Detection meter and mode of operation

Information

  • Patent Grant
  • 11399744
  • Patent Number
    11,399,744
  • Date Filed
    Thursday, April 27, 2017
    7 years ago
  • Date Issued
    Tuesday, August 2, 2022
    2 years ago
Abstract
A method for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid by using a device comprising at least one analyte quantification member and a sensor associated therewith, the method includes: applying a first sample to the analyte quantification member; and detecting the presence or absence of an adequate sample volume; wherein upon detection of the absence of an adequate sample volume, initiating a finite timed period, and signaling the user to introduce a second sample of body fluid to the analyte quantification member. Associated arrangements and devices are also disclosed.
Description
FIELD

The present invention relates to devices, arrangements and methods involving measurements of the presence or concentration of an analyte contained in a sample of body fluid.


BACKGROUND

In this specification where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge, or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which this specification is concerned.


According to the American Diabetes Association, diabetes is the fifth-deadliest disease in the United States. Since 1987 the death rate due to diabetes has increased by 45 percent. There are an estimated 20.8 million children and adults in the United States, or 7% of the population, who have diabetes. The total annual economic cost of diabetes in 2007 was estimated to be $174 billion. This is an increase of $42 billion since 2002. This 32% increase means the dollar amount has risen over $8 billion each year.


A critical component in managing diabetes is frequent blood glucose monitoring. Currently, a number of systems exist for self-monitoring by the patient. Most fluid analysis systems, such as systems for analyzing a sample of blood for glucose content, comprise multiple separate components such as separate lancing, transport, and quantification portions. These systems are bulky, and often confusing and complicated for the user.


As a result, certain efforts have been made to develop an “integrated device” that combines the steps and mechanisms for acquiring a sample body fluid, transporting the body fluid to a measurement device, and quantifying the level of analyte contained in the sample body fluid all in a single device. Examples of such devices are illustrated in U.S. Pat. Nos. 6,540,675 and 7,004,928. Although such devices are designed to reliably obtain an adequate sample volume from the user, occasionally, for a number of different reasons, the device will be unable to successfully collect and transport an adequate sample volume for analysis on a first attempt. Devices such as those described above include a skin-penetration member, such as a needle which is driven into the surface of the skin of the user. Once the skin-penetration member has been triggered or activated, such devices typically lack the ability to be “re-cocked” so that the same skin-penetration member can be used again to pierce the surface of the skin. When an inadequate sample volume is collected and transported as a result of the initial wound creation, that particular test cannot proceed. Thus, the test is “wasted.” The user must perform a new test using a fresh skin-penetration member and quantification member. This can increase the costs to the user associated with monitoring the analyte or glucose levels. Moreover, the inability to salvage a successful test from a single wound means that the user will often create a separate wound at a new sampling site, or be forced to cause further damage to the existing wound in order to collect and transport an adequate sample volume for analysis. This obviously increases the pain and frustration experienced by the user, which is counterproductive to the goal of encouraging the user to frequently and systematically monitor their analyte or glucose levels.


Therefore, there is a need in the art for providing body fluid sampling and analysis techniques and devices which offer the user greater flexibility in the collection of an adequate sample volume to present to the device for analysis.


SUMMARY

According to the present invention, there are provided constructions, arrangements and techniques that may address one or more of the above-mentioned objectives. However, the present invention is not limited to the context of blood sampling performed for the purposes of monitoring glucose concentration. Numerous alternative applications or uses for the concepts described herein are contemplated.


According to certain aspects of the present invention, there are provided devices, constructions, arrangements and techniques that may optionally provide one or more of the following benefits or advantages: notifying the user that an inadequate sample volume has been collected or transported, and providing the user with an opportunity to re-apply a sample of body fluid in order to provide the necessary sample volume for analysis.


As used herein “digital” means fingers or toes, and encompasses lancing sites on the dorsal or palm side of the distal finger tips.


As used herein, “body fluid” encompasses whole blood, intestinal fluid, and mixtures thereof, as well as urine, saliva and other fluids contained in the body.


As used herein “integrated device” or “integrated meter” means a device or meter that includes all components necessary to perform sampling of body fluid, transport of body fluid, quantification of an analyte, and display of the amount of analyte contained in the sample of body fluid.


It is to be understood that reference herein to first, second, third and fourth components (etc.) does not limit the present invention to embodiments where each of these components is physically separable from one another. For example, a single physical element of the invention may perform the functions of more than one of the claimed first, second, third or fourth components. Conversely, a plurality of separate physical elements working together may perform the functions of one of the claimed first, second, third or fourth components. Similarly, reference to first, second (etc.) method steps does not limit the invention to only separate steps. According to the invention, a single method step may satisfy multiple steps described herein. Conversely, a plurality of method steps could, in combination, constitute a single method step recited herein. In addition, the steps of the method are not necessarily limited to the order in which they are described or claimed herein. The term “and” is generally intended to include the alternative of the terms appearing on either side thereof, and does not generally require the presence of both.


According to one aspect, the present invention is directed to a method of performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid by using a device comprising at least one analyte quantification member and a sensor associated therewith, the method comprising: applying a first sample to the analyte quantification member; detecting the presence or absence of an adequate sample volume; wherein upon detection of the absence of an adequate sample volume, initiating a finite timed period, and signaling the user to introduce a second sample of body fluid to the analyte quantification member.


According to another aspect, the present invention is directed to a device for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid, the device comprising: at least one analyte quantification member; at least one passageway in fluid communication with the at least one analyte quantification member; a sensor constructed and arranged to detect the presence or absence of an adequate sample volume applied to the at least one analyte quantification member; and a controller in signal communication with the sensor, the controller is configured and arranged such that upon detection of the absence of an adequate sample volume, the controller initiates a finite timed period and signals the user to introduce another sample of body fluid into the at least one passageway.


A device for collecting a sample of body fluid, the device comprising: a skin interface member and a skin penetration member, wherein at least one of the skin interface member and the skin penetration member comprises a guide element configured to direct the flow of body fluid in a desired direction toward a desired location.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The following description of preferred embodiments can be read in connection with the accompanying drawings in which like numerals designate like elements and in which:



FIG. 1 is a flowchart illustrating certain methods performed according to the principles of the present invention.



FIG. 2 is a front perspective view of a device formed according to other aspects of the present invention.



FIG. 3 is a cut away side view of the device of FIG. 2.



FIG. 4 is a partial sectional view of an alternative embodiment of the present invention.



FIG. 5 is a side view of an additional embodiment of the present invention.



FIG. 6 is a partial sectional view of a further embodiment of the present invention.



FIG. 7 is a partial sectional view of still another embodiment of the present invention.



FIG. 8 is a partial sectional view of an arrangement formed according to a further aspect of the present invention



FIG. 9 is a partial sectional view of an arrangement formed according to a further alternative embodiment of the present invention.



FIG. 10 is a top perspective view of the arrangement of FIG. 9.





DETAILED DESCRIPTION

According to a first aspect of the present invention, there are provided techniques for performing an assay to determine the presence and/or concentration of an analyte contained in a sample of body fluid. For example, according to the present invention, the techniques described herein can be used to analyze a sample of body fluid to quantify the amount of an analyte (e.g., glucose, bilirubin, alcohol, controlled substances, toxins, hormones, proteins, etc.) contained therein.


Exemplary methods performed according to the principles of the present invention are illustrated by the flowchart appearing in FIG. 1. The method begins with the production of a sample of body fluid. The manner in which the sample of body fluid is produced or collected is not critical to the practice of the techniques of the present invention. For example, in a situation where the methods or techniques of the present invention are practiced in the context of patient self-monitoring of blood glucose levels, or taking a blood glucose level measurements in a clinical setting, a small volume of blood can be produced by piercing the skin to create a wound at a sampling site from which the body fluid can be expressed. The sampling site that is chosen may include a digital skin surface, or an alternative sampling site such as the forearms, thighs, and the like. Thus, as indicated by the broken-line process box appearing in FIG. 1, the step of piercing the skin is optional within the context of the methods and techniques of the present invention. When practiced, the skin can be pierced by any suitable device or technique. Suitable devices and techniques include lancets, hollow needles, a burst of fluid pressure, concentrated energy (e.g., laser), and the like.


Once a sample of body fluid has been produced, it is then applied to at least one analyte quantification member. Any suitable form of analyte quantification member may be utilized. Thus, for example, the analyte quantification member can be either electrochemical or photometric in nature. According to one particular illustrative, non-limiting embodiment, the least one analyte quantification member may comprise an assay pad containing a chemical reagent which is formulated such that a color change is produced upon reaction with a target analyte, as known per se to those skilled in the art.


At least one sensor is utilized to for purpose of detecting the presence or absence of an adequate sample volume. Any suitable sensor construction or arrangement may be utilized to detect, calculate and/or estimate sample volume. Thus, for example, the sensor may be either electrochemical or photometric in nature. The sensor may be separate and not otherwise associated with the least one analyte quantification member. According to one illustrative, non-limiting example, the sensor may comprise a flow sensor which detects, and possibly quantifies, the flow of body fluid to the least one analyte quantification member. Alternatively, the least one sensor may comprise an electrochemical or optical sensor that interrogates the at least one analyte quantification member to detect the presence of the sample of body fluid, and to calculate and/or estimate the volume of the sample. According to one non-limiting example, when the at least one analyte quantification member comprises an assay pad containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor can be used to interrogate the at least one analyte quantification member and detect this color change in those areas of the assay pad which have been contacted by the body fluid sample containing the target analyte. Examples of suitable sensors which can be utilized in this manner include, but are not limited to, CCD and CMOS type sensors. The sensor can also determine or estimate the area of the assay pad which has changed color due to contact with the sample of body fluid. This area can then be used by supporting electronics to calculate and/or estimate the volume of body fluid applied to the at least one analyte quantification member. A detailed explanation of such a calculation or estimation is contained in U.S. Pat. No. 7,052,652, the entire contents of which are incorporated herein by reference.


If the sensor determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within an acceptable time frame, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. Optionally, the user may be signaled by the device or meter that an adequate volume of sample has been detected. Any suitable audible and/or visual signal may be generated and used for this purpose. Thus, for example, a message containing alphanumeric characters and/or symbols can be generated on a display. Alternatively, a “green light” or other visual cue may be generated by any portion of a meter or device. In addition, an audible signal, such as a spoken message or audible cue may be generated instead of, or in addition to, the above mentioned visual signal. Again, any suitable technique can be utilized to detect the analyte and/or calculate its concentration. Thus, for example, both electrochemical and photometric techniques can be utilized. According to one non-limiting example, when at least one analyte quantification member comprises an assay pad containing a chemical reagent which produces a color change upon reaction with the target analyte, an optical sensor can be utilized to interrogate the at least one analyte quantification member, subsequent to the detection of an adequate sample volume, to detect to change in color produced by reaction between the target analyte and the chemical reagent. This change in color can then be correlated with a particular analyte concentration. This type of photometric analysis is known per se to those skilled in the art. Once a calculation of the amount of target analyte contained in the sample of body fluid has been performed, the results of the calculation can then be displayed for the user. Any suitable arrangement of conventional electronics and/or software components, which may include a controller, central processing unit (CPU), memory components, electrical connections, and the like, can be utilized in conjunction with the above-mentioned sensor and at least one analyte quantification member to perform the necessary calculations, and generate visual and/or audible signals.


If the sensor determines that an inadequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned time frame, according to the present invention steps are then taken in an attempt to salvage the assay. A second finite time period can be initiated which allows the user time to take additional steps to supply an adequate volume of body fluid. This second finite time period may comprise any suitable amount of time. According to illustrative non-limiting examples, the second finite time period can be less than one minute, or 45 seconds or less. The user may also be provided with a visual and/or audible signal to indicate that additional steps are necessary in order to apply an adequate volume of body fluid to perform the assay. This signaling may take place prior to the start of the finite time period, concurrently with the start of the finite time period, or subsequent to the start of the finite time period. Any suitable visual and/or audible signal may be utilized, as discussed above.


In response to receiving the signal to take additional steps to produce an adequate sample of body fluid, and present it to the least one analyte quantification member, any additional steps which could produce such additional sample volume may be undertaken. According to one non-limiting example, when the sample of body fluid has been produced by piercing the skin to create a wound from which body fluid can be expressed, the additional steps taken to increase the volume of the sample body fluid may include having the user apply a manual “milking” action in the vicinity of the wound. This is achieved by alternately squeezing and releasing the skin in the vicinity of the wound to express additional body fluid therefrom. This technique is well-known by people who have diabetes and regularly monitor their blood glucose levels, and is often successful in expressing a sufficient quantity of body fluid in order to perform an assay to determine blood glucose concentration.


