The present invention relates to devices, arrangements and methods involving measurements of the presence or concentration of an analyte contained in a sample of body fluid.
In this specification where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge, or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which this specification is concerned.
According to the American Diabetes Association, diabetes is the fifth-deadliest disease in the United States. Since 1987 the death rate due to diabetes has increased by 45 percent. There are an estimated 20.8 million children and adults in the United States, or 7% of the population, who have diabetes. The total annual economic cost of diabetes in 2007 was estimated to be $174 billion. This is an increase of $42 billion since 2002. This 32% increase means the dollar amount has risen over $8 billion each year.
A critical component in managing diabetes is frequent blood glucose monitoring. Currently, a number of systems exist for self-monitoring by the patient. Most fluid analysis systems, such as systems for analyzing a sample of blood for glucose content, comprise multiple separate components such as separate lancing, transport, and quantification portions. These systems are bulky, and often confusing and complicated for the user.
As a result, certain efforts have been made to develop an “integrated device” that combines the steps and mechanisms for acquiring a sample body fluid, transporting the body fluid to a measurement device, and quantifying the level of analyte contained in the sample body fluid all in a single device. Examples of such devices are illustrated in U.S. Pat. Nos. 6,540,675 and 7,004,928. Although such devices are designed to reliably obtain an adequate sample volume from the user, occasionally, for a number of different reasons, the device will be unable to successfully collect and transport an adequate sample volume for analysis on a first attempt. Devices such as those described above include a skin-penetration member, such as a needle which is driven into the surface of the skin of the user. Once the skin-penetration member has been triggered or activated, such devices typically lack the ability to be “re-cocked” so that the same skin-penetration member can be used again to pierce the surface of the skin. When an inadequate sample volume is collected and transported as a result of the initial wound creation, that particular test cannot proceed. Thus, the test is “wasted.” The user must perform a new test using a fresh skin-penetration member and quantification member. This can increase the costs to the user associated with monitoring the analyte or glucose levels. Moreover, the inability to salvage a successful test from a single wound means that the user will often create a separate wound at a new sampling site, or be forced to cause further damage to the existing wound in order to collect and transport an adequate sample volume for analysis. This obviously increases the pain and frustration experienced by the user, which is counterproductive to the goal of encouraging the user to frequently and systematically monitor their analyte or glucose levels.
Therefore, there is a need in the art for providing body fluid sampling and analysis techniques and devices which offer the user greater flexibility in the collection of an adequate sample volume to present to the device for analysis.
According to the present invention, there are provided constructions, arrangements and techniques that may address one or more of the above-mentioned objectives. However, the present invention is not limited to the context of blood sampling performed for the purposes of monitoring glucose concentration. Numerous alternative applications or uses for the concepts described herein are contemplated.
According to certain aspects of the present invention, there are provided devices, constructions, arrangements and techniques that may optionally provide one or more of the following benefits or advantages: notifying the user that an inadequate sample volume has been collected or transported, and providing the user with an opportunity to re-apply a sample of body fluid in order to provide the necessary sample volume for analysis.
As used herein “digital” means fingers or toes, and encompasses lancing sites on the dorsal or palm side of the distal finger tips.
As used herein, “body fluid” encompasses whole blood, intestinal fluid, and mixtures thereof, as well as urine, saliva and other fluids contained in the body.
As used herein “integrated device” or “integrated meter” means a device or meter that includes all components necessary to perform sampling of body fluid, transport of body fluid, quantification of an analyte, and display of the amount of analyte contained in the sample of body fluid.
It is to be understood that reference herein to first, second, third and fourth components (etc.) does not limit the present invention to embodiments where each of these components is physically separable from one another. For example, a single physical element of the invention may perform the functions of more than one of the claimed first, second, third or fourth components. Conversely, a plurality of separate physical elements working together may perform the functions of one of the claimed first, second, third or fourth components. Similarly, reference to first, second (etc.) method steps does not limit the invention to only separate steps. According to the invention, a single method step may satisfy multiple steps described herein. Conversely, a plurality of method steps could, in combination, constitute a single method step recited herein. In addition, the steps of the method are not necessarily limited to the order in which they are described or claimed herein. The term “and” is generally intended to include the alternative of the terms appearing on either side thereof, and does not generally require the presence of both.
According to one aspect, the present invention is directed to a method of performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid by using a device comprising at least one analyte quantification member and a sensor associated therewith, the method comprising: applying a first sample to the analyte quantification member; detecting the presence or absence of an adequate sample volume; wherein upon detection of the absence of an adequate sample volume, initiating a finite timed period, and signaling the user to introduce a second sample of body fluid to the analyte quantification member.
According to another aspect, the present invention is directed to a device for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid, the device comprising: at least one analyte quantification member; at least one passageway in fluid communication with the at least one analyte quantification member; a sensor constructed and arranged to detect the presence or absence of an adequate sample volume applied to the at least one analyte quantification member; and a controller in signal communication with the sensor, the controller is configured and arranged such that upon detection of the absence of an adequate sample volume, the controller initiates a finite timed period and signals the user to introduce another sample of body fluid into the at least one passageway.
A device for collecting a sample of body fluid, the device comprising: a skin interface member and a skin penetration member, wherein at least one of the skin interface member and the skin penetration member comprises a guide element configured to direct the flow of body fluid in a desired direction toward a desired location.
The following description of preferred embodiments can be read in connection with the accompanying drawings in which like numerals designate like elements and in which:
According to a first aspect of the present invention, there are provided techniques for performing an assay to determine the presence and/or concentration of an analyte contained in a sample of body fluid. For example, according to the present invention, the techniques described herein can be used to analyze a sample of body fluid to quantify the amount of an analyte (e.g., glucose, bilirubin, alcohol, controlled substances, toxins, hormones, proteins, etc.) contained therein.
Exemplary methods performed according to the principles of the present invention are illustrated by the flowchart appearing in
Once a sample of body fluid has been produced, it is then applied to at least one analyte quantification member. Any suitable form of analyte quantification member may be utilized. Thus, for example, the analyte quantification member can be either electrochemical or photometric in nature. According to one particular illustrative, non-limiting embodiment, the least one analyte quantification member may comprise an assay pad containing a chemical reagent which is formulated such that a color change is produced upon reaction with a target analyte, as known per se to those skilled in the art.
