coefficient.
Subsequently, at step S652, the ECU 6 calculates the attached amount of the remaining PM of the PM sensor 5 based on the output value corrected in step S651. This calculation is performed based on the same map as mentioned above. The above is an example of the calculation process in step S65 based on
Next, the calculation method of the attached amount of PM based on
As shown in
Subsequently, the ECU 6 subtracts a burned amount corresponding to the burning speed calculated in step S653 from the attached amount of PM in the PM sensor 5 just before the start of the regeneration process (burning and removal process) of the PM sensor 5.
The process of
The above is the second embodiment. As mentioned above, according to the second embodiment, the length of the regeneration period (step S60) and the target temperature (step S30) are adjusted during the regeneration process of the PM sensor 5. Here, as the attached amount of the remaining PM during the regeneration process becomes larger (or smaller), the target temperature becomes lower (or higher), thereby being able to avoid the excess burning and the situation where a part of PM remains after burning. As the electrode temperature during the regeneration process becomes lower (or higher), the regeneration period becomes longer (or shorter), thereby being able to also avoid the excess burning and the situation where a part of PM remains after burning.
Next, a third embodiment of the present invention is described. In the third embodiment, the regeneration period is not calculated as the first and second embodiments, but the attached amount of the remaining PM in the PM sensor 5 during the regeneration process of the PM sensor 5 is calculated, and, if the attached amount of the remaining PM becomes sufficiently small, the regeneration process is completed. The configuration of
In the third embodiment, processes in steps of a flowchart shown in
At step S80, the ECU 80 judges whether or not the attached amount of the remaining PM calculated in step S65 is a predetermined value or less. As a result, if the attached amount of the remaining PM is a predetermined value or less (YES in step S80), the ECU 6 judges a completion of the regeneration and completes the process of
The above is the third embodiment. As mentioned above, according to the third embodiment, the attached amount of the remaining PM is calculated during the regeneration process of the PM sensor 5, and then, if the attached amount is the predetermined value or less, the generation process is completed. Due to this, when PM attaching to the insulator 50 is sufficiently burned, the regeneration process can be completed immediately. Accordingly, the regeneration process can be completed at the most appropriate time.
Next, a fourth embodiment of the present invention is described. In the fourth embodiment, a process, which adjusts the regeneration period (burning and removal period) based on an exhaust gas temperature and an exhaust gas flow rate, is added. The configuration of
In the fourth embodiment, processes in steps of a flowchart shown in
At step S16, the ECU 6 detects an exhaust gas temperature. This exhaust gas temperature may be detected through the exhaust gas temperature sensor 42. Then, at step S17, the ECU 6 detects an exhaust gas flow rate. Here, a detection value detected by the air flow meter 30 may be regarded as the exhaust gas flow rate, providing that a flow rate of the exhaust gas is approximately the same value as that of the intake air.
At step S60, the ECU 6 calculates the regeneration period (burning and removal period) based on the exhaust gas temperature detected in step S16 and the exhaust gas flow rate detected in step S17. In this case, for example, as mentioned in the above step S15, the ECU 6 may obtain a reference value of the regeneration period based on the output value of the PM sensor 5 just before the start of the regeneration process, and subsequently, corrects the reference value based on the exhaust gas temperature and the exhaust gas flow rate. This correction may be performed based on, e.g., the relationships shown in
The above is the fourth embodiment. As mentioned above, according to the fourth embodiment, the length of the regeneration period of the PM sensor 5 can be properly set based on the exhaust gas temperature and the exhaust gas flow rate. Even if there is a variation in the exhaust gas temperature and the exhaust gas flow rate, the regeneration process can be performed with avoiding the excess burning, the unnecessarily long length of the regeneration period, and the situation where a part of PM remains after burning, etc.
The embodiments described above are not limited to the above description, and may be modified as appropriate within a scope not departing from the spirit of the invention. For example, the above elements using information of the exhaust gas temperature and the exhaust gas flow rate in the fourth embodiment may be incorporated in the second and third embodiments. If the elements are incorporated in the second embodiment, steps S16 and S17 may be added before step S30 of
If these elements are incorporated in the third embodiment, steps S16 and S17 may be added in front of step S30 of
The method of calculating the exhaust gas flow rate (flow speed) in the above step S17 may be performed as follows. Specifically, in consideration of quantity of injection in a cylinder of the engine 2, a mass flow rate per unit time of the intake air measured by the air flow meter 30 is converted into a volume flow rate of the exhaust gas. For example, the volume flow rate is calculated using the following Formula (E1).