Alternatively, some techniques and devices for producing a sample of body fluid by piercing the skin utilize some form of catalyst to increase the amount of body fluid expressed from the wound created by piercing the skin. Suitable catalysts include heat, pressure, vacuum, vibration, and topical drugs. These catalysts may be applied before, during, or after piercing the skin, or a combination of these times. According to the present invention, if an inadequate quantity of body fluid is produced after piercing the skin, upon receiving the above-mentioned signal that an inadequate sample body fluid has been detected, the user may then be instructed, or decide on their own, to administer a catalyst in the vicinity of the wound in an attempt to increase the amount of body fluid expressed therefrom, regardless of whether or not a catalyst was utilized in connection with the initial wound creation and body fluid sample extraction. Any suitable arrangement of conventional electronics and/or software components, which may include a controller, central processing unit (CPU), memory components, electrical connections, display components, and the like, can be utilized to generate visual and/or audible signals, which may include specific instructions with respect to the reapplication of a catalyst. It is comprehended within the scope of the present invention that the user may make one, or multiple attempts, to produce an adequate volume of body fluid within the second predetermined time period. If more than one attempt is made, the same technique (e.g., milking or application of a catalyst) can be repeated. Alternatively, the multiple attempts can comprise a combination of different techniques for expressing an adequate sample volume. By way of nonlimiting example, a user could attempt to milk additional body fluid from the wound one or more times, and if unsuccessful, then apply a catalyst to the wound site one or more times, all within the predetermined second time period. This technique or functionality is represented in the flow diagram appearing in FIG. 1. It should be understood that any of the techniques or methods described herein may be practiced so as to include this technique or functionality. Similarly, any device or arrangement described herein may also be constructed, or utilized, in a manner consistent with this technique or functionality.


If the sensor determines that an inadequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned second finite time period, the assay may be terminated. An appropriate signal may be generated to indicate to the user that the assay has been terminated, or the testing event has failed.


If the sensor determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned second time period, the assay can then continue. Thus, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. Again, any suitable technique can be utilized to detect the analyte and/or calculate its concentration. Thus, for example, both electrochemical and photometric techniques can be utilized, such as those non-limiting examples already discussed above. Once the analyte presence and/or concentration has been calculated, the results may be presented to the user by one or more of visual and audible signals.


Since body fluid such as blood may naturally attempt to coagulate upon exposure to the environment, it may be advantageous to take some measures which will permit the continued flow of body fluid after a certain period of time has elapsed. Thus, for example, a sample of body fluid may be applied to the at least one analyte quantification member which proves to have an inadequate volume. Upon detection of this inadequate volume, and with the optional signaling to the user of this condition, the additional steps discussed above may be taken in order to attempt to salvage the test. As mentioned above, these additional steps may take some period of time to complete. During the period of time which is elapsed since the first application of body fluid, the above-mentioned coagulation effect may impede or completely block the flow of additional sample which is subsequently applied. Therefore, according to the principles of the present invention, steps may be taken to prevent coagulation of the body fluid. One illustrative, non-limiting example would be to apply an anticoagulant material, at least partially, to one or more components or members within which the body fluid comes into contact. Examples of suitable anticoagulant materials may include, but are not limited to, aspirin, heparin and Coumadin®.


According to further aspects of the present invention, there are provided arrangements and/or devices which are constructed and arranged to have a more flexible mode of operation and that may achieve one or more of the advantages associated with the principles of the present invention. It is to be understood that any of the arrangements and/or devices described herein may be utilized to practice the techniques or methods of the present invention which have been previously described.


One embodiment of an arrangement 10 of the type described above may be in the form of a device, as illustrated in FIGS. 2-3. As illustrated therein, the arrangement 10 may optionally be in the form of an integrated meter or device 11. It should be understood that any of the methods, arrangements and devices described herein may be practiced with an integrated meter, which may have one or more of the features of the integrated device 11 of the illustrated embodiment. However, it should be made clear that the present invention is necessarily not so limited. The methods, arrangements and devices of the present invention are applicable to a number of different devices and systems, such as simple lancing devices, meters that lack any sample creation mechanisms, multiple component systems, and the like. Similarly, the arrangements and devices described herein can be constructed and arranged to function in accordance with the methods of the present invention, but are not necessarily so limited.


The methods, arrangements and devices described herein may be used at, or applied to, a skin surface of a user at a suitable sampling site. One suitable sampling site is on a digit D. However, the methods, arrangements and devices are not necessarily so limited. For example, the methods, arrangements and devices described herein may be used or applied to any skin surface at any suitable sampling site which may include alternative sampling sites such as the forearm, thigh, etc.


According to the embodiment illustrated in FIGS. 2-3, the arrangement 10 or meter 11 includes a housing 12. The housing 12 may have any suitable shape or configuration, and is not limited to the shape and configuration illustrated. For example, the housing 12 be contoured such that it is easily grasped by the hand of the user. The housing 12 can be constructed of any suitable material. For example, the housing 12 may be constructed of a polymeric or metallic material. The housing 12 may comprise an opening 14 disposed therein. A skin interface member 16 may be disposed in the opening 14 and attached to the housing 12. The skin interface member 16 can be provided with any suitable construction, or formed from any suitable materials. For example, the skin interface member can be formed from an elastomer, silicone rubber, soft plastic, or combination of materials with different properties. A number of alternative skin interface member constructions are contemplated, as will be further described herein.


The arrangement 10 or device 11 may further optionally include a catalyst to assist in the sample acquisition process by enhancing or facilitating perfusion of body fluid at a sampling site. At least one of several catalysts may be utilized or included in the arrangement of the present invention. Possible catalysts include, heat, pressure, vacuum, vibration, and topical drugs (which induce vasodilatation and increases the blood or body fluid available at the lancing site). These catalysts may be applied before, during, after piercing of the skin, or in a combination with some or all three times, to facilitate expression of sufficient quantity of body fluid BF for determination of the concentration of an analyte (e.g., glucose) contained therein. According to the principles of the present invention, one or more of the above-described catalysts can be used in combination with each other, either concurrently or sequentially.


According to certain embodiments, a light vacuum (e.g., 3-8 in. Hg) is applied to the surface of the skin at the sampling site via opening 14, either before, during, and/or after piercing the skin. Several embodiments for applying vacuum to the wound site are contemplated. One embodiment uses a pump 18 to apply vacuum to the area of the skin via the opening 14. The pump 18 is in communication with the opening via any suitable mechanism, such as the illustrated fluid communication line 20. Alternative embodiments include using individually packaged vacuum chambers to apply vacuum, or using a syringe like mechanism to apply vacuum.


The arrangement 10 or device 11 may further comprise any suitable form of analyte quantification member 24. For example, the analyte quantification member 24 can be either electrochemical or photometric in nature. According to one particular illustrative, non-limiting embodiment, the least one analyte quantification member 24 may comprise an assay pad 26 containing a chemical reagent which is formulated such that the color changes produced upon reaction with a target analyte, as known per se to those skilled in the art. A sample of body fluid BF may be introduced to the analyte quantification member by any suitable construction or technique. For example, the sample of body fluid BF may be introduced via the opening 14 and/or passageway 22.


At least one sensor 28 may be provided in conjunction with the at least one analyte quantification member 24. Any suitable sensor 28 construction or arrangement may be provided to interrogate the at least one analyte quantification member 24. The sensor may be integrated with the analyte quantification member 24, or it may be separate and not otherwise associated therewith. For example, the analyte quantification member 24 can be analyzed by a sensor 28 that forms part of the arrangement 10 or device 11. Alternatively, the analyte quantification member 24 is removed or separate from the arrangement 10 or device 11, and inserted into an electrochemical or photometric meter.


The least one sensor 28 may comprise an electrochemical or optical sensor that interrogates the at least one analyte quantification member 24 to detect the presence of the sample of body fluid, and/or to calculate or estimate the volume of the sample. According to one non-limiting example, when the at least one analyte quantification member comprises an assay pad 26 containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor 28 can be used to interrogate the at least one analyte quantification member 24 and detect this color change in those areas of the assay pad 26 which have been contacted by the body fluid sample BF containing the target analyte. Examples of suitable optical sensors which can be utilized in this manner include, but are not limited to, CCD and CMOS type sensors. The sensor 28 can also determine or estimate the area of the assay pad which has changed color due to contact with the sample of body fluid. This area can then be used to calculate and/or estimate of the volume of body fluid applied to the at least one analyte quantification member. A detailed explanation of such a calculation or estimation is contained in U.S. Pat. No. 7,052,652, the entire contents of which are incorporated herein by reference.


The arrangement 10 or device 11 may further includes at least one skin-penetration member 30. The at least one skin-penetration member 30 can take any suitable form. For example, the at least one skin-penetration member can comprise a solid lancet or a hollow needle. Conventional arrangements often require separate mechanisms for drawing a sample of blood to the surface of the skin and for transporting the sample to a reaction chamber. The arrangements of the present invention can optionally include a skin-penetration member 30 in the form of a hollow needle having an inner lumen to both create a wound opening and transport the sample, thereby greatly simplifying and improving the effectiveness of the arrangement 10 or device 11.


According to one optional embodiment, the skin-penetration member(s) 30 can be in the form of a so-called “microneedle.” As the name implies, microneedles are characterizable by their relatively small outer diameters. For example, a microneedle, as the term is utilized herein, may encompass a skin-penetration member having an outside diameter which is on the order of 40-200 μm. When the microneedle is hollow and comprises an inner lumen, the inside diameter can vary. For example, having an inside diameter on the order of 25-160 μm. Needles are also characterizable in the art by reference to the “gage.” By way of illustration, and consistent with the above description, microneedles having a gage ranging from 26-36 are clearly comprehended by the present invention. Certain advantages may be gleaned from the use of such microneedles as the skin-penetration member. In particular, due to their small size, the size of the wound left upon entry into the skin is relatively small, thereby minimizing the pain associated with such needle insertions and allowing for a quicker healing process. However, the present invention is certainly not limited to the use of such microneedles. Thus, for example, according to one possible alternative embodiment, the skin penetration member(s) comprise hollow needles having a gage of about 20-25, or comprising hollow needles having an inner diameter of about 0.007 inches and an outer diameter of about 0.020 inches.


The at least one skin-penetration member 30 can be formed of any suitable material, such as metal, plastic, glass, etc. Optionally, the at least one skin penetration member can be in fluid communication with an analyte quantification member 24.


The at least one skin-penetration member 30, and/or the analyte quantification member 24 can be attached to an actuation element (not shown), such as a spring. The actuation element drives the at least one skin-penetration member 30 into the skin at the sampling site.


As further illustrated in FIGS. 2-3, the arrangement 10 or device 11 can comprise a plurality of skin penetration members 30 and/or analyte quantification members 24. The plurality of skin penetration members 30 and/or analyte quantification members 24 may optionally be mounted within a removable cartridge 32. Thus, the arrangement 10, particularly when in the form of an integrated device 11, is capable of performing a number of assays on collected body fluid BF samples in a fully self-contained a manner. After a number of assays have been performed which correspond to the number of skin penetration members 30 and analyte quantification members 24, the cartridge 32 can be removed, discarded, and replaced with a new cartridge.


According to certain embodiments of the present invention, the arrangement 10 can operate in an automatic or semi-automatic manner. For example, a user may place the skin interface member 16 over the surface of the skin and when the user is ready to produce a sample of body fluid and/or perform an assay, the user initiates the process by, for example, pressing a button 33, touch screen or other interface device. This can initiate a programmed sequence of events in the device which may include one or more of actuation of a catalyst, and driving the skin-penetration member 30 into the skin. At a predetermined time, the catalyst is deactivated. This mode of operation can be characterized as “semi-automatic” in that sequence of events must be manually initiated by the user.


According to one alternative, the mode of operation can be fully automatic. For example, the user places the skin interface member 16 over the skin at a suitable sampling site. The arrangement 10 or device 11 can be provided with one or more sensor 17 that detect and verify that the skin of the user is properly located over the opening 14 and ready for the sampling procedure to begin. The one or more sensor can comprise any suitable sensor, such as a capacitive touch sensor, a resistive touch sensor a dome switch, or a microswitch. Once this state has been sensed, the device automatically activates a programmed sequence of events in the device which may include one or more of activation of a catalyst, and driving the skin-penetration member 30 into the skin. At a subsequent predetermined time, the catalyst device 14 is deactivated. The catalyst device can be deactivated before, during or after the skin-penetration member is driven into the skin.


An arrangement 10 or device 11 formed according to the principles of the present invention may also include supporting electronics. Thus, for example, the arrangement 10 or device 11 may include a controller 34 which is in signal communication 36 with the sensor 28 and the optional pump 18. The controller 34 may include a central processing unit, memory, control logic (e.g., code), power supply, supporting electronics, and the like, as familiar per se to those skilled in the art. The controller 34 controls the operations of the arrangement 10 or device 11.