At least one sensor is utilized to for purpose of detecting the presence or absence of an adequate sample volume. Any suitable sensor construction or arrangement may be utilized to detect, calculate and/or estimate sample volume. Thus, for example, the sensor may be either electrochemical or photometric in nature. The sensor may be separate and not otherwise associated with the least one analyte quantification member. According to one illustrative, non-limiting example, the sensor may comprise a flow sensor which detects, and possibly quantifies, the flow of body fluid to the least one analyte quantification member. Alternatively, the least one sensor may comprise an electrochemical or optical sensor that interrogates the at least one analyte quantification member to detect the presence of the sample of body fluid, and to calculate and/or estimate the volume of the sample. According to one non-limiting example, when the at least one analyte quantification member comprises an assay pad containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor can be used to interrogate the at least one analyte quantification member and detect this color change in those areas of the assay pad which have been contacted by the body fluid sample containing the target analyte. Examples of suitable sensors which can be utilized in this manner include, but are not limited to, CCD and CMOS type sensors. The sensor can also determine or estimate the area of the assay pad which has changed color due to contact with the sample of body fluid. This area can then be used by supporting electronics to calculate and/or estimate the volume of body fluid applied to the at least one analyte quantification member. A detailed explanation of such a calculation or estimation is contained in U.S. Pat. No. 7,052,652, the entire contents of which are incorporated herein by reference.
If the sensor determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within an acceptable time frame, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. Optionally, the user may be signaled by the device or meter that an adequate volume of sample has been detected. Any suitable audible and/or visual signal may be generated and used for this purpose. Thus, for example, a message containing alphanumeric characters and/or symbols can be generated on a display. Alternatively, a “green light” or other visual cue may be generated by any portion of a meter or device. In addition, an audible signal, such as a spoken message or audible cue may be generated instead of, or in addition to, the above mentioned visual signal. Again, any suitable technique can be utilized to detect the analyte and/or calculate its concentration. Thus, for example, both electrochemical and photometric techniques can be utilized. According to one non-limiting example, when at least one analyte quantification member comprises an assay pad containing a chemical reagent which produces a color change upon reaction with the target analyte, an optical sensor can be utilized to interrogate the at least one analyte quantification member, subsequent to the detection of an adequate sample volume, to detect to change in color produced by reaction between the target analyte and the chemical reagent. This change in color can then be correlated with a particular analyte concentration. This type of photometric analysis is known per se to those skilled in the art. Once a calculation of the amount of target analyte contained in the sample of body fluid has been performed, the results of the calculation can then be displayed for the user. Any suitable arrangement of conventional electronics and/or software components, which may include a controller, central processing unit (CPU), memory components, electrical connections, and the like, can be utilized in conjunction with the above-mentioned sensor and at least one analyte quantification member to perform the necessary calculations, and generate visual and/or audible signals.
If the sensor determines that an inadequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned time frame, according to the present invention steps are then taken in an attempt to salvage the assay. A second finite time period can be initiated which allows the user time to take additional steps to supply an adequate volume of body fluid. This second finite time period may comprise any suitable amount of time. According to illustrative non-limiting examples, the second finite time period can be less than one minute, or 45 seconds or less. The user may also be provided with a visual and/or audible signal to indicate that additional steps are necessary in order to apply an adequate volume of body fluid to perform the assay. This signaling may take place prior to the start of the finite time period, concurrently with the start of the finite time period, or subsequent to the start of the finite time period. Any suitable visual and/or audible signal may be utilized, as discussed above.
In response to receiving the signal to take additional steps to produce an adequate sample of body fluid, and present it to the least one analyte quantification member, any additional steps which could produce such additional sample volume may be undertaken. According to one non-limiting example, when the sample of body fluid has been produced by piercing the skin to create a wound from which body fluid can be expressed, the additional steps taken to increase the volume of the sample body fluid may include having the user apply a manual “milking” action in the vicinity of the wound. This is achieved by alternately squeezing and releasing the skin in the vicinity of the wound to express additional body fluid therefrom. This technique is well-known by people who have diabetes and regularly monitor their blood glucose levels, and is often successful in expressing a sufficient quantity of body fluid in order to perform an assay to determine blood glucose concentration.
Alternatively, some techniques and devices for producing a sample of body fluid by piercing the skin utilize some form of catalyst to increase the amount of body fluid expressed from the wound created by piercing the skin. Suitable catalysts include heat, pressure, vacuum, vibration, and topical drugs. These catalysts may be applied before, during, or after piercing the skin, or a combination of these times. According to the present invention, if an inadequate quantity of body fluid is produced after piercing the skin, upon receiving the above-mentioned signal that an inadequate sample body fluid has been detected, the user may then be instructed, or decide on their own, to administer a catalyst in the vicinity of the wound in an attempt to increase the amount of body fluid expressed therefrom, regardless of whether or not a catalyst was utilized in connection with the initial wound creation and body fluid sample extraction. Any suitable arrangement of conventional electronics and/or software components, which may include a controller, central processing unit (CPU), memory components, electrical connections, display components, and the like, can be utilized to generate visual and/or audible signals, which may include specific instructions with respect to the reapplication of a catalyst. It is comprehended within the scope of the present invention that the user may make one, or multiple attempts, to produce an adequate volume of body fluid within the second predetermined time period. If more than one attempt is made, the same technique (e.g., milking or application of a catalyst) can be repeated. Alternatively, the multiple attempts can comprise a combination of different techniques for expressing an adequate sample volume. By way of nonlimiting example, a user could attempt to milk additional body fluid from the wound one or more times, and if unsuccessful, then apply a catalyst to the wound site one or more times, all within the predetermined second time period. This technique or functionality is represented in the flow diagram appearing in
If the sensor determines that an inadequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned second finite time period, the assay may be terminated. An appropriate signal may be generated to indicate to the user that the assay has been terminated, or the testing event has failed.
If the sensor determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within the above-mentioned second time period, the assay can then continue. Thus, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. Again, any suitable technique can be utilized to detect the analyte and/or calculate its concentration. Thus, for example, both electrochemical and photometric techniques can be utilized, such as those non-limiting examples already discussed above. Once the analyte presence and/or concentration has been calculated, the results may be presented to the user by one or more of visual and audible signals.