V(m3/sec)=[[G(g/sec)/28.8 (g/mol)]×22.4×10−3(m3/mol)+[Q(cc/sec)/207.3 (g/mol)×0.84 (g/cc)×6.75]×22.4×10−3(m3/mol)]×[Teg(K)/273(K)]×[P0(kPa)/[P0(kPa)+dP(kPa)]] (E1)
In Formula (E1), “V(m3/sec)” indicates a volume flow rate of the exhaust gas flowing through the exhaust pipe 4, “G(g/sec)” indicates a mass flow rate per unit time of intake air, “Teg(K)” indicates an exhaust gas temperature, “P0(kPa)” indicates an atmospheric pressure, “dP(kPa)” indicates a DPF pressure difference, and “Q(cc/sec)” indicates a fuel injection quantity per unit time. Further, “G” and “Teg” may indicate a measurement value of the air flow meter 30 and a measurement value of the exhaust gas temperature sensor 42, respectively, and “Q” may indicate an instruction value of the quantity of injection for the injector 20.
In the right-hand side of Formula (E1), the first term indicates a mass flow rate of intake air converted into a volume flow rate, and the second term indicates an increase that is a difference in the amount between the intake air and the exhaust gas after combustion of the injected fuel. In the second term, “0.84 (g/cc)” indicates a typical liquid density of light oil. The numeral “22.4×10−3 (m3/mol)” indicates a volume per 1 mol of an ideal gas at 0 degree centigrade and 1 atmosphere. Also, the numeral “6.75” indicates an increase rate in molar number of the exhaust gas for a fuel injection quantity of 1 mol.
The increase rate (6.75) is obtained as follows. Specifically, the composition of light oil is typically expressed by C15H27.3 (molecular weight: 207.3), and thus combustion is expressed by the following Reaction Formula (E2).
C15H27.3+21.75O2→15CO2+13.5H2O (E2)
Accordingly, the exhaust gas has a molar number which is 6.75 (=(15+13.5)−21.75) times larger than the fuel injection quantity of 1 mol.
Fuel is injected with injection intervals predetermined by the ECU 6 to achieve intermittent injection. The fuel injection quantity “Q” in Formula (E1) indicates an average fuel injection quantity taking into account not only the injecting period but also the non-injecting period.
The volume flow rate of the exhaust gas flowing through the exhaust pipe 4 may be calculated by the following Formula (E3).
V(m3/sec)=[[G(g/sec)/28.8 (g/mol)]×22.4×10−3(m3/mol)+[Q(cc/sec)/207.3 (g/mol)×0.84 (g/cc)×6.75]×22.4×10−3(m3/mol)]×[Teg(K)/273(K)]×[P0(kPa)/[P0(kPa)+dP(kPa)]] (E3)
The volume flow rate calculated by Formula (E3) corresponds to the exhaust gas flow speed at the upstream of the DPF 40. In Formula (E3), “P0(kPa)” indicates an atmospheric pressure and “dP(kPa)” indicates a DPF pressure difference. For example, the DPF pressure difference may be measured by providing the differential-pressure meter 41.
The PM sensor 5 used in the above embodiments for outputting a current value may be replaced by a PM sensor that includes a shunt resistor and outputs a voltage value. Any sensor may be used, if the sensor is able to output a value correlated to the PM amount in an exhaust pipe.
In the embodiments described above, the PM sensor 5 and the insulator 50 correspond to the detection unit and the attachment element, respectively. The ECU 6, which includes the memory 60 and performs processes in steps of
The present invention may be embodied in several other forms without departing from the spirit thereof. The embodiments and modifications described so far are therefore intended to be only illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them. All changes that fall within the metes and bounds of the claims, or equivalents of such metes and bounds, are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2011-012689 | Jan 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4656832 | Yukihisa et al. | Apr 1987 | A |
6973778 | Kondou et al. | Dec 2005 | B2 |
7146805 | Otake et al. | Dec 2006 | B2 |
7174706 | Kuboshima et al. | Feb 2007 | B2 |
7243491 | Okugawa et al. | Jul 2007 | B2 |
8151559 | Okugawa et al. | Apr 2012 | B2 |
20040144087 | Kondou et al. | Jul 2004 | A1 |
20040226288 | Okugawa et al. | Nov 2004 | A1 |
20050056009 | Otake et al. | Mar 2005 | A1 |
20080105567 | Okayama et al. | May 2008 | A1 |
20100312488 | Diehl et al. | Dec 2010 | A1 |
20110094210 | Suzuki et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
S59-060018 | Apr 1984 | JP |
S62-035252 | Feb 1987 | JP |
7-034858 | Feb 1995 | JP |
7034858 | Feb 1995 | JP |
2005-090359 | Apr 2005 | JP |
2005-240672 | Sep 2005 | JP |
2006-266961 | Oct 2006 | JP |
2006266961 | Oct 2006 | JP |
2009-002308 | Jan 2009 | JP |
2009-144512 | Jul 2009 | JP |
2009-293466 | Dec 2009 | JP |
2010-151553 | Jul 2010 | JP |
Entry |
---|
Office Action (2 pages) dated Jan. 31, 2013, issued in corresponding Japanese Application No. 2011-012689 and English translation (3 pages). |
Number | Date | Country | |
---|---|---|---|
20120186230 A1 | Jul 2012 | US |