The controller 34, in conjunction with one or more of the features of the arrangement 10 or device 11 described herein, may be used to execute one or more of the steps of the methods described above in connection with certain aspects of the present invention. Exemplary body fluid analysis methods which may be performed in conjunction with the above-described arrangement 10 or device 11, but are not necessarily limited thereto, is described as follows.


The manner in which the sample of body fluid is produced or collected is not critical to the practice of the techniques of the present invention. For example, in a situation where the methods or techniques of the present invention are practiced in the context of patient self-monitoring of blood glucose levels, or taking a blood glucose level measurements in a clinical setting, a small volume of blood can be produced by piercing the skin to create a wound at a sampling site from which the body fluid can be expressed. The sampling site that is chosen may include a digital skin surface, or an alternative sampling site such as the forearms, thighs, and the like. Thus, when the arrangement 10 is implemented in the form of an optional integrated device (e.g., 11), the skin can be pierced by the at least one skin-penetration member 30 to create a wound in the surface of the skin from which a sample of body fluid BF can be expressed.


Once a sample of body fluid BF has been produced, it is then applied to at least one analyte quantification member 24 via the opening 14 and/or passageway 22. The sensor 28 may optionally be utilized to for purpose of detecting the presence or absence of an adequate sample volume. According to one non-limiting example, when the at least one analyte quantification member 24 comprises an assay pad 26 containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor can be used to interrogate the at least one analyte quantification member and detect this color change in those areas of the assay pad 26 which have been contacted by the body fluid sample BF containing the target analyte. This area can then be used by supporting electronics (e.g., controller 34, central processing unit, memory, control logic (e.g., code), power supply, etc.) to calculate and/or estimate of the volume of body fluid applied to the at least one analyte quantification member as previously described herein.


If the sensor 28 determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within an acceptable time frame, the controller 34 directs the assay to continue with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. When at least one analyte quantification member 24 comprises an assay pad 26 containing a chemical reagent which produces a color change upon reaction with the target analyte, the sensor 28 can be utilized to interrogate the at least one analyte quantification member 24, subsequent to the detection of an adequate sample volume, to detect the change in color produced by reaction between the target analyte and the chemical reagent. This change in color can then be correlated with a particular analyte concentration. This type of photometric analysis is known per se to those skilled in the art. Once a calculation of the amount of target analyte contained in the sample of body fluid has been performed, the results of the calculation can then be visually presented on a display 38, or audibly communicated via a speaker 42, for the user.


If, as a result of the interrogation by the sensor 28, it is determined that an inadequate volume of body fluid BF has been introduced to the least one analyte quantification member 24 within the above-mentioned time frame, according to the present invention steps are then taken in an attempt to salvage the assay. A second finite time period can be initiated by the controller 34 which allows the user time to take additional steps to apply an adequate volume of body fluid. This second finite time period may comprise any suitable amount of time. According to illustrative non-limiting examples, the second finite time period can be less than one minute, or 45 seconds or less. The controller 34 may also provide the user with a visual signal 40 on the display 38, and/or audible signal via speaker 42, to indicate that additional steps are necessary in order to apply an adequate volume of body fluid to perform the assay. This signaling may take place prior to the start of the finite time period, concurrently with the start of the finite time period, or subsequent to the start of the finite time period.


In response to receiving the signal to take additional steps to produce an adequate sample of body fluid, and present it to the at least one analyte quantification member 24, any additional steps which could produce such additional sample volume may be undertaken. According to one non-limiting example, when the sample of body fluid has been produced by piercing the skin to create a wound from which body fluid can be expressed, the additional steps taken to increase the volume of the sample body fluid may include having the user or apply a manual “milking” action in the vicinity of the wound. This is achieved by alternately squeezing and releasing the skin in the vicinity of the wound to express additional body fluid therefrom. This technique is well-known by people who have diabetes and regularly monitor their blood glucose levels, and is often successful in expressing a sufficient quantity of body fluid in order to perform an assay to determine blood glucose concentration. Once additional sample has been milked from the wound, the additional or “second” sample is applied to the analyte quantification member 24 via the opening 14 and/or passageway 22.


Alternatively, if an inadequate quantity of body fluid BF is produced after piercing the skin in conjunction with a first application of a catalyst, upon receiving the above-mentioned signal that an inadequate sample body fluid has been detected, the user may then be instructed via the aforementioned signaling, or decide on their own, to administer a catalyst of in the vicinity of the wound in an attempt to increase the amount of body fluid expressed therefrom regardless of whether a catalyst was used in conjunction with initial wound creation and body fluid sample extraction. Thus, for example, when a vacuum catalyst is utilized the user may be instructed, or decide on their own, to place the skin interface member 16 over the wound and reapply the vacuum catalyst. The catalyst can be applied in any suitable manner. Thus, after placing the skin interface member 16 over the wound, the user can initiate the catalyst by pressing a button 33, touchscreen or any other suitable interface device. Alternatively, the application of the catalyst may be automatically initiated through sensing that the skin is properly located over the skin interface member 16, as described above.


If the sensor 28 determines that an inadequate volume of body fluid BF has been introduced to the least one analyte quantification member 24 within the above-mentioned second finite time frame, the assay may be terminated. An appropriate signal may be generated on the display 38 or via the speaker 42 to indicate to the user that the assay has been terminated, or the testing event has failed.


If the sensor 28 determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member 24 within the above-mentioned second time frame, the assay can then continue. Thus, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid in the manner described above. Once the analyte presence and/or concentration has been calculated, the results may be presented to the user through one or more of visual and audible signals via the display 38 or speaker 42.


Since body fluid such as blood may naturally attempt to coagulate upon exposure to the environment, it may be advantageous to take some measures which will permit the continued flow of body fluid after a certain period of time has elapsed. Thus, according to one illustrative, non-limiting example an anticoagulant material may be applied, at least partially, to one or more of the opening 14, skin interface member 16, passageway 22, or any other components or members with which the body fluid comes into contact. Examples of suitable anticoagulant materials may include, but are not limited to, aspirin, heparin and Coumadin®. According to a further alternative embodiment, and additional agent or material may be applied to either the opening 14, skin interface member 16, passageway 22, or other components are members with which the body fluid comes into contact that improves the flow of body fluid. Such additional agents or materials include, for example, Silwet®. According to additional alternative embodiment, one or more of the above-mentioned parts or components of the arrangement 10 or device 11 can be coated with a combination of these two types of materials. According to one illustrative, non-limiting example, one or more of the above-mentioned parts or components are coated with a solution having a composition such as: 49.4 ml of sterile water+49.4 ml of sterile isopropyl alcohol+0.8 ml of Silwet™ L7600+0.46 grams of low molecular weight heparin.


Devices, arrangements and techniques according to additional optional embodiments are illustrated in FIGS. 4-10. It should be understood that the devices, arrangements and techniques of these additional alternative embodiments can be utilized in connection with the practice of any of the foregoing techniques or methods of the present invention. However, the present invention is not necessarily so limited. The devices, arrangements and techniques of these additional alternative embodiments can be utilized in connection with the practice of additional techniques or methods not described herein. Similarly, the devices, arrangements and techniques of the additional alternative embodiments of FIGS. 4-10 may possess any or all of the features and/or functionality of the previously described embodiments (e.g., FIGS. 2-3). However, these additional alternative embodiments are not so limited. The techniques, devices and arrangements depicted in FIGS. 4-10 may be successfully utilized in connection with other devices or arrangements not previously described herein. When the additional alternative embodiments depicted in FIGS. 4-10 possess features which are common to the previously described embodiments (e.g., FIGS. 2-3), the same reference numerals have been utilized to identify such common features. In the interest of conciseness, such common features may not be fully described in the following description of these additional alternative embodiments. The description of these common features contained in the embodiments depicted in FIGS. 4-10 are incorporated herein by reference to their previous description in connection with the previously-described embodiments.



FIG. 4 illustrates an arrangement 400 formed according to an optional alternative embodiment of the present invention. The arrangement 400 includes a slightly modified skin interface member 116. The skin interface member can be formed from any suitable material, such as an elastomer, silicone rubber, plastic, or combination of different materials. The skin interface member 116 may further comprise an optional rim-like formation 117. The rim-like formation 117 may provide the advantage of creating a ring of pressure along the surface of the skin applied thereto thereby facilitating the body fluid BF sample collection procedure. Regardless of whether the optional rim-like formation 117 is present, as illustrated in broken-line in FIG. 4, the skin has a tendency to sag and project downwardly into the opening our passageway 22 defined by the skin interface member 116. This sagging effect can be even more pronounced when, for example, a vacuum catalyst is applied during the course of the body fluid BF sample collection effort.



FIG. 4 depicts an attempt to apply a sample of body fluid BF to an analyte quantification member 24. The analyte quantification member 24 includes a hub 25, with a reagent pad 26 attached thereto. The skin-penetration member 30 is provided in the form of a hollow needle having an inner lumen 34. The inner lumen 34 is in fluid communication with the assay at 26. This fluid communication can be provided through a number of possible arrangements. Thus, an end of the skin-penetration member 30 can be mounted all the way through the hub so that it directly communicates with the reagent pad 26. Alternatively, an end of the skin-penetration member 30 can be mounted to the hub in a manner such that the end is based from the reagent pad 26, in which case the hub 25 may optionally be provided with a separate passage 36 communicating with the end of the skin-penetration member 30 and be at reagent pad 26.


As further illustrated in FIG. 4, and according to one alternative embodiment, once additional measures have been taken in order to obtain an additional volume of body fluid, possibly in response to an indication from a device or arrangement that an initial attempt failed to produce an adequate sample volume, the user places the skin into contact with the skin interface member 116 such that the wound created by the initial attempt is approximately located in the center of the opening defined by the skin penetration member 116. When so located, the arrangement 400 is constructed such that the end of the skin-penetration member having an opening defined by the end of the inner lumen 34 will be in close proximity to the wound, and the additional volume of body fluid BF being expressed therefrom can be brought into communication with said opening. Since the inner lumen 34 is in fluid communication with the analyte quantification member 24, including the reagent pad 26, the body fluid BF is transported to the reagent pad 26 via gravity, capillary effects, or combination of the two. As previously described herein, steps can then be taken to determine if the reapplication of body fluid BF has been successful in order to provide an adequate sample volume to conduct an assay.



FIG. 5 illustrates an arrangement 500 comprising a modified skin penetration member construction 130 designed to facilitate receiving body fluid BF applied thereto. As illustrated therein, the skin penetration member 130 is provided with an end 131 which is provided with a geometry which has been optimized to present a surface which is more likely to be successful in receiving a sample of body fluid BF applied thereto. The end 131 is not limited to the illustrated configuration, but instead may have any suitable geometric shape that increases the likelihood of capturing a drop of body fluid applied thereto. The skin penetration member 130 can be formed from any suitable material, such as those materials previously described herein in connection with the skin penetration member 30 of the previously described embodiments. Moreover, the skin penetration member 130 can have an inner lumen 34 provided with an optional body fluid BF flow enhancing feature 34c. The flow enhancing feature 34c can comprise a surface texturing or coating. When the flow enhancing feature 34c comprises a coating, it may optionally be in the form of an anticoagulant substance, such as those anticoagulant substances previously described herein. When the analyte quantification member 24 comprises a hub 25, the hub 25 can be provided with a separate passage 36 for fluid communication between the inner lumen 34 and the reagent pad 26. The passage 36 and a hub 25 may also comprise a body fluid BF flow enhancing feature 34c.