Since body fluid such as blood may naturally attempt to coagulate upon exposure to the environment, it may be advantageous to take some measures which will permit the continued flow of body fluid after a certain period of time has elapsed. Thus, for example, a sample of body fluid may be applied to the at least one analyte quantification member which proves to have an inadequate volume. Upon detection of this inadequate volume, and with the optional signaling to the user of this condition, the additional steps discussed above may be taken in order to attempt to salvage the test. As mentioned above, these additional steps may take some period of time to complete. During the period of time which is elapsed since the first application of body fluid, the above-mentioned coagulation effect may impede or completely block the flow of additional sample which is subsequently applied. Therefore, according to the principles of the present invention, steps may be taken to prevent coagulation of the body fluid. One illustrative, non-limiting example would be to apply an anticoagulant material, at least partially, to one or more components or members within which the body fluid comes into contact. Examples of suitable anticoagulant materials may include, but are not limited to, aspirin, heparin and Coumadin®.
According to further aspects of the present invention, there are provided arrangements and/or devices which are constructed and arranged to have a more flexible mode of operation and that may achieve one or more of the advantages associated with the principles of the present invention. It is to be understood that any of the arrangements and/or devices described herein may be utilized to practice the techniques or methods of the present invention which have been previously described.
One embodiment of an arrangement 10 of the type described above may be in the form of a device, as illustrated in
The methods, arrangements and devices described herein may be used at, or applied to, a skin surface of a user at a suitable sampling site. One suitable sampling site is on a digit D. However, the methods, arrangements and devices are not necessarily so limited. For example, the methods, arrangements and devices described herein may be used or applied to any skin surface at any suitable sampling site which may include alternative sampling sites such as the forearm, thigh, etc.
According to the embodiment illustrated in
The arrangement 10 or device 11 may further optionally include a catalyst to assist in the sample acquisition process by enhancing or facilitating perfusion of body fluid at a sampling site. At least one of several catalysts may be utilized or included in the arrangement of the present invention. Possible catalysts include, heat, pressure, vacuum, vibration, and topical drugs (which induce vasodilatation and increases the blood or body fluid available at the lancing site). These catalysts may be applied before, during, after piercing of the skin, or in a combination with some or all three times, to facilitate expression of sufficient quantity of body fluid BF for determination of the concentration of an analyte (e.g., glucose) contained therein. According to the principles of the present invention, one or more of the above-described catalysts can be used in combination with each other, either concurrently or sequentially.
According to certain embodiments, a light vacuum (e.g., 3-8 in. Hg) is applied to the surface of the skin at the sampling site via opening 14, either before, during, and/or after piercing the skin. Several embodiments for applying vacuum to the wound site are contemplated. One embodiment uses a pump 18 to apply vacuum to the area of the skin via the opening 14. The pump 18 is in communication with the opening via any suitable mechanism, such as the illustrated fluid communication line 20. Alternative embodiments include using individually packaged vacuum chambers to apply vacuum, or using a syringe like mechanism to apply vacuum.
The arrangement 10 or device 11 may further comprise any suitable form of analyte quantification member 24. For example, the analyte quantification member 24 can be either electrochemical or photometric in nature. According to one particular illustrative, non-limiting embodiment, the least one analyte quantification member 24 may comprise an assay pad 26 containing a chemical reagent which is formulated such that the color changes produced upon reaction with a target analyte, as known per se to those skilled in the art. A sample of body fluid BF may be introduced to the analyte quantification member by any suitable construction or technique. For example, the sample of body fluid BF may be introduced via the opening 14 and/or passageway 22.
At least one sensor 28 may be provided in conjunction with the at least one analyte quantification member 24. Any suitable sensor 28 construction or arrangement may be provided to interrogate the at least one analyte quantification member 24. The sensor may be integrated with the analyte quantification member 24, or it may be separate and not otherwise associated therewith. For example, the analyte quantification member 24 can be analyzed by a sensor 28 that forms part of the arrangement 10 or device 11. Alternatively, the analyte quantification member 24 is removed or separate from the arrangement 10 or device 11, and inserted into an electrochemical or photometric meter.
The least one sensor 28 may comprise an electrochemical or optical sensor that interrogates the at least one analyte quantification member 24 to detect the presence of the sample of body fluid, and/or to calculate or estimate the volume of the sample. According to one non-limiting example, when the at least one analyte quantification member comprises an assay pad 26 containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor 28 can be used to interrogate the at least one analyte quantification member 24 and detect this color change in those areas of the assay pad 26 which have been contacted by the body fluid sample BF containing the target analyte. Examples of suitable optical sensors which can be utilized in this manner include, but are not limited to, CCD and CMOS type sensors. The sensor 28 can also determine or estimate the area of the assay pad which has changed color due to contact with the sample of body fluid. This area can then be used to calculate and/or estimate of the volume of body fluid applied to the at least one analyte quantification member. A detailed explanation of such a calculation or estimation is contained in U.S. Pat. No. 7,052,652, the entire contents of which are incorporated herein by reference.
The arrangement 10 or device 11 may further includes at least one skin-penetration member 30. The at least one skin-penetration member 30 can take any suitable form. For example, the at least one skin-penetration member can comprise a solid lancet or a hollow needle. Conventional arrangements often require separate mechanisms for drawing a sample of blood to the surface of the skin and for transporting the sample to a reaction chamber. The arrangements of the present invention can optionally include a skin-penetration member 30 in the form of a hollow needle having an inner lumen to both create a wound opening and transport the sample, thereby greatly simplifying and improving the effectiveness of the arrangement 10 or device 11.
According to one optional embodiment, the skin-penetration member(s) 30 can be in the form of a so-called “microneedle.” As the name implies, microneedles are characterizable by their relatively small outer diameters. For example, a microneedle, as the term is utilized herein, may encompass a skin-penetration member having an outside diameter which is on the order of 40-200 μm. When the microneedle is hollow and comprises an inner lumen, the inside diameter can vary. For example, having an inside diameter on the order of 25-160 μm. Needles are also characterizable in the art by reference to the “gage.” By way of illustration, and consistent with the above description, microneedles having a gage ranging from 26-36 are clearly comprehended by the present invention. Certain advantages may be gleaned from the use of such microneedles as the skin-penetration member. In particular, due to their small size, the size of the wound left upon entry into the skin is relatively small, thereby minimizing the pain associated with such needle insertions and allowing for a quicker healing process. However, the present invention is certainly not limited to the use of such microneedles. Thus, for example, according to one possible alternative embodiment, the skin penetration member(s) comprise hollow needles having a gage of about 20-25, or comprising hollow needles having an inner diameter of about 0.007 inches and an outer diameter of about 0.020 inches.