An arrangement 600 constructed according to a further alternative embodiment is depicted in FIG. 6. As illustrated therein, the skin interface member 116 is provided with a guide element 118 which is configured to promote the flow of body fluid in a desired direction, i.e. toward an open end of a hollow skin penetration member 30 defined by the end of an inner lumen 34. The guide element 118 can be formed from the same material as the rest of the skin interface member 116. Alternatively, the guide element 118 can be formed from a different material than at least part of the remainder of the skin interface member 116. Thus, for example, the guide element 118 can be formed from a polymer material which is softer and/or more flexible than the remainder of the skin interface member 116, or vice versa. The guide element 118 can be formed from, or coated with, a high visibility material thus facilitating application of a drop of body fluid BF thereto. For example, the material or coating can comprise a bright color, reflective substance, and/or fluorescent substance. Alternatively, or in addition thereto, and associated device or arrangement can include a source of light that illuminates the guide element 118. The guide element 118 can comprise an integral part of the skin interface member 116. Alternatively, the guide element 118 can comprise a separate part or component which is either permanently or really simply attached to a remaining portion of the skin interface member 116. The guide element 118 can have any suitable geometric configuration or shape. Thus, according to certain nonlimiting examples, the guide element 118 can have a conical, frustoconical, or concave dome-like shape. At least the guide element 118 of the skin interface number 116 may optionally be provided with one or more body fluid flow-enhancing features. Therefore, at least a portion of the guide element 118 can be provided with a suitable coating 120 that promotes the flow of body fluid BF in a desired direction, toward a desired location. Coating 120 can comprise a hydrophilic coating, a hydrophobic coating, an anticoagulant coating, or combinations thereof. Alternatively, or in addition thereto, the guide element 118 may comprise a surface texturing, such as one or more capillary grooves 122 that also serve to promote the flow of body fluid in a desired direction, toward a desired location. As illustrated in FIG. 6, the coating 120 and grooves 122 can be utilized in combination with one another. Alternatively, the guide element 118 may comprise either a coating 120 or grooves 122 alone. As evident from the arrangement 600 depicted in FIG. 6, the provision of the guide element 118 is beneficial in that it permits a user some latitude in terms of how precisely the wound needs to be located relative to the position of the skin penetration member 30. The guide element 118 is configured such that if the body fluid BF is introduced onto any portion thereof, its flow is directed toward the end of the lumen 34 of the skin penetration member 30. It should be understood that the presence of a hollow needle type skin penetration member 30 is optional. Thus, for example, the arrangement 600 may be configured such that the guide element 118 directs the flow of body fluid BF directly to an analyte quantification member in fluid flow communications therewith. According to a further example, the guide element 118 can direct the flow of body fluid BF to another member or element, such as a hollow tube or similar fluid conveying or receiving structure.



FIG. 7 illustrates a further alternative arrangement 700 formed according to a further optional embodiment of the present invention. The arrangement 700 is similar to the previously described arrangement 600, except that a guide element 124 is associated with a skin penetration member 30. The guide element 124 can have the same construction, functionality and features as the guide element 118 described above. The guide element 124 can be associated with the skin penetration member 30 in any suitable fashion. According to the illustrated example, the guide element 124 is associated with the skin penetration member 30 via a collar-like portion 126, which surrounds at least a portion of the outer periphery of the skin penetration member 30. The guide element 124 can be integrally formed with the collar-like portion 126. Alternatively, the guide element 124 can be separately formed and attached in a permanent or releasable manner to the collar-like portion 126. When the analyte quantification member 24 includes a hub 25, the collar-like portion 126 can be connected to the hub 25 in any suitable manner, such as adhesively secured thereto. Alternatively, the collar-like portion 126 and the hub 25 can be integrally formed together as a single piece of the same material, or co-molded together to form a unitary structure. The guide element 124 of the arrangement 700 may perform an additional function, namely, act as a stop or limit for the depth of penetration of the skin penetration member 30 into the skin at the site of the wound. As previously described herein, the skin penetration member 30 can be actuated or driven into the surface of the skin located within the passage 22 of the skin interface member 16, thereby creating the wound. As illustrated in FIG. 7, the guide element 124 projects outwardly and upwardly relative to the skin penetration member 30. Thus, the uppermost surface of the guide element 124 can be configured and dimensioned such that it makes a desired degree of contact with the skin of a user. This contact can serve to limit the depth by which the skin penetration member may extend into the surface of the skin of the user. As described above in connection with the arrangement 600, it should be understood that the presence of a hollow needle type skin penetration member 30 is optional. Thus, for example, the arrangement 700 may be configured such that the guide element 124 directs the flow of body fluid BF directly to an analyte quantification member in fluid flow communications therewith. According to a further example, the guide element 124 can direct the flow of body fluid BF to another member or element, such as a hollow tube or similar fluid conveying or receiving structure.



FIG. 8 illustrates an alternatively constructed skin penetration member/guide element construction. As illustrated therein, the guide element 124′ and the collar-like portion 126′ can be formed from separate materials having distinct properties. The guide element 124′ and the collar-like portion 126′ may be separately formed and permanently or releasable joined together, or co-molded together to form a unitary structure. Thus, for example, the guide element 124′ can be formed from a softer or more flexible material than the collar-like portion 126′. This construction may have the benefit of providing a more compliant guide element 124′ for easier interfacing with the user, while the more rigid collar-like portion 126′ provides for accurate location which is not easily misaligned.



FIGS. 9-10 are directed to yet another alternative arrangement 900 formed according to certain optional aspects of the present invention. The arrangement 900 has a construction similar to that of previously described arrangements 700, 800; however, according to the arrangement 900, both the skin interface member 116 and the skin penetration member 30 have guide elements 118, 124 associated therewith, respectively. The guide elements 118, 124 can have the same features, construction and functionality of the previously described embodiments. As described above in connection with the previous arrangements, it should be understood that the presence of a hollow needle type skin penetration member 30 is optional. Thus, for example, the arrangement 900 may be configured such that the guide elements 118, 124 direct the flow of body fluid BF directly to an analyte quantification member in fluid flow communications therewith. According to a further example, the guide elements 118, 124 can direct the flow of body fluid BF to another member or element, such as a hollow tube or similar fluid conveying or receiving structure.


Numbers expressing quantities of ingredients, constituents, reaction conditions, and so forth used in this specification are to be understood as being modified in all instances by the term “about.” Notwithstanding that the numerical ranges and parameters setting forth, the broad scope of the subject matter presented herein are approximations, the numerical values set forth are indicated as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective measurement techniques. None of the elements recited in the appended claims should be interpreted as invoking 35 U.S.C. § 112, ¶6, unless the term “means” is explicitly used.


Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A method of performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid, the method comprising: obtaining first body fluid sample from a wound with an analyte meter comprising at least one assay pad and a sensor associated therewith;detecting the absence of an adequate sample volume on the at least one assay pad during a first time period using the analyte meter; andupon detecting the absence of an adequate sample volume on the at least one assay pad, initiating a second time period and signaling the user to manually milk the wound and to introduce an additional body fluid sample to the analyte meter to increase the sample volume.
  • 2. The method of claim 1 wherein detecting the absence of an adequate sample volume on the at least one assay pad comprises interrogating the assay pad with the sensor during the first time period.
  • 3. The method of claim 2, further comprising detecting the absence of an adequate sample volume within the second time period and upon detecting the absence of an adequate sample volume within the second time period, signaling the user that the assay is being terminated.
  • 4. The method of claim 2, further comprising detecting an adequate sample volume within the second time period and upon detecting an adequate sample volume during the second time period, continuing with the assay.
  • 5. The method of claim 4, further comprising interrogating the assay pad subsequent to the second time period to ascertain the concentration of the analyte.
  • 6. The method of claim 1, wherein the analyte comprises glucose and the body fluid comprises blood.
  • 7. The method of claim 1, wherein the at least one assay pad containing a chemical reagent formulated to produce a color change upon reaction with the analyte.
  • 8. The method of claim 1, wherein the analyte meter comprises a plurality of assay pads.
  • 9. The method of claim 8, wherein the analyte meter comprises a removable cartridge containing the plurality of assay pads.
  • 10. The method of claim 7, wherein the sensor comprises an optical sensor constructed to produce signals indicative of the color change.
  • 11. The method of claim 1, wherein the second time period is less than 1 minute.
  • 12. The method of claim 11, wherein the second time period is 45 seconds or less.
  • 13. The method of claim 1, wherein the signaling comprises producing at least one of a visual signal and an audible signal.
  • 14. The method of claim 1, wherein the analyte meter further comprises at least one skin-penetration member, the method further comprising: piercing the skin of a user with the least one skin-penetration member thereby creating the wound.
  • 15. The method of claim 14, wherein the skin is pierced prior to detecting the absence of an adequate sample volume on the at least one assay pad during the first time period.
  • 16. The method of claim 1 further comprising, subsequent to signaling the user to manually milk the wound and to introduce an additional body fluid sample fluid, applying a catalyst to the skin in the vicinity of the wound.
  • 17. The method of claim 16, wherein the catalyst comprises a vacuum.
  • 18. The method of claim 14, further comprising applying a catalyst to the skin of the user prior to, during, or subsequent to piercing the skin with the at least one skin-penetration member.
  • 19. The method of claim 18, wherein the catalyst comprises a vacuum.
  • 20. The method of claim 1, further comprising providing the analyte meter with an anticoagulant material on at least portions thereof that normally contact the body fluid sample.
  • 21. A method of performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid, the method comprising: obtaining, via a skin-penetration member of an analyte meter, a first body fluid sample from a wound of a user;detecting, via a sensor of the analyte meter and during a first time period, an absence of an adequate sample volume on an assay pad of the analyte meter; andupon detecting the absence of the adequate sample volume on the assay pad of the analyte meter during the first time period, initiating a second time period and signaling the user to manually milk the wound and introduce additionally expressed body fluid sample to the analyte meter via the skin penetration member to increase sample volume obtained by the analyte meter.
  • 22. The method of claim 21, wherein detecting the absence of the adequate sample volume on the assay pad comprises interrogating the assay pad with the sensor of the analyte meter during the first time period.
  • 23. The method of claim 22, further comprising detecting an adequate sample volume within the second time period, and upon detecting the adequate sample volume during the second time period, continuing with the assay.
  • 24. The method of claim 21, wherein the assay pad contains a chemical reagent formulated to produce a color change upon reaction with the analyte.
  • 25. The method of claim 24, wherein the sensor of the analyte meter comprises an optical sensor constructed to produce signals indicative of the produced color change.
  • 26. The method of claim 21, further comprising piercing skin of the user with the skin-penetration member, thereby creating the wound.
  • 27. The method of claim 26, wherein the skin is pierced prior to detecting the absence of an adequate sample volume on the assay pad during the first time period.
  • 28. The method of claim 26, further comprising applying a catalyst to the skin of the user prior to, during, or subsequent to piercing the skin of the user with the skin-penetration member.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 12/457,331, filed Jun. 8, 2009, issued as U.S. Pat. No. 9,636,051 on May 2, 2017, the disclosure of which is hereby incorporated by reference in its entirety, and which claims priority to U.S. Patent Application No. 61/129,149, filed Jun. 6, 2008.

US Referenced Citations (792)
Number Name Date Kind
842690 Oswalt Jan 1907 A
D137874 Partridge May 1944 S
2749797 Harks Mar 1950 A
3092465 Adams, Jr. Jun 1963 A
3310002 Wilburn Mar 1967 A
3620209 Kravitz Nov 1971 A
3623475 Sanz et al. Nov 1971 A
3626929 Sanz et al. Dec 1971 A
3630957 Rey Dec 1971 A
D223165 Komendat Mar 1972 S
3723064 Liotta Mar 1973 A
3741197 Sanz et al. Jun 1973 A
3961898 Neeley et al. Jun 1976 A
3992158 Przybylowicz et al. Nov 1976 A
4014328 Cluff et al. Mar 1977 A
4042335 Clement Aug 1977 A
4057394 Genshaw Nov 1977 A
4109655 Chacornac Aug 1978 A
4250257 Lee et al. Feb 1981 A
4253083 Imamura Feb 1981 A
4254083 Columbus Mar 1981 A
4258001 Pierce et al. Mar 1981 A
4260257 Neeley et al. Apr 1981 A
4289459 Neeley et al. Sep 1981 A
4321397 Nix et al. Mar 1982 A
4350762 DeLuca et al. Sep 1982 A
4394512 Batz Jul 1983 A
4414975 Ryder et al. Nov 1983 A
4416279 Lindner et al. Nov 1983 A
4418037 Katsuyama et al. Nov 1983 A
4422941 Vaughan, Jr. et al. Dec 1983 A
4429700 Thees et al. Feb 1984 A
4627445 Garcia et al. Dec 1986 A
4637403 Garcia et al. Jan 1987 A
4637406 Guinn et al. Jan 1987 A
4653513 Dombrowski Mar 1987 A
4661319 Lape Apr 1987 A
4702261 Cornell et al. Oct 1987 A
4711250 Gilbaugh, Jr. et al. Dec 1987 A
4737458 Batz et al. Apr 1988 A
4747687 Hoppe et al. May 1988 A
4767415 Duffy Aug 1988 A
4774192 Terminiello et al. Sep 1988 A
4787398 Garcia et al. Nov 1988 A
4790979 Terminiello et al. Dec 1988 A
4794926 Munsch et al. Jan 1989 A
4815843 Tiefenthaler et al. Mar 1989 A
4829470 Wang May 1989 A
4844095 Chiodo et al. Jul 1989 A
4846785 Cassou et al. Jul 1989 A
4887306 Hwang et al. Dec 1989 A
4920977 Haynes May 1990 A
4929426 Bodai et al. May 1990 A
4930525 Palestrant Jun 1990 A
4935346 Phillips Jun 1990 A
4953552 De Marzo Sep 1990 A
4966646 Zdeblick Oct 1990 A
4983178 Schnell Jan 1991 A
4995402 Smith Feb 1991 A
5029583 Meserol Jul 1991 A
5035704 Lambert et al. Jul 1991 A
5037199 Hlousek Aug 1991 A
5049487 Phillips et al. Sep 1991 A
5050617 Columbus et al. Sep 1991 A
5054878 Gergely et al. Oct 1991 A
5059394 Phillips et al. Oct 1991 A
5077199 Basagni et al. Dec 1991 A
5094943 Siedel et al. Mar 1992 A
5110724 Hewett May 1992 A
5114350 Hewett May 1992 A
5116759 Klainer et al. May 1992 A
5131404 Neeley et al. Jul 1992 A
5141868 Shanks et al. Aug 1992 A
5145565 Kater et al. Sep 1992 A
5146437 Boucheron Sep 1992 A
5153416 Neeley Oct 1992 A
5164575 Neeley et al. Nov 1992 A
5166498 Neeley Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5176632 Bernardi Jan 1993 A
5179005 Phillips et al. Jan 1993 A
5183741 Arai et al. Feb 1993 A
5194393 Hugl et al. Mar 1993 A
5196302 Kidwell Mar 1993 A
5208163 Charlton et al. May 1993 A
5213966 Vuorinen et al. May 1993 A
5217480 Habar et al. Jun 1993 A
5218966 Yamasawa Jun 1993 A
5223219 Subramanian et al. Jun 1993 A
5228972 Osaka et al. Jul 1993 A
5234818 Zimmermann et al. Aug 1993 A
5241969 Carson et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
D341848 Bigelow et al. Nov 1993 S
5269800 Davis, Jr. Dec 1993 A
5275159 Griebel Jan 1994 A
5278079 Gubinski et al. Jan 1994 A
5279294 Anderson et al. Jan 1994 A
5288646 Lundsgaard et al. Feb 1994 A
5299571 Mastrototaro Apr 1994 A
5301686 Newman Apr 1994 A
5302513 Mike et al. Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5306623 Kiser et al. Apr 1994 A
5308767 Terashima May 1994 A
5314441 Cusack et al. May 1994 A
5320607 Ishibashi Jun 1994 A
5354537 Moreno Oct 1994 A
5360595 Bell et al. Nov 1994 A
5368047 Suzuki et al. Nov 1994 A
5383512 Jarvis Jan 1995 A
5390671 Lord et al. Feb 1995 A
5395388 Schraga Mar 1995 A
5399316 Yamada Mar 1995 A
5401110 Neeley Mar 1995 A
5402798 Swierczek et al. Apr 1995 A
5426032 Phillips et al. Jun 1995 A
5441513 Roth Aug 1995 A
5451350 Macho et al. Sep 1995 A
5458140 Eppstein et al. Oct 1995 A
5460777 Kitajima et al. Oct 1995 A
5460968 Yoshida et al. Oct 1995 A
5482473 Lord et al. Jan 1996 A
5489414 Schreiber et al. Feb 1996 A
5506200 Hirschkoff et al. Apr 1996 A
5507288 Böcker et al. Apr 1996 A
5508200 Tiffany et al. Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5514152 Smith May 1996 A
5518689 Dosmann et al. May 1996 A
5525518 Lundsgaard et al. Jun 1996 A
5527892 Borsotti et al. Jun 1996 A
5563042 Phillips et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569287 Tezuka et al. Oct 1996 A
5575403 Charlton et al. Nov 1996 A
5577499 Teves Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5591139 Lin et al. Jan 1997 A
5593838 Zanzucchi et al. Jan 1997 A
5602647 Xu et al. Feb 1997 A
5611809 Marshall et al. Mar 1997 A
5611999 Dosmann et al. Mar 1997 A
5624458 Lipscher Apr 1997 A
5630986 Charlton et al. May 1997 A
5632410 Moulton et al. May 1997 A
5636632 Bommannan et al. Jun 1997 A
5638828 Lauks et al. Jun 1997 A
5647851 Pokras Jul 1997 A
5658515 Lee et al. Aug 1997 A
5660791 Brenneman et al. Aug 1997 A
5670031 Hintsche et al. Sep 1997 A
5676850 Reed et al. Oct 1997 A
5680858 Hansen et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5697901 Eriksson Dec 1997 A
5701181 Boiarski et al. Dec 1997 A
5701910 Powles et al. Dec 1997 A
D389761 Thomas Jan 1998 S
5705018 Hartley Jan 1998 A
5708247 McAleer Jan 1998 A
5708787 Nakano et al. Jan 1998 A
5715417 Gardien et al. Feb 1998 A
5730753 Morita Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5736103 Pugh Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5746217 Erickson et al. May 1998 A
5746720 Stouder, Jr. May 1998 A
5753452 Smith May 1998 A
5757666 Schreiber et al. May 1998 A
5759364 Charlton et al. Jun 1998 A
5766066 Ranniger Jun 1998 A
5771890 Tamada Jun 1998 A
5789255 Yu Aug 1998 A
5797693 Jaeger Aug 1998 A
5800420 Gross et al. Sep 1998 A
5801057 Smart et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5820570 Erickson et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843692 Phillips et al. Dec 1998 A
5846837 Thym et al. Dec 1998 A
5851215 Mawhirt et al. Dec 1998 A
5854074 Charlton et al. Dec 1998 A
D403975 Douglas et al. Jan 1999 S
5855801 Lin et al. Jan 1999 A
5856195 Charlton et al. Jan 1999 A
5858194 Bell Jan 1999 A
5866281 Guckel et al. Feb 1999 A
5866349 Lilja et al. Feb 1999 A
5871494 Simons et al. Feb 1999 A
5879310 Sopp et al. Mar 1999 A
5879326 Godshall et al. Mar 1999 A
5879367 Latterell et al. Mar 1999 A
5885839 Lingane et al. Mar 1999 A
5891053 Sesekura Apr 1999 A
5893870 Talen et al. Apr 1999 A
D411621 Eisenbarth et al. Jun 1999 S
5911711 Pelkey Jun 1999 A
5911737 Lee et al. Jun 1999 A
5912139 Iwata et al. Jun 1999 A
5925021 Castellano et al. Jul 1999 A
5926271 Couderc et al. Jul 1999 A
5928207 Pisano et al. Jul 1999 A
5930873 Wyser Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5945678 Yanagisawa Aug 1999 A
5951492 Douglas et al. Sep 1999 A
5951493 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954685 Tierney Sep 1999 A
5962215 Douglas et al. Oct 1999 A
5968760 Phillips et al. Oct 1999 A
5968765 Grage et al. Oct 1999 A
5968836 Matzinger et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972294 Smith et al. Oct 1999 A
5986754 Harding Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5993189 Mueller et al. Nov 1999 A
D417504 Love et al. Dec 1999 S
6001067 Shults et al. Dec 1999 A
6005545 Nishida et al. Dec 1999 A
6010463 Lauks et al. Jan 2000 A
6010519 Mawhirt et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014577 Henning et al. Jan 2000 A
6015969 Nathel et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6027459 Shain et al. Feb 2000 A
6030827 Davis et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6041253 Kost et al. Mar 2000 A
6045753 Loewy et al. Apr 2000 A
6048352 Douglas et al. Apr 2000 A
6050988 Zuck Apr 2000 A
6056701 Duchon et al. May 2000 A
6056734 Jacobsen et al. May 2000 A
6058321 Swayze et al. May 2000 A
6059815 Lee et al. May 2000 A
6061128 Zweig et al. May 2000 A
6063039 Cunningham et al. May 2000 A
6071251 Cunningham et al. Jun 2000 A
6071294 Simons et al. Jun 2000 A
6077660 Wong et al. Jun 2000 A
6080116 Erickson et al. Jun 2000 A
6083196 Trautman et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6090790 Eriksson Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6097831 Wieck et al. Aug 2000 A
6099484 Douglas et al. Aug 2000 A
6100107 Lei et al. Aug 2000 A
6102933 Lee et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6103197 Werner Aug 2000 A
6106751 Talbot et al. Aug 2000 A
6118126 Zanzucchi Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121050 Han Sep 2000 A
6123861 Santini, Jr. et al. Sep 2000 A
6126899 Woudenberg et al. Oct 2000 A
6132449 Lum et al. Oct 2000 A
6139562 Mauze et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6152942 Brenneman et al. Nov 2000 A
6162639 Douglas Dec 2000 A
6172743 Kley et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6176865 Mauze et al. Jan 2001 B1
6183434 Eppstein et al. Feb 2001 B1
6183489 Douglas et al. Feb 2001 B1
6184990 Amirkhanian et al. Feb 2001 B1
6187210 Lebouiz et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6193873 Ohara et al. Feb 2001 B1
6197257 Raskas Mar 2001 B1
6200296 Dibiasi et al. Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6214626 Meller et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6228100 Schraga May 2001 B1
6230051 Cormier et al. May 2001 B1
6231531 Lum et al. May 2001 B1
6241862 McAleer et al. Jun 2001 B1
6242207 Douglas et al. Jun 2001 B1
6245215 Douglas et al. Jun 2001 B1
6246966 Perry Jun 2001 B1
6251083 Yum et al. Jun 2001 B1
6251260 Heller et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6255061 Mori et al. Jul 2001 B1
6256533 Yuzhakov et al. Jul 2001 B1
6268162 Phillips et al. Jul 2001 B1
6271045 Douglas et al. Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6283926 Cunningham et al. Sep 2001 B1
6289230 Chaiken et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6299578 Kurnik et al. Oct 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
D450711 Istvan et al. Nov 2001 S
6312612 Sherman et al. Nov 2001 B1
6312888 Wong et al. Nov 2001 B1
6315738 Nishikawa et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6331266 Powell et al. Dec 2001 B1
6332871 Douglas et al. Dec 2001 B1
6334856 Allen et al. Jan 2002 B1
6350273 Minagawa et al. Feb 2002 B1
6352514 Douglas et al. Mar 2002 B1
6356776 Berner et al. Mar 2002 B1
6358265 Thorne, Jr. et al. Mar 2002 B1
6364890 Lum et al. Apr 2002 B1
6375626 Allen et al. Apr 2002 B1
6375627 Mauze et al. Apr 2002 B1
6379969 Mauze et al. Apr 2002 B1
6391005 Lum et al. May 2002 B1
6391645 Huang et al. May 2002 B1
6402704 McMorrow Jun 2002 B1
6409679 Pyo Jun 2002 B2
6428664 BhulLar et al. Aug 2002 B1
6449608 Morita et al. Sep 2002 B1
6455324 Douglas Sep 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6500134 Cassone Dec 2002 B1
6520973 McGarry Feb 2003 B1
6530892 Kelly Mar 2003 B1
6537243 Henning et al. Mar 2003 B1
6540675 Aceti et al. Apr 2003 B2
6544193 Abreu Apr 2003 B2
6544475 Douglas et al. Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6555061 Leong et al. Apr 2003 B1
6558624 Lemmon et al. May 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6589260 Schmelzeisen-Redeker et al. Jul 2003 B1
6591124 Sherman et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6602205 Erickson et al. Aug 2003 B1
6612111 Hodges et al. Sep 2003 B1
6616616 Fritz et al. Sep 2003 B2
6626874 Duchamp Sep 2003 B1
6656167 Numao et al. Dec 2003 B2
6662031 Khalil et al. Dec 2003 B1
6679852 Schmelzeisen-Redeker et al. Jan 2004 B1
6690467 Reel Feb 2004 B1