The at least one skin-penetration member 30 can be formed of any suitable material, such as metal, plastic, glass, etc. Optionally, the at least one skin penetration member can be in fluid communication with an analyte quantification member 24.
The at least one skin-penetration member 30, and/or the analyte quantification member 24 can be attached to an actuation element (not shown), such as a spring. The actuation element drives the at least one skin-penetration member 30 into the skin at the sampling site.
As further illustrated in
According to certain embodiments of the present invention, the arrangement 10 can operate in an automatic or semi-automatic manner. For example, a user may place the skin interface member 16 over the surface of the skin and when the user is ready to produce a sample of body fluid and/or perform an assay, the user initiates the process by, for example, pressing a button 33, touch screen or other interface device. This can initiate a programmed sequence of events in the device which may include one or more of actuation of a catalyst, and driving the skin-penetration member 30 into the skin. At a predetermined time, the catalyst is deactivated. This mode of operation can be characterized as “semi-automatic” in that sequence of events must be manually initiated by the user.
According to one alternative, the mode of operation can be fully automatic. For example, the user places the skin interface member 16 over the skin at a suitable sampling site. The arrangement 10 or device 11 can be provided with one or more sensor 17 that detect and verify that the skin of the user is properly located over the opening 14 and ready for the sampling procedure to begin. The one or more sensor can comprise any suitable sensor, such as a capacitive touch sensor, a resistive touch sensor a dome switch, or a microswitch. Once this state has been sensed, the device automatically activates a programmed sequence of events in the device which may include one or more of activation of a catalyst, and driving the skin-penetration member 30 into the skin. At a subsequent predetermined time, the catalyst device 14 is deactivated. The catalyst device can be deactivated before, during or after the skin-penetration member is driven into the skin.
An arrangement 10 or device 11 formed according to the principles of the present invention may also include supporting electronics. Thus, for example, the arrangement 10 or device 11 may include a controller 34 which is in signal communication 36 with the sensor 28 and the optional pump 18. The controller 34 may include a central processing unit, memory, control logic (e.g., code), power supply, supporting electronics, and the like, as familiar per se to those skilled in the art. The controller 34 controls the operations of the arrangement 10 or device 11.
The controller 34, in conjunction with one or more of the features of the arrangement 10 or device 11 described herein, may be used to execute one or more of the steps of the methods described above in connection with certain aspects of the present invention. Exemplary body fluid analysis methods which may be performed in conjunction with the above-described arrangement 10 or device 11, but are not necessarily limited thereto, is described as follows.
The manner in which the sample of body fluid is produced or collected is not critical to the practice of the techniques of the present invention. For example, in a situation where the methods or techniques of the present invention are practiced in the context of patient self-monitoring of blood glucose levels, or taking a blood glucose level measurements in a clinical setting, a small volume of blood can be produced by piercing the skin to create a wound at a sampling site from which the body fluid can be expressed. The sampling site that is chosen may include a digital skin surface, or an alternative sampling site such as the forearms, thighs, and the like. Thus, when the arrangement 10 is implemented in the form of an optional integrated device (e.g., 11), the skin can be pierced by the at least one skin-penetration member 30 to create a wound in the surface of the skin from which a sample of body fluid BF can be expressed.
Once a sample of body fluid BF has been produced, it is then applied to at least one analyte quantification member 24 via the opening 14 and/or passageway 22. The sensor 28 may optionally be utilized to for purpose of detecting the presence or absence of an adequate sample volume. According to one non-limiting example, when the at least one analyte quantification member 24 comprises an assay pad 26 containing a chemical reagent which changes color upon exposure to the target analyte, an optical sensor can be used to interrogate the at least one analyte quantification member and detect this color change in those areas of the assay pad 26 which have been contacted by the body fluid sample BF containing the target analyte. This area can then be used by supporting electronics (e.g., controller 34, central processing unit, memory, control logic (e.g., code), power supply, etc.) to calculate and/or estimate of the volume of body fluid applied to the at least one analyte quantification member as previously described herein.
If the sensor 28 determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member within an acceptable time frame, the controller 34 directs the assay to continue with the calculation of the presence and/or amount of analyte contained within the sample of body fluid. When at least one analyte quantification member 24 comprises an assay pad 26 containing a chemical reagent which produces a color change upon reaction with the target analyte, the sensor 28 can be utilized to interrogate the at least one analyte quantification member 24, subsequent to the detection of an adequate sample volume, to detect the change in color produced by reaction between the target analyte and the chemical reagent. This change in color can then be correlated with a particular analyte concentration. This type of photometric analysis is known per se to those skilled in the art. Once a calculation of the amount of target analyte contained in the sample of body fluid has been performed, the results of the calculation can then be visually presented on a display 38, or audibly communicated via a speaker 42, for the user.
If, as a result of the interrogation by the sensor 28, it is determined that an inadequate volume of body fluid BF has been introduced to the least one analyte quantification member 24 within the above-mentioned time frame, according to the present invention steps are then taken in an attempt to salvage the assay. A second finite time period can be initiated by the controller 34 which allows the user time to take additional steps to apply an adequate volume of body fluid. This second finite time period may comprise any suitable amount of time. According to illustrative non-limiting examples, the second finite time period can be less than one minute, or 45 seconds or less. The controller 34 may also provide the user with a visual signal 40 on the display 38, and/or audible signal via speaker 42, to indicate that additional steps are necessary in order to apply an adequate volume of body fluid to perform the assay. This signaling may take place prior to the start of the finite time period, concurrently with the start of the finite time period, or subsequent to the start of the finite time period.