6706000 Perez et al. Mar 2004 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman et al. Mar 2004 B2
6707554 Miltner et al. Mar 2004 B1
6740800 Cunningham May 2004 B1
6743635 Neel et al. Jun 2004 B2
6744502 Hoff et al. Jun 2004 B2
6748275 Lattner et al. Jun 2004 B2
6753187 Cizdziel et al. Jun 2004 B2
6766817 da Silva Jul 2004 B2
6775001 Friberg et al. Aug 2004 B2
6793633 Douglas et al. Sep 2004 B2
6830669 Miyazaki et al. Dec 2004 B2
6836678 Tu Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6847451 Pugh Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6890421 Ohara et al. May 2005 B2
6896850 Subramanian et al. May 2005 B2
6903815 Uchiyama et al. Jun 2005 B2
6918404 Da Silva Jul 2005 B2
6919960 Hansen et al. Jul 2005 B2
6923764 Aceti et al. Aug 2005 B2
6936476 Anderson et al. Aug 2005 B1
D511214 Sasano et al. Nov 2005 S
6988996 Roe et al. Jan 2006 B2
7004928 Aceti et al. Feb 2006 B2
7011630 Desai et al. Mar 2006 B2
7025774 Freeman et al. Apr 2006 B2
D519868 Sasano et al. May 2006 S
7052652 Zanzucchi et al. May 2006 B2
7066586 Da Silva Jun 2006 B2
7066890 Lam et al. Jun 2006 B1
7141058 Briggs et al. Nov 2006 B2
7154592 Reynolds et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7163616 Vreeke et al. Jan 2007 B2
7183552 Russell Feb 2007 B2
7192061 Martin Mar 2007 B2
7192405 DeNuzzio et al. Mar 2007 B2
D540343 Cummins Apr 2007 S
7223365 Von Der Goltz May 2007 B2
7225008 Ward et al. May 2007 B1
7226461 Boecker et al. Jun 2007 B2
7229458 Boecker et al. Jun 2007 B2
7258673 Racchini et al. Aug 2007 B2
D551243 Young Sep 2007 S
7270970 Anderson et al. Sep 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299081 Mace et al. Nov 2007 B2
7316700 Alden et al. Jan 2008 B2
7323141 Kirchhevel et al. Jan 2008 B2
7323315 Marfurt Jan 2008 B2
7341830 Horn et al. Mar 2008 B2
7343188 Sohrab Mar 2008 B2
7344507 Briggs et al. Mar 2008 B2
7377904 Conway et al. May 2008 B2
7379167 Mawhirt et al. May 2008 B2
7427377 Zanzucchi et al. Sep 2008 B2
7439033 Marfurt Oct 2008 B2
D580068 Shigesada et al. Nov 2008 S
D580558 Shigesada et al. Nov 2008 S
7501053 Karinka et al. Mar 2009 B2
7537571 Freeman et al. May 2009 B2
D599373 Kobayashi et al. Sep 2009 S
D601257 Berlinger et al. Sep 2009 S
7582063 Wurster et al. Sep 2009 B2
7585278 Aceti et al. Sep 2009 B2
D601444 Jones et al. Oct 2009 S
D601578 Poulet et al. Oct 2009 S
7655019 LeVaughn et al. Feb 2010 B2
7682318 Alden et al. Mar 2010 B2
7708701 Boecker et al. May 2010 B2
7713214 Freeman et al. May 2010 B2
7725149 Peyser et al. May 2010 B2
D622393 Gatrall et al. Aug 2010 S
7780631 Lum et al. Aug 2010 B2
7803123 Perez et al. Sep 2010 B2
7819822 Calasso et al. Oct 2010 B2
7841992 Freeman et al. Nov 2010 B2
7850621 Briggs et al. Dec 2010 B2
7879058 Ikeda Feb 2011 B2
7883473 LeVaughn et al. Feb 2011 B2
7887494 Emery et al. Feb 2011 B2
7892183 Boecker et al. Feb 2011 B2
7955492 Fujiwara et al. Jun 2011 B2
7959583 DeNuzzio et al. Jun 2011 B2
7964372 Marfurt Jun 2011 B2
D642191 Barnett et al. Jul 2011 S
7972861 Deng et al. Jul 2011 B2
7988644 Freeman et al. Aug 2011 B2
8012103 Escutia et al. Sep 2011 B2
8012104 Escutia et al. Sep 2011 B2
8105849 McDevitt et al. Jan 2012 B2
D654926 Lipman et al. Feb 2012 S
8173439 Petrich et al. May 2012 B2
8184273 Dosmann et al. May 2012 B2
8202231 Freeman et al. Jun 2012 B2
8231832 Zanzucchi et al. Jul 2012 B2
8251920 Vreeke et al. Aug 2012 B2
8262614 Freeman et al. Sep 2012 B2
8267870 Freeman et al. Sep 2012 B2
8280476 Jina Oct 2012 B2
8298255 Conway et al. Oct 2012 B2
8303518 Aceti et al. Nov 2012 B2
8360993 Escutia et al. Jan 2013 B2
8360994 Escutia et al. Jan 2013 B2
8372015 Escutia et al. Feb 2013 B2
8372016 Freeman et al. Feb 2013 B2
8376959 Deck Feb 2013 B2
8382680 Kistner et al. Feb 2013 B2
8382681 Escutia et al. Feb 2013 B2
8391940 Matzinger et al. Mar 2013 B2
8419657 Roe Apr 2013 B2
D691174 Lipman et al. Oct 2013 S
8574168 Freeman et al. Nov 2013 B2
8574895 Freeman et al. Nov 2013 B2
8696880 Beer et al. Apr 2014 B2
8702624 Alden Apr 2014 B2
8795201 Escutia et al. Aug 2014 B2
8801631 Escutia et al. Aug 2014 B2
8919605 Lipman et al. Dec 2014 B2
8920455 Roe Dec 2014 B2
8969097 Emery et al. Mar 2015 B2
9017356 Schraga et al. Apr 2015 B2
9034639 Freeman et al. May 2015 B2
9060723 Escutia et al. Jun 2015 B2
9060727 Saikley et al. Jun 2015 B2
9063102 Hoenes et al. Jun 2015 B2
9089678 Freeman et al. Jul 2015 B2
9095292 Zanzucchi et al. Aug 2015 B2
9095847 Porsch et al. Aug 2015 B2
9097679 List et al. Aug 2015 B2
9101302 Mace et al. Aug 2015 B2
9131886 Harttig et al. Sep 2015 B2
9138179 Hoenes et al. Sep 2015 B2
9149215 Werner et al. Oct 2015 B2
9173608 Kuhr et al. Nov 2015 B2
9179872 Roe et al. Nov 2015 B2
9186097 Frey et al. Nov 2015 B2
9186104 Kraemer et al. Nov 2015 B2
9186468 Freeman et al. Nov 2015 B2
9226704 Deck Jan 2016 B2
9301171 List et al. Apr 2016 B2
9314194 Deshmukh et al. Apr 2016 B2
9326718 Petrich et al. May 2016 B2
9332931 Chan May 2016 B2
9332932 Okuyama et al. May 2016 B2
9339612 Freeman et al. May 2016 B2
9351680 Boecker et al. May 2016 B2
9364172 Konya et al. Jun 2016 B2
9366636 Emery et al. Jun 2016 B2
9375169 Choi et al. Jun 2016 B2
9375177 Planman et al. Jun 2016 B2
9380963 Gofman et al. Jul 2016 B2
9380974 Litherland et al. Jul 2016 B2
9386944 Freeman et al. Jul 2016 B2
9392968 Schraga Jul 2016 B2
9439591 Frey et al. Sep 2016 B2
9463463 He et al. Oct 2016 B2
9480419 Weiss et al. Nov 2016 B2
9480420 Konya et al. Nov 2016 B2
9486164 Roe Nov 2016 B2
9488585 Emeric et al. Nov 2016 B2
9517027 Kan et al. Dec 2016 B2
9560993 Freeman Feb 2017 B2
9561000 Lum Feb 2017 B2
9573761 List Feb 2017 B2
9599552 Baldus et al. Mar 2017 B2
9603562 Aceti et al. Mar 2017 B2
9636051 Emery et al. May 2017 B2
9668687 Volkmuth et al. Jun 2017 B2
9671387 Thoes et al. Jun 2017 B2
9717452 Roe et al. Aug 2017 B2
9724021 Freeman et al. Aug 2017 B2
9730625 Krasnow et al. Aug 2017 B2
9782114 Reynolds et al. Oct 2017 B2
9795334 Freeman et al. Oct 2017 B2
9820684 Freeman et al. Nov 2017 B2
9833183 Escutia et al. Dec 2017 B2
9839384 Escutia et al. Dec 2017 B2
9877676 Konya et al. Jan 2018 B2
9880254 Richter et al. Jan 2018 B2
9883828 Haar et al. Feb 2018 B2
9897610 Lipman et al. Feb 2018 B2
9927386 Wang et al. Mar 2018 B2
9931478 Hirshberg et al. Apr 2018 B2
9939403 Richter et al. Apr 2018 B2
9939404 Richter et al. Apr 2018 B2
9943256 Varsavsky et al. Apr 2018 B2
9943259 Kuhr et al. Apr 2018 B2
9949679 Renlund Apr 2018 B2
9965587 Aykroyd et al. May 2018 B2
9968284 Vidalis et al. May 2018 B2
9974471 Kam et al. May 2018 B1
9983140 Dickopf May 2018 B2
9987427 Polsky et al. Jun 2018 B1
10034628 Freeman et al. Jul 2018 B2
10080517 Chen et al. Sep 2018 B2
10194838 Weiss et al. Feb 2019 B2
10226208 Emery et al. Mar 2019 B2
10278621 List May 2019 B2
10309905 Dickopf Jun 2019 B2
10327689 Krasnow et al. Jun 2019 B2
10330667 Lipman et al. Jun 2019 B2
10383556 Lipman et al. Aug 2019 B2
10429337 Malecha et al. Oct 2019 B2
10433780 Escutia et al. Oct 2019 B2
10441205 Litherland et al. Oct 2019 B2
10729386 Lipman et al. Aug 2020 B2
10772550 Aceti et al. Sep 2020 B2
10842427 Escutia et al. Nov 2020 B2
11002743 Lipman et al. May 2021 B2
11051734 Escutia et al. Jul 2021 B2
20010001034 Douglas May 2001 A1
20010027328 Lum et al. Oct 2001 A1
20010053891 Ackley Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020002344 Douglas et al. Jan 2002 A1
20020004640 Conn et al. Jan 2002 A1
20020006355 Whitson Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020020688 Sherman et al. Feb 2002 A1
20020022934 Vogel et al. Feb 2002 A1
20020023852 Mcivor et al. Feb 2002 A1
20020042594 Lum et al. Apr 2002 A1
20020045243 Laska et al. Apr 2002 A1
20020052618 Haar et al. May 2002 A1
20020067481 Wolf et al. Jun 2002 A1
20020087056 Aceti et al. Jul 2002 A1
20020136667 Subramanian et al. Sep 2002 A1
20020137998 Smart et al. Sep 2002 A1
20020160520 Orloff et al. Oct 2002 A1
20020168290 Yuzhakov et al. Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169411 Sherman et al. Nov 2002 A1
20020177761 Orloff et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020183102 Withers et al. Dec 2002 A1
20020188223 Perez et al. Dec 2002 A1
20020198444 Uchigaki et al. Dec 2002 A1
20030012693 Otillar et al. Jan 2003 A1
20030028087 Yuzhakov et al. Feb 2003 A1
20030028125 Yuzhakov et al. Feb 2003 A1
20030039587 Niermann Feb 2003 A1
20030060730 Perez Mar 2003 A1
20030083685 Freeman et al. May 2003 A1
20030083686 Freeman et al. May 2003 A1
20030105961 Zatloukal et al. Jun 2003 A1
20030116596 Terasawa Jun 2003 A1
20030135166 Gonnelli Jul 2003 A1
20030135333 Aceti Jul 2003 A1
20030143746 Sage Jul 2003 A1
20030153844 Smith et al. Aug 2003 A1
20030153900 Aceti et al. Aug 2003 A1
20030175987 Verdonk et al. Sep 2003 A1
20030187395 Gabel et al. Oct 2003 A1
20030206302 Pugh Nov 2003 A1
20030207441 Eyster et al. Nov 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030208140 Pugh Nov 2003 A1
20030211617 Jones Nov 2003 A1
20030211619 Olson et al. Nov 2003 A1
20030212344 Yuzhakov et al. Nov 2003 A1
20030212345 McAllister et al. Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030216628 Bortz et al. Nov 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040030353 Schmelzeisen-redeker et al. Feb 2004 A1
20040039303 Wurster et al. Feb 2004 A1
20040049219 Briggs et al. Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040072357 Stiene et al. Apr 2004 A1
20040073140 Douglas Apr 2004 A1
20040092842 Boecker et al. May 2004 A1
20040092995 Boecker et al. May 2004 A1
20040094432 Neel et al. May 2004 A1
20040096959 Stiene et al. May 2004 A1
20040097796 Berman et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040102803 Boecker et al. May 2004 A1
20040120848 Teodorczyk Jun 2004 A1
20040122339 Roe et al. Jun 2004 A1
20040132167 Rule et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040155084 Brown Aug 2004 A1
20040157339 Burke et al. Aug 2004 A1
20040178218 Schomakers et al. Sep 2004 A1
20040186394 Roe et al. Sep 2004 A1
20040191119 Zanzucchi et al. Sep 2004 A1
20040202576 Aceti et al. Oct 2004 A1
20040230216 LeVaughn et al. Nov 2004 A1
20040230316 LeVaughn et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040238675 Banaszkiewicz et al. Dec 2004 A1
20040242982 Sakata et al. Dec 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040259180 Burke et al. Dec 2004 A1
20050004494 Perez et al. Jan 2005 A1
20050010134 Douglas et al. Jan 2005 A1
20050015020 LeVaughn et al. Jan 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050033340 Lipoma et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050096686 Allen May 2005 A1
20050106713 Phan et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050153428 Matsumoto Jul 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050159678 Taniike et al. Jul 2005 A1
20050176133 Miyashita et al. Aug 2005 A1
20050187532 Thurau et al. Aug 2005 A1
20050192492 Cho et al. Sep 2005 A1
20050202567 Zanzucchi et al. Sep 2005 A1
20050202733 Yoshimura et al. Sep 2005 A1
20050209518 Sage et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050234494 Conway et al. Oct 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050255001 Padmaabhan et al. Nov 2005 A1
20050277972 Wong et al. Dec 2005 A1
20060008389 Sacherer et al. Jan 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060052724 Roe Mar 2006 A1
20060064035 Wang et al. Mar 2006 A1
20060079809 Goldberger et al. Apr 2006 A1
20060094985 Aceti et al. May 2006 A1
20060117616 Jones et al. Jun 2006 A1
20060122536 Haar et al. Jun 2006 A1
20060135873 Karo et al. Jun 2006 A1
20060155317 List Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060178600 Kennedy et al. Aug 2006 A1
20060189908 Kennedy Aug 2006 A1
20060200044 Freeman et al. Sep 2006 A1
20060204399 Freeman et al. Sep 2006 A1
20060224172 LeVaughn et al. Oct 2006 A1
20060229533 Hoenes et al. Oct 2006 A1
20060241517 Fowler et al. Oct 2006 A1
20060257993 Mcdevitt et al. Nov 2006 A1
20060259102 Slatkine Nov 2006 A1
20060264996 LeVaughn et al. Nov 2006 A1
20060281187 Emery et al. Dec 2006 A1
20070016104 Jansen et al. Jan 2007 A1
20070017824 Rippeth et al. Jan 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070060842 Alvarez-Icaza et al. Mar 2007 A1
20070078313 Emery et al. Apr 2007 A1
20070078358 Escutia et al. Apr 2007 A1
20070083130 Thomson et al. Apr 2007 A1
20070083131 Escutia et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100255 Boecker et al. May 2007 A1
20070112281 Olson May 2007 A1
20070179404 Escutia et al. Aug 2007 A1
20070253531 Okuzawa et al. Nov 2007 A1
20070255181 Alvarez-icaza et al. Nov 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080012701 Kass et al. Jan 2008 A1
20080046831 Imai et al. Feb 2008 A1
20080064986 Kraemer et al. Mar 2008 A1
20080077048 Escutia et al. Mar 2008 A1
20080119702 Reggiardo May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080200838 Goldberger Aug 2008 A1
20080255598 LeVaughn et al. Oct 2008 A1
20080268485 Guarino et al. Oct 2008 A1
20080269625 Halperin et al. Oct 2008 A1
20080274447 Mecklenburg Nov 2008 A1
20090054810 Zanzucchi et al. Feb 2009 A1
20090149717 Brauer et al. Jun 2009 A1
20090149729 Young et al. Jun 2009 A1
20090156923 Power et al. Jun 2009 A1
20090292489 Burke et al. Nov 2009 A1
20090301899 Hodges et al. Dec 2009 A1
20100010374 Escutia et al. Jan 2010 A1
20100021947 Emery et al. Jan 2010 A1
20100021948 Lipman et al. Jan 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100152660 Mack et al. Jun 2010 A1
20100174211 Frey et al. Jul 2010 A1
20100185120 Sacherer et al. Jul 2010 A1
20100217155 Poux et al. Aug 2010 A1
20100249652 Rush et al. Sep 2010 A1
20100331650 Batman et al. Dec 2010 A1
20110098599 Emery et al. Apr 2011 A1
20110105872 Chickering et al. May 2011 A1
20110294152 Lipman et al. Dec 2011 A1
20120166090 Lipman et al. Jun 2012 A1
20120271197 Castle et al. Oct 2012 A1
20120296179 Zanzucchi et al. Nov 2012 A1
20130110516 Abulhaj et al. May 2013 A1
20130158430 Aceti et al. Jun 2013 A1
20130158432 Escutia et al. Jun 2013 A1
20130172698 Reynolds et al. Jul 2013 A1
20130274568 Escutia et al. Oct 2013 A1
20130274579 Richter et al. Oct 2013 A1
20140012116 Okuyama Jan 2014 A1
20140316301 Escutia et al. Oct 2014 A1
20140336480 Escutia et al. Nov 2014 A1
20140376762 Lipman et al. Dec 2014 A1
20150037898 Baldus et al. Feb 2015 A1
20150153351 Lipman et al. Jun 2015 A1
20150182157 Boriah et al. Jul 2015 A1
20150238131 Richter et al. Aug 2015 A1
20150268228 Schulat et al. Sep 2015 A1
20150335272 Natale et al. Nov 2015 A1
20160011178 Hoenes et al. Jan 2016 A1
20160038066 Escutia et al. Feb 2016 A1
20160256106 Krasnow et al. Sep 2016 A1
20160367178 Litherland et al. Dec 2016 A1
20160374603 Shaanan et al. Dec 2016 A1
20170095188 Emery et al. Apr 2017 A1
20170319121 Aceti et al. Nov 2017 A1
20180008178 Escutia et al. Jan 2018 A1
20180214059 Escutia et al. Aug 2018 A1
20180296143 Anderson et al. Oct 2018 A1
20180310865 Escutia et al. Nov 2018 A1
20180338713 Polsky et al. Nov 2018 A1
20190000365 Beyerlein et al. Jan 2019 A1
20190025318 Lipman et al. Jan 2019 A1
20190104976 Reynolds et al. Apr 2019 A1
20190175086 Yang Jun 2019 A1
20190209064 Emery et al. Jul 2019 A1
20190209820 Chickering, III et al. Jul 2019 A1
20190269358 Messerschmidt Sep 2019 A1
20190274607 Krasnow et al. Sep 2019 A1
20190391129 Lipman et al. Dec 2019 A1
20200214605 Lipman et al. Jul 2020 A1
20200237280 Escutia et al. Jul 2020 A1
20210177361 Lipman et al. Jun 2021 A1
20210330225 Escutia et al. Oct 2021 A1
Foreign Referenced Citations (202)
Number Date Country
2 513 465 Aug 2004 CA
199 22 413 Nov 2000 DE
103 02-501 Aug 2004 DE
0103426 Mar 1984 EP
0 256 806 Feb 1988 EP
0 160 708 Oct 1989 EP
0 356 418 Feb 1990 EP
0 396-016 Nov 1990 EP
0 396-016 Nov 1990 EP
0 409 032 Jan 1991 EP
0 255-338 Feb 1998 EP
0 877 250 Nov 1998 EP
1 037 048 Sep 2000 EP
1 060 768 Dec 2000 EP
1 118 856 Jul 2001 EP
1 266-607 Dec 2002 EP
1 266-607 Dec 2002 EP
1 369 688 Oct 2003 EP
1 369 688 Oct 2003 EP
1 360-934 Nov 2003 EP
1 360-934 Nov 2003 EP
1 486-766 Dec 2004 EP
1 486-766 Dec 2004 EP
1 529-489 May 2005 EP
1 529-489 May 2005 EP
1 769-735 Apr 2007 EP
1 987 766 Nov 2008 EP
61-290342 Dec 1986 JP
63-305841 Dec 1988 JP
1-318963 Dec 1989 JP
3-63570 Mar 1991 JP
03093189 Apr 1991 JP
7-67861 Mar 1995 JP
7-213925 Aug 1995 JP
9-168530 Jun 1997 JP
9-313465 Sep 1997 JP
9-266889 Oct 1997 JP
9-294737 Nov 1997 JP
10-024028 Jan 1998 JP
10-318970 Dec 1998 JP
11-056822 Mar 1999 JP
11281779 Oct 1999 JP
2000-116629 Apr 2000 JP
2000-126161 May 2000 JP
2000-168754 Jun 2000 JP
2000-254111 Sep 2000 JP
2001-159618 Jun 2001 JP
2001-515203 Sep 2001 JP
2001-281242 Oct 2001 JP
2001-305096 Oct 2001 JP
2001-330581 Nov 2001 JP
2002-502045 Jan 2002 JP
2002-085384 Mar 2002 JP
2002-514453 May 2002 JP
2002-168862 Jun 2002 JP
2003-507719 Feb 2003 JP
2003108679 Apr 2003 JP
2003-180417 Jul 2003 JP
2004-000598 Jan 2004 JP
2004-500948 Jan 2004 JP
2004-117339 Apr 2004 JP
2004-209266 Jul 2004 JP
2004-519302 Jul 2004 JP
2004-522500 Jul 2004 JP
2004-528936 Sep 2004 JP
2005-503538 Feb 2005 JP
2005-087613 Apr 2005 JP
2006-512969 Apr 2005 JP
2005-525149 Aug 2005 JP
2005-237938 Sep 2005 JP
2005-525846 Sep 2005 JP
2005-527254 Sep 2005 JP
2006-512974 Apr 2006 JP
2006-516723 Jul 2006 JP
2006-521555 Sep 2006 JP
2006-284481 Oct 2006 JP
2006-527013 Nov 2006 JP
2007-054407 Mar 2007 JP
2007-067698 Mar 2007 JP
2007-521031 Aug 2007 JP
2007-527287 Sep 2007 JP
2007-311196 Nov 2007 JP
2008-043741 Feb 2008 JP
2008-125813 Jun 2008 JP
2008-212324 Sep 2008 JP
2009-509645 Mar 2009 JP
2009-509667 Mar 2009 JP
2012-213477 Nov 2012 JP
2013-505747 Feb 2013 JP
100458978 May 2005 KR
WO-8807666 Oct 1988 WO
WO-9114212 Sep 1991 WO
WO-9413203 Jun 1994 WO
WO-9510223 Apr 1995 WO
WO-9510223 Apr 1995 WO
WO-9604857 Feb 1996 WO
WO-9607907 Mar 1996 WO
WO-9614026 May 1996 WO
WO-9625088 Aug 1996 WO
WO-9715227 May 1997 WO
WO-9729847 Aug 1997 WO
WO-9730344 Aug 1997 WO
WO-9741421 Nov 1997 WO
WO-9831275 Jul 1998 WO
WO-9835225 Aug 1998 WO
WO-9912008 Mar 1999 WO
WO-9944508 Sep 1999 WO
WO-9958051 Nov 1999 WO
WO-0009184 Feb 2000 WO
WO-0013573 Mar 2000 WO
WO-0014269 Mar 2000 WO
WO-0014535 Mar 2000 WO
WO-0018449 Apr 2000 WO
WO-0018449 Apr 2000 WO
WO-0019185 Apr 2000 WO
WO-0036400 Jun 2000 WO
WO-0042422 Jul 2000 WO
WO-0074763 Dec 2000 WO
WO-0074763 Dec 2000 WO
WO-0078208 Dec 2000 WO
WO-0113795 Mar 2001 WO
WO-0116575 Mar 2001 WO
WO-0152727 Jul 2001 WO
WO-0164105 Sep 2001 WO
WO-0164105 Sep 2001 WO
WO-0172220 Oct 2001 WO
WO-0180728 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0191634 Dec 2001 WO
WO-0191634 Dec 2001 WO
WO-0200101 Jan 2002 WO
WO-0200101 Jan 2002 WO
WO-0249507 Jun 2002 WO
WO-0249509 Jun 2002 WO
WO-0249509 Jun 2002 WO
WO-02078533 Oct 2002 WO
WO-02078533 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02093144 Nov 2002 WO
WO-02100251 Dec 2002 WO
WO-02100251 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-03007819 Jan 2003 WO
WO-2003030984 Apr 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003070099 Aug 2003 WO
WO-2003071940 Sep 2003 WO
WO-2003071940 Sep 2003 WO
WO-03088834 Oct 2003 WO
WO-2004062499 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004064636 Aug 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2005006939 Jan 2005 WO
WO-2005006939 Jan 2005 WO
WO-2005009238 Feb 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005054840 Jun 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005085995 Sep 2005 WO
WO-2006031920 Mar 2006 WO
WO-2006138226 Dec 2006 WO
WO-2006138226 Dec 2006 WO
WO-2007041062 Apr 2007 WO
WO-2007041062 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007054317 May 2007 WO
WO-2007108519 Sep 2007 WO
WO-2007112034 Oct 2007 WO
WO-2007112034 Oct 2007 WO
WO 2007131036 Nov 2007 WO
WO-2008027319 Mar 2008 WO
WO-2008027319 Mar 2008 WO
WO-2008062648 May 2008 WO
WO-2009145920 Dec 2009 WO
WO-2009148624 Dec 2009 WO
WO-2009148626 Dec 2009 WO
WO-2011065981 Jun 2011 WO
WO-2011162823 Dec 2011 WO
WO-2012127870 Sep 2012 WO
WO-2013020103 Feb 2013 WO
WO-2014205412 Dec 2014 WO
WO-2005018710 Mar 2015 WO
WO-2005018710 Mar 2015 WO
WO-2018191700 Oct 2018 WO
Non-Patent Literature Citations (117)
Entry
ADA Consensus Development Panel. (Jan.-Feb. 1987). “Consensus Statement on Self-Monitoring of Blood Glucose,” Diabetes Care 10(1):95-99.
ADA (Jan. 1994). “Self-Monitoring of Blood Glucose,” Consensus Statement Diabetes Care 17(1):81-86.
Anonymous. (Sep. 30, 1993). “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus.” The New England Journal of Medicine 329(14):977-986.
Anonymous. (Jun. 23, 1998). Taking the “Ouch” Out of Needles: Arrays of “Microneedles” Offer New Techniques for Drug Delivery, Science Daily, located at <http:www.sciencedaily.com/releases/1998/06/980623045850.htm>, last visited Jan. 14, 2014, 3 pages.
Beregszàszi, M. et al. (Jul. 1997). “Nocturnal Hypoglycemia in Children and Adolescents with Insulin-Dependent Diabetes Mellitus: Prevalence and Risk Factors,” J. Pediatrics 131(1 Pt. 1):27-33.
Brazzle, J. et al. Active Microneedles with Integrated Functionality, Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, Jun. 4-8, 2000, Technical Digest, 199-202.
Chase, H.P. et al. (Feb. 2001). “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics 107(2):222-226.
Clarke, W.L. et al. (Sep.-Oct. 1987). “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” Diabetes Care 10(5):622-628.
Clarke, W.L. et al. (1981). “Evaluation of a New Reflectance Photometer for Use in Home Blood Glucose Monitoring,” Diabetes Care 4(5):547-550.
Collison, M.E. et al. (Sep. 1999). “Analytical Characterization of Electrochemical Biosensor Test Strips for Measurement of Glucose in Low-Volume Interstitial Fluid Samples,” Clinical Chemistry 45(9):1665-1673.
Coster, S. et al. (2000). “Monitoring Blood Glucose Control in Diabetes Mellitus: A Systematic Review.” Health Technology Assessment 4(12):1-93.
Cox, D.J. et al. (Jun. 1997). “Understanding Error Grid Analysis,” Diabetes Care 20(6):911-912.
D'Arrigo, T.D. (Mar. 2000). “GlucoWatch Monitor Poised for Approval,” Diabetes Forecast, 53(3):43-44.
Extended European Search Report dated Jun. 16, 2014, for EP Application No. 09 758 787.7, filed on Jun. 8, 2009, 6 pages.
Extended European Search Report dated Jul. 18, 2013, for EP Application No. 06 772 943.4, filed on Jun. 13, 2006, 7 pages.
Extended European Search Report dated Aug. 27, 2012, for European Patent Application No. 09 758 789.3, filed on Jun. 8, 2009, 13 pages.
Extended European Search Report dated Oct. 27, 2016, for EP Application No. 11 798 518.4, filed on Jun. 24, 2011, 7 pages.
Final Office Action dated May 8, 2012, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages.
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 10 pages.
Final Office Action dated May 5, 2016, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 11 pages.
Final Office Action dated May 5, 2016, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 13 pages.