In response to receiving the signal to take additional steps to produce an adequate sample of body fluid, and present it to the at least one analyte quantification member 24, any additional steps which could produce such additional sample volume may be undertaken. According to one non-limiting example, when the sample of body fluid has been produced by piercing the skin to create a wound from which body fluid can be expressed, the additional steps taken to increase the volume of the sample body fluid may include having the user or apply a manual “milking” action in the vicinity of the wound. This is achieved by alternately squeezing and releasing the skin in the vicinity of the wound to express additional body fluid therefrom. This technique is well-known by people who have diabetes and regularly monitor their blood glucose levels, and is often successful in expressing a sufficient quantity of body fluid in order to perform an assay to determine blood glucose concentration. Once additional sample has been milked from the wound, the additional or “second” sample is applied to the analyte quantification member 24 via the opening 14 and/or passageway 22.
Alternatively, if an inadequate quantity of body fluid BF is produced after piercing the skin in conjunction with a first application of a catalyst, upon receiving the above-mentioned signal that an inadequate sample body fluid has been detected, the user may then be instructed via the aforementioned signaling, or decide on their own, to administer a catalyst of in the vicinity of the wound in an attempt to increase the amount of body fluid expressed therefrom regardless of whether a catalyst was used in conjunction with initial wound creation and body fluid sample extraction. Thus, for example, when a vacuum catalyst is utilized the user may be instructed, or decide on their own, to place the skin interface member 16 over the wound and reapply the vacuum catalyst. The catalyst can be applied in any suitable manner. Thus, after placing the skin interface member 16 over the wound, the user can initiate the catalyst by pressing a button 33, touchscreen or any other suitable interface device. Alternatively, the application of the catalyst may be automatically initiated through sensing that the skin is properly located over the skin interface member 16, as described above.
If the sensor 28 determines that an inadequate volume of body fluid BF has been introduced to the least one analyte quantification member 24 within the above-mentioned second finite time frame, the assay may be terminated. An appropriate signal may be generated on the display 38 or via the speaker 42 to indicate to the user that the assay has been terminated, or the testing event has failed.
If the sensor 28 determines that an adequate volume of body fluid has been introduced to the least one analyte quantification member 24 within the above-mentioned second time frame, the assay can then continue. Thus, the assay continues with the calculation of the presence and/or amount of analyte contained within the sample of body fluid in the manner described above. Once the analyte presence and/or concentration has been calculated, the results may be presented to the user through one or more of visual and audible signals via the display 38 or speaker 42.
Since body fluid such as blood may naturally attempt to coagulate upon exposure to the environment, it may be advantageous to take some measures which will permit the continued flow of body fluid after a certain period of time has elapsed. Thus, according to one illustrative, non-limiting example an anticoagulant material may be applied, at least partially, to one or more of the opening 14, skin interface member 16, passageway 22, or any other components or members with which the body fluid comes into contact. Examples of suitable anticoagulant materials may include, but are not limited to, aspirin, heparin and Coumadin®. According to a further alternative embodiment, and additional agent or material may be applied to either the opening 14, skin interface member 16, passageway 22, or other components are members with which the body fluid comes into contact that improves the flow of body fluid. Such additional agents or materials include, for example, Silwet®. According to additional alternative embodiment, one or more of the above-mentioned parts or components of the arrangement 10 or device 11 can be coated with a combination of these two types of materials. According to one illustrative, non-limiting example, one or more of the above-mentioned parts or components are coated with a solution having a composition such as: 49.4 ml of sterile water+49.4 ml of sterile isopropyl alcohol+0.8 ml of Silwet™ L7600+0.46 grams of low molecular weight heparin.
Devices, arrangements and techniques according to additional optional embodiments are illustrated in
As further illustrated in
An arrangement 600 constructed according to a further alternative embodiment is depicted in
Numbers expressing quantities of ingredients, constituents, reaction conditions, and so forth used in this specification are to be understood as being modified in all instances by the term “about.” Notwithstanding that the numerical ranges and parameters setting forth, the broad scope of the subject matter presented herein are approximations, the numerical values set forth are indicated as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective measurement techniques. None of the elements recited in the appended claims should be interpreted as invoking 35 U.S.C. § 112, ¶6, unless the term “means” is explicitly used.
Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 12/457,331, filed Jun. 8, 2009, issued as U.S. Pat. No. 9,636,051 on May 2, 2017, the disclosure of which is hereby incorporated by reference in its entirety, and which claims priority to U.S. Patent Application No. 61/129,149, filed Jun. 6, 2008.
Number | Name | Date | Kind |
---|---|---|---|
842690 | Oswalt | Jan 1907 | A |
D137874 | Partridge | May 1944 | S |
2749797 | Harks | Mar 1950 | A |
3092465 | Adams, Jr. | Jun 1963 | A |
3310002 | Wilburn | Mar 1967 | A |
3620209 | Kravitz | Nov 1971 | A |
3623475 | Sanz et al. | Nov 1971 | A |
3626929 | Sanz et al. | Dec 1971 | A |
3630957 | Rey | Dec 1971 | A |
D223165 | Komendat | Mar 1972 | S |
3723064 | Liotta | Mar 1973 | A |
3741197 | Sanz et al. | Jun 1973 | A |
3961898 | Neeley et al. | Jun 1976 | A |
3992158 | Przybylowicz et al. | Nov 1976 | A |
4014328 | Cluff et al. | Mar 1977 | A |
4042335 | Clement | Aug 1977 | A |
4057394 | Genshaw | Nov 1977 | A |
4109655 | Chacornac | Aug 1978 | A |
4250257 | Lee et al. | Feb 1981 | A |
4253083 | Imamura | Feb 1981 | A |
4254083 | Columbus | Mar 1981 | A |
4258001 | Pierce et al. | Mar 1981 | A |
4260257 | Neeley et al. | Apr 1981 | A |
4289459 | Neeley et al. | Sep 1981 | A |
4321397 | Nix et al. | Mar 1982 | A |
4350762 | DeLuca et al. | Sep 1982 | A |
4394512 | Batz | Jul 1983 | A |
4414975 | Ryder et al. | Nov 1983 | A |
4416279 | Lindner et al. | Nov 1983 | A |
4418037 | Katsuyama et al. | Nov 1983 | A |
4422941 | Vaughan, Jr. et al. | Dec 1983 | A |
4429700 | Thees et al. | Feb 1984 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4637406 | Guinn et al. | Jan 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4661319 | Lape | Apr 1987 | A |
4702261 | Cornell et al. | Oct 1987 | A |
4711250 | Gilbaugh, Jr. et al. | Dec 1987 | A |
4737458 | Batz et al. | Apr 1988 | A |
4747687 | Hoppe et al. | May 1988 | A |
4767415 | Duffy | Aug 1988 | A |
4774192 | Terminiello et al. | Sep 1988 | A |
4787398 | Garcia et al. | Nov 1988 | A |
4790979 | Terminiello et al. | Dec 1988 | A |
4794926 | Munsch et al. | Jan 1989 | A |
4815843 | Tiefenthaler et al. | Mar 1989 | A |
4829470 | Wang | May 1989 | A |
4844095 | Chiodo et al. | Jul 1989 | A |
4846785 | Cassou et al. | Jul 1989 | A |
4887306 | Hwang et al. | Dec 1989 | A |
4920977 | Haynes | May 1990 | A |
4929426 | Bodai et al. | May 1990 | A |
4930525 | Palestrant | Jun 1990 | A |
4935346 | Phillips | Jun 1990 | A |
4953552 | De Marzo | Sep 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4983178 | Schnell | Jan 1991 | A |
4995402 | Smith | Feb 1991 | A |
5029583 | Meserol | Jul 1991 | A |
5035704 | Lambert et al. | Jul 1991 | A |
5037199 | Hlousek | Aug 1991 | A |
5049487 | Phillips et al. | Sep 1991 | A |
5050617 | Columbus et al. | Sep 1991 | A |
5054878 | Gergely et al. | Oct 1991 | A |
5059394 | Phillips et al. | Oct 1991 | A |
5077199 | Basagni et al. | Dec 1991 | A |
5094943 | Siedel et al. | Mar 1992 | A |
5110724 | Hewett | May 1992 | A |
5114350 | Hewett | May 1992 | A |
5116759 | Klainer et al. | May 1992 | A |
5131404 | Neeley et al. | Jul 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5145565 | Kater et al. | Sep 1992 | A |
5146437 | Boucheron | Sep 1992 | A |
5153416 | Neeley | Oct 1992 | A |
5164575 | Neeley et al. | Nov 1992 | A |
5166498 | Neeley | Nov 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5176632 | Bernardi | Jan 1993 | A |
5179005 | Phillips et al. | Jan 1993 | A |
5183741 | Arai et al. | Feb 1993 | A |
5194393 | Hugl et al. | Mar 1993 | A |
5196302 | Kidwell | Mar 1993 | A |
5208163 | Charlton et al. | May 1993 | A |
5213966 | Vuorinen et al. | May 1993 | A |
5217480 | Habar et al. | Jun 1993 | A |
5218966 | Yamasawa | Jun 1993 | A |
5223219 | Subramanian et al. | Jun 1993 | A |
5228972 | Osaka et al. | Jul 1993 | A |
5234818 | Zimmermann et al. | Aug 1993 | A |
5241969 | Carson et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5269800 | Davis, Jr. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5278079 | Gubinski et al. | Jan 1994 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5288646 | Lundsgaard et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5301686 | Newman | Apr 1994 | A |
5302513 | Mike et al. | Apr 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5306623 | Kiser et al. | Apr 1994 | A |
5308767 | Terashima | May 1994 | A |
5314441 | Cusack et al. | May 1994 | A |
5320607 | Ishibashi | Jun 1994 | A |
5354537 | Moreno | Oct 1994 | A |
5360595 | Bell et al. | Nov 1994 | A |
5368047 | Suzuki et al. | Nov 1994 | A |
5383512 | Jarvis | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5395388 | Schraga | Mar 1995 | A |
5399316 | Yamada | Mar 1995 | A |
5401110 | Neeley | Mar 1995 | A |
5402798 | Swierczek et al. | Apr 1995 | A |
5426032 | Phillips et al. | Jun 1995 | A |
5441513 | Roth | Aug 1995 | A |
5451350 | Macho et al. | Sep 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5460777 | Kitajima et al. | Oct 1995 | A |
5460968 | Yoshida et al. | Oct 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5506200 | Hirschkoff et al. | Apr 1996 | A |
5507288 | Böcker et al. | Apr 1996 | A |
5508200 | Tiffany et al. | Apr 1996 | A |
5510266 | Bonner et al. | Apr 1996 | A |
5514152 | Smith | May 1996 | A |
5518689 | Dosmann et al. | May 1996 | A |
5525518 | Lundsgaard et al. | Jun 1996 | A |
5527892 | Borsotti et al. | Jun 1996 | A |
5563042 | Phillips et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569287 | Tezuka et al. | Oct 1996 | A |
5575403 | Charlton et al. | Nov 1996 | A |
5577499 | Teves | Nov 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5591139 | Lin et al. | Jan 1997 | A |
5593838 | Zanzucchi et al. | Jan 1997 | A |
5602647 | Xu et al. | Feb 1997 | A |
5611809 | Marshall et al. | Mar 1997 | A |
5611999 | Dosmann et al. | Mar 1997 | A |
5624458 | Lipscher | Apr 1997 | A |
5630986 | Charlton et al. | May 1997 | A |
5632410 | Moulton et al. | May 1997 | A |
5636632 | Bommannan et al. | Jun 1997 | A |
5638828 | Lauks et al. | Jun 1997 | A |
5647851 | Pokras | Jul 1997 | A |
5658515 | Lee et al. | Aug 1997 | A |
5660791 | Brenneman et al. | Aug 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5676850 | Reed et al. | Oct 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5681484 | Zanzucchi et al. | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5697901 | Eriksson | Dec 1997 | A |
5701181 | Boiarski et al. | Dec 1997 | A |
5701910 | Powles et al. | Dec 1997 | A |
D389761 | Thomas | Jan 1998 | S |
5705018 | Hartley | Jan 1998 | A |
5708247 | McAleer | Jan 1998 | A |
5708787 | Nakano et al. | Jan 1998 | A |
5715417 | Gardien et al. | Feb 1998 | A |
5730753 | Morita | Mar 1998 | A |
5735273 | Kurnik et al. | Apr 1998 | A |
5736103 | Pugh | Apr 1998 | A |
5741211 | Renirie et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5753452 | Smith | May 1998 | A |
5757666 | Schreiber et al. | May 1998 | A |
5759364 | Charlton et al. | Jun 1998 | A |
5766066 | Ranniger | Jun 1998 | A |
5771890 | Tamada | Jun 1998 | A |
5789255 | Yu | Aug 1998 | A |
5797693 | Jaeger | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5820570 | Erickson et al. | Oct 1998 | A |
5827183 | Kurnik et al. | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5843692 | Phillips et al. | Dec 1998 | A |
5846837 | Thym et al. | Dec 1998 | A |
5851215 | Mawhirt et al. | Dec 1998 | A |
5854074 | Charlton et al. | Dec 1998 | A |
D403975 | Douglas et al. | Jan 1999 | S |
5855801 | Lin et al. | Jan 1999 | A |
5856195 | Charlton et al. | Jan 1999 | A |
5858194 | Bell | Jan 1999 | A |
5866281 | Guckel et al. | Feb 1999 | A |
5866349 | Lilja et al. | Feb 1999 | A |
5871494 | Simons et al. | Feb 1999 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5879326 | Godshall et al. | Mar 1999 | A |
5879367 | Latterell et al. | Mar 1999 | A |
5885839 | Lingane et al. | Mar 1999 | A |
5891053 | Sesekura | Apr 1999 | A |
5893870 | Talen et al. | Apr 1999 | A |
D411621 | Eisenbarth et al. | Jun 1999 | S |
5911711 | Pelkey | Jun 1999 | A |
5911737 | Lee et al. | Jun 1999 | A |
5912139 | Iwata et al. | Jun 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5926271 | Couderc et al. | Jul 1999 | A |
5928207 | Pisano et al. | Jul 1999 | A |
5930873 | Wyser | Aug 1999 | A |
5938679 | Freeman et al. | Aug 1999 | A |
5945678 | Yanagisawa | Aug 1999 | A |
5951492 | Douglas et al. | Sep 1999 | A |
5951493 | Douglas et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5954685 | Tierney | Sep 1999 | A |
5962215 | Douglas et al. | Oct 1999 | A |
5968760 | Phillips et al. | Oct 1999 | A |
5968765 | Grage et al. | Oct 1999 | A |
5968836 | Matzinger et al. | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5972294 | Smith et al. | Oct 1999 | A |
5986754 | Harding | Nov 1999 | A |
5989409 | Kurnik et al. | Nov 1999 | A |
5993189 | Mueller et al. | Nov 1999 | A |
D417504 | Love et al. | Dec 1999 | S |
6001067 | Shults et al. | Dec 1999 | A |
6005545 | Nishida et al. | Dec 1999 | A |
6010463 | Lauks et al. | Jan 2000 | A |
6010519 | Mawhirt et al. | Jan 2000 | A |
6014135 | Fernandes | Jan 2000 | A |
6014577 | Henning et al. | Jan 2000 | A |
6015969 | Nathel et al. | Jan 2000 | A |
6023629 | Tamada | Feb 2000 | A |
6027459 | Shain et al. | Feb 2000 | A |
6030827 | Davis et al. | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6041253 | Kost et al. | Mar 2000 | A |
6045753 | Loewy et al. | Apr 2000 | A |
6048352 | Douglas et al. | Apr 2000 | A |
6050988 | Zuck | Apr 2000 | A |
6056701 | Duchon et al. | May 2000 | A |
6056734 | Jacobsen et al. | May 2000 | A |
6058321 | Swayze et al. | May 2000 | A |
6059815 | Lee et al. | May 2000 | A |
6061128 | Zweig et al. | May 2000 | A |
6063039 | Cunningham et al. | May 2000 | A |
6071251 | Cunningham et al. | Jun 2000 | A |
6071294 | Simons et al. | Jun 2000 | A |
6077660 | Wong et al. | Jun 2000 | A |
6080116 | Erickson et al. | Jun 2000 | A |
6083196 | Trautman et al. | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6090790 | Eriksson | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6093156 | Cunningham et al. | Jul 2000 | A |
6097831 | Wieck et al. | Aug 2000 | A |
6099484 | Douglas et al. | Aug 2000 | A |
6100107 | Lei et al. | Aug 2000 | A |
6102933 | Lee et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6103197 | Werner | Aug 2000 | A |
6106751 | Talbot et al. | Aug 2000 | A |
6118126 | Zanzucchi | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121050 | Han | Sep 2000 | A |
6123861 | Santini, Jr. et al. | Sep 2000 | A |
6126899 | Woudenberg et al. | Oct 2000 | A |
6132449 | Lum et al. | Oct 2000 | A |
6139562 | Mauze et al. | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6152942 | Brenneman et al. | Nov 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6172743 | Kley et al. | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6176865 | Mauze et al. | Jan 2001 | B1 |
6183434 | Eppstein et al. | Feb 2001 | B1 |
6183489 | Douglas et al. | Feb 2001 | B1 |
6184990 | Amirkhanian et al. | Feb 2001 | B1 |
6187210 | Lebouiz et al. | Feb 2001 | B1 |
6192891 | Gravel et al. | Feb 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6197257 | Raskas | Mar 2001 | B1 |
6200296 | Dibiasi et al. | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6214626 | Meller et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6228100 | Schraga | May 2001 | B1 |
6230051 | Cormier et al. | May 2001 | B1 |
6231531 | Lum et al. | May 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6242207 | Douglas et al. | Jun 2001 | B1 |