Final Office Action dated Oct. 15, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 13 pages.
Final Office Action dated Aug. 14, 2012, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Final Office Action dated Sep. 23, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Final Office Action dated Mar. 27, 2014, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 11 pages.
Final Office Action dated Jan. 20, 2016, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 10 pages.
Final Office Action dated Apr. 30, 2013, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 10 pages.
Final Office Action dated Sep. 30, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 16 pages.
Final Office Action dated Aug. 12, 2016, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 18 pages.
Feldman, B. et al. (2000). “Freestyle™: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing,” Diabetes Technology and Therapeutics, 2(2):221-229.
International Search Report dated Jul. 28, 2009, for PCT Patent Application No. PCT/US2009/03441, filed on Jun. 8, 2009, 10 pages.
International Search Report dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 2 pages.
International Search Report dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 1 page.
International Search Report dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03445, filed on Jun. 8, 2009, 2 pages.
International Search Report dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 2 pages.
INTEG. (2000). “LifeGuideÔ Glucose Meter. No Lancets. No Blood,” located at <http://www.integonline.com>, last visited May 1, 2000, 10 pages.
Johnson, R.N. et al. (Jan. 1998). “Accuracy of Devices Used for Self-Monitoring of Blood Glucose,” Annals of Clinical Biochemistry 35(1):68-74.
Johnson, R.N. et al. (Jan. 1999). “Analytical Error of Home Glucose Monitors: A Comparison of 18 Systems,” Annals of Clinical Biochemistry 36(1):72-79.
Johnson, R.N. et al. (2001). “Error Detection and Measurement In Glucose Monitors,” Clinica Chimica Acta 307:61-67.
Kumetrix, Inc. (Dec. 1999). “Painless Blood Glucose Monitoring, Courtesy of the Mosquito,” Start-Up pp. 27-28.
Lee, S-C. (Jun. 1999). “Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab,” Journal of the Optical Society of America A 16(6):1350-1361.
McGarraugh, G. et al. (2001). “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics 3(3):367-376.
McNichols, R.J. et al. (Jan. 2000). “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, 5(1):5-16.
Mahler, R.J. et al. (1999). “Clinical Review 102, Type 2 Diabetes Melitus: Update on Diagnosis Pathophysiology, and Treatment,” The Journal of Clinical Endocrinology and Metabolism 84(4):1165-1171.
Medline Plus. (Jun. 17, 2008). , Medical Encyclopedia, Monitor Blood Glucose-Series: Part 1-4, 6 pages.
Neeley, W.E. et al. (1981). “An Instrument for Digital Matrix Photometry,” Clinical Chemistry 27(10):1665-1668.
Neeley, W.E. (1983). “Reflectance Digital Matrix Photometry,” Clinical Chemistry 29(6):1038-1041.
Neeley, W.E. (1983). “Multilayer Film Analysis for Glucose in 1-mL Samples of Plasma,” Clinical Chemistry 29(12):2103-2105.
Neeley, W.E. (1988). “A Reflectance Photometer with a Square Photodiode Array Detector for Use on Multilayer Dry-Film Slides,” Clinical Chemistry 34(11):2367-2370.
Non-Final Office Action dated Nov. 23, 2011, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 6 pages.
Non-Final Office Action dated Jun. 13, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 8 pages.
Non-Final Office Action dated Jul. 8, 2015, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 13 pages.
Non-Final Office Action dated Mar. 19, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages.
Non-Final Office Action dated Sep. 1, 2010, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages.
Non-Final Office Action dated Aug. 19, 2015, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages.
Non-Final Office Action dated Sep. 13, 2011, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Non-Final Office Action dated Feb. 28, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 12 pages.
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Non-Final Office Action dated May 29, 2015, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 13 pages.
Non-Final Office Action dated Mar. 2, 2012, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages.
Non-Final Office Action dated May 30, 2013, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages.
Non-Final Office Action dated Jun. 22, 2012, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 8 pages.
Non-Final Office Action dated Jan. 13, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 12 pages.
Non-Final Office Action dated Jun. 25, 2015, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages.
Notice of Allowance dated Sep. 18, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 9 pages.—(7.01).
Notice of Allowance dated Feb. 16, 2016, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 7 pages.
Notice of Allowance dated Jan. 26, 2017, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages.
Otto, E. et al. (2000). “An Intelligent Diabetes Software Prototype: Predicting Blood Glucose Levels and Recommending Regimen Changes,” Diabetes Technology and Therapeutics 2(4):569-576.
Pfohl, M. et al. (2000). “Spot Glucose Measurement in Epidermal Interstitial Fluid—An Alternative to Capillary Blood Glucose Estimation,” Experimental and Clinical Endocrinology & Diabetes 108(1):1-4.
Princen, H.M. (May 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, I. Capillary Rise Between Two Cylinders,” Journal of Colloid and Interface Science 30(1):69-75.
Princen, H.M. (Jul. 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, II. Capillary Rise in Systems with More Than Two Cylinders,” Journal of Colloid and Interface Science 30(3):359-371.
Rebrin, K. et al. (Sep. 1999). “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” American Journal of Physiology 277(3):E561-E571.
Rosen, S. (1999). “Road to New-Age Glucose Monitoring Still Rocky,” Diagnostic Insight, pp. 4-5, 12-13, 16.
Smart, W.H. et al. (2000). “The Use of Silicon Microfabrication Technology in Painless Glucose Monitoring, ”Diabetes Technology & Therapeutics 2(4):549-559.
Sonntag, O. (1993). Ektachem. Dry Chemistry, Analysis With Carrier-Bound Reagents, Elsevier Science Publishers, 57 pages.
Spielman, A. et al. (2001). Mosquito: A Natural History of Our Most Persistent and Deadly Foe, First Edition, Hyperion, New York, NY, 3 pages. (Table of Contents Only).
Straub F.B. (Mar. 1939). “Isolation and Properties of a flavoprotien from Heart Muscle Tissue”, Biochemical Journal 33: 787-792.
Svedman, C. et al. (Apr. 1999). “Skin Mini-Erosion Technique for Monitoring Metabolites in Interstitial Fluid: Its Feasibility Demonstrated by OGTT Results in Diabetic and Non-Diabetic Subjects,” Scand. J. Clin. Lab. Invest. 59(2):115-123.
Tietz, N.W. (1986).Textbook of Clinical Chemistry, W. B. Saunders Company, pp. 1533 and 1556.
Trinder, P. (1969). “Determination of Glucose in Blood Using Glucose Oxidase with an Alternate Oxygen Acceptor,” Annals of Clinical Biochemistry 6:24-28.
U.S. Precision Lens, Inc. (1983).The Handbook of Plastic Optics.
Written Opinion of the International Searching Authority dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03441, filed on Jun. 8, 2009, 2 pages.
Written Opinion of the International Searching Authority dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 5 pages.
Written Opinion of the International Searching Authority dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 3 pages.
Written Opinion of the International Searching Authority dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03445, filed on Jun. 8, 2009, 4 pages.
Written Opinion dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 6 pages.
Yum, S. I. et al. (Nov. 1, 1999). “Capillary Blood Sampling for Self-Monitoring of Blood Glucose,” Diabetes Technology & Therapeutics, 1(1):29-37.
Notice of Allowance dated Aug. 18, 2017, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 10 pages.
Non-Final Office Action dated Mar. 21, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages.
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages.
Extended European Search Report dated Nov. 8, 2016 by the European Patent Office for Application No. 16167087.2, filed Aug. 3, 2012, 7 pages.
Final Office Action dated Nov. 29, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 13 pages.
International Search Report dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 4 pages.
Non-Final Office Action dated Mar. 20, 2017, by The United States Patent and Trademark Office for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages.
Non-Final Office Action dated Jun. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages.
Final Office Action dated Dec. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 21 pages.
Extended European Search Report dated Jan. 20, 2017, for EP Application No. 14 813 126.1, filed Jun. 20, 2014, 8 pages.
Non-Final Office Action dated Mar. 8, 2017, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 24 pages.
Final Office Action dated Nov. 13, 2017, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages.
Final Office Action dated Feb. 8, 2017, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 11 pages.
Final Office Action dated Mar. 28, 2018, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 13 pages.
Final Office Action dated Sep. 21, 2017, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 14 pages.
Notice of Allowance dated Jul. 20, 2018, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages.
Non-Final Office Action dated Aug. 10, 2018, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages.
Non-Final Office Action dated Aug. 15, 2018, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 19 pages.
Extended European Search Report dated Jan. 17, 2020, for European Application No. 19187252.2, 12 pages.
Extended European Search Report dated Nov. 10, 2020 from the European Patent Office for Application No. 20169957.6, filed Aug. 3, 2012, 6 pages.
Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technology & Therapeutics., vol. 6, No. 5, 2004.
Non-Final Office Action dated Nov. 27, 2019, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 7 pages.
Non-Final Office Action dated Apr. 20, 2020, for U.S. Appl. No. 16/159,546, filed Oct. 12, 2018, 8 pages.
Non-Final Office Action dated Aug. 7, 2020, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 10 pages.
Notice of Allowance dated Mar. 4, 2021, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 9 pages.
Final Office Action dated Jul. 14, 2021, for U.S. Appl. No. 16/159,546, filed Oct. 12, 2018, 13 pages.
Non-Final Office Action dated Mar. 27, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages.
Notice of Allowance dated May 15, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages.
Final Office Action dated Apr. 25, 2019, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 16 pages.
Notice of Allowance dated Feb. 4, 2019, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 9 pages.
Related Publications (1)
Number Date Country
20170354355 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
61129149 Jun 2008 US
Continuations (1)
Number Date Country
Parent 12457331 Jun 2009 US
Child 15499821 US