6245215 | Douglas et al. | Jun 2001 | B1 |
6246966 | Perry | Jun 2001 | B1 |
6251083 | Yum et al. | Jun 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6255061 | Mori et al. | Jul 2001 | B1 |
6256533 | Yuzhakov et al. | Jul 2001 | B1 |
6268162 | Phillips et al. | Jul 2001 | B1 |
6271045 | Douglas et al. | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6283926 | Cunningham et al. | Sep 2001 | B1 |
6289230 | Chaiken et al. | Sep 2001 | B1 |
6298254 | Tamada | Oct 2001 | B2 |
6299578 | Kurnik et al. | Oct 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309351 | Kurnik et al. | Oct 2001 | B1 |
D450711 | Istvan et al. | Nov 2001 | S |
6312612 | Sherman et al. | Nov 2001 | B1 |
6312888 | Wong et al. | Nov 2001 | B1 |
6315738 | Nishikawa et al. | Nov 2001 | B1 |
6322808 | Trautman et al. | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6331266 | Powell et al. | Dec 2001 | B1 |
6332871 | Douglas et al. | Dec 2001 | B1 |
6334856 | Allen et al. | Jan 2002 | B1 |
6350273 | Minagawa et al. | Feb 2002 | B1 |
6352514 | Douglas et al. | Mar 2002 | B1 |
6356776 | Berner et al. | Mar 2002 | B1 |
6358265 | Thorne, Jr. et al. | Mar 2002 | B1 |
6364890 | Lum et al. | Apr 2002 | B1 |
6375626 | Allen et al. | Apr 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379969 | Mauze et al. | Apr 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6391645 | Huang et al. | May 2002 | B1 |
6402704 | McMorrow | Jun 2002 | B1 |
6409679 | Pyo | Jun 2002 | B2 |
6428664 | BhulLar et al. | Aug 2002 | B1 |
6449608 | Morita et al. | Sep 2002 | B1 |
6455324 | Douglas | Sep 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6500134 | Cassone | Dec 2002 | B1 |
6520973 | McGarry | Feb 2003 | B1 |
6530892 | Kelly | Mar 2003 | B1 |
6537243 | Henning et al. | Mar 2003 | B1 |
6540675 | Aceti et al. | Apr 2003 | B2 |
6544193 | Abreu | Apr 2003 | B2 |
6544475 | Douglas et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6555061 | Leong et al. | Apr 2003 | B1 |
6558624 | Lemmon et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6589260 | Schmelzeisen-Redeker et al. | Jul 2003 | B1 |
6591124 | Sherman et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6602205 | Erickson et al. | Aug 2003 | B1 |
6612111 | Hodges et al. | Sep 2003 | B1 |
6616616 | Fritz et al. | Sep 2003 | B2 |
6626874 | Duchamp | Sep 2003 | B1 |
6656167 | Numao et al. | Dec 2003 | B2 |
6662031 | Khalil et al. | Dec 2003 | B1 |
6679852 | Schmelzeisen-Redeker et al. | Jan 2004 | B1 |
6690467 | Reel | Feb 2004 | B1 |
6706000 | Perez et al. | Mar 2004 | B2 |
6706049 | Moerman | Mar 2004 | B2 |
6706159 | Moerman et al. | Mar 2004 | B2 |
6707554 | Miltner et al. | Mar 2004 | B1 |
6740800 | Cunningham | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6744502 | Hoff et al. | Jun 2004 | B2 |
6748275 | Lattner et al. | Jun 2004 | B2 |
6753187 | Cizdziel et al. | Jun 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6775001 | Friberg et al. | Aug 2004 | B2 |
6793633 | Douglas et al. | Sep 2004 | B2 |
6830669 | Miyazaki et al. | Dec 2004 | B2 |
6836678 | Tu | Dec 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6847451 | Pugh | Jan 2005 | B2 |
6849052 | Uchigaki et al. | Feb 2005 | B2 |
6890421 | Ohara et al. | May 2005 | B2 |
6896850 | Subramanian et al. | May 2005 | B2 |
6903815 | Uchiyama et al. | Jun 2005 | B2 |
6918404 | Da Silva | Jul 2005 | B2 |
6919960 | Hansen et al. | Jul 2005 | B2 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6936476 | Anderson et al. | Aug 2005 | B1 |
D511214 | Sasano et al. | Nov 2005 | S |
6988996 | Roe et al. | Jan 2006 | B2 |
7004928 | Aceti et al. | Feb 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
D519868 | Sasano et al. | May 2006 | S |
7052652 | Zanzucchi et al. | May 2006 | B2 |
7066586 | Da Silva | Jun 2006 | B2 |
7066890 | Lam et al. | Jun 2006 | B1 |
7141058 | Briggs et al. | Nov 2006 | B2 |
7154592 | Reynolds et al. | Dec 2006 | B2 |
7156809 | Quy | Jan 2007 | B2 |
7163616 | Vreeke et al. | Jan 2007 | B2 |
7183552 | Russell | Feb 2007 | B2 |
7192061 | Martin | Mar 2007 | B2 |
7192405 | DeNuzzio et al. | Mar 2007 | B2 |
D540343 | Cummins | Apr 2007 | S |
7223365 | Von Der Goltz | May 2007 | B2 |
7225008 | Ward et al. | May 2007 | B1 |
7226461 | Boecker et al. | Jun 2007 | B2 |
7229458 | Boecker et al. | Jun 2007 | B2 |
7258673 | Racchini et al. | Aug 2007 | B2 |
D551243 | Young | Sep 2007 | S |
7270970 | Anderson et al. | Sep 2007 | B2 |
7297151 | Boecker et al. | Nov 2007 | B2 |
7299081 | Mace et al. | Nov 2007 | B2 |
7316700 | Alden et al. | Jan 2008 | B2 |
7323141 | Kirchhevel et al. | Jan 2008 | B2 |
7323315 | Marfurt | Jan 2008 | B2 |
7341830 | Horn et al. | Mar 2008 | B2 |
7343188 | Sohrab | Mar 2008 | B2 |
7344507 | Briggs et al. | Mar 2008 | B2 |
7377904 | Conway et al. | May 2008 | B2 |
7379167 | Mawhirt et al. | May 2008 | B2 |
7427377 | Zanzucchi et al. | Sep 2008 | B2 |
7439033 | Marfurt | Oct 2008 | B2 |
D580068 | Shigesada et al. | Nov 2008 | S |
D580558 | Shigesada et al. | Nov 2008 | S |
7501053 | Karinka et al. | Mar 2009 | B2 |
7537571 | Freeman et al. | May 2009 | B2 |
D599373 | Kobayashi et al. | Sep 2009 | S |
D601257 | Berlinger et al. | Sep 2009 | S |
7582063 | Wurster et al. | Sep 2009 | B2 |
7585278 | Aceti et al. | Sep 2009 | B2 |
D601444 | Jones et al. | Oct 2009 | S |
D601578 | Poulet et al. | Oct 2009 | S |
7655019 | LeVaughn et al. | Feb 2010 | B2 |
7682318 | Alden et al. | Mar 2010 | B2 |
7708701 | Boecker et al. | May 2010 | B2 |
7713214 | Freeman et al. | May 2010 | B2 |
7725149 | Peyser et al. | May 2010 | B2 |
D622393 | Gatrall et al. | Aug 2010 | S |
7780631 | Lum et al. | Aug 2010 | B2 |
7803123 | Perez et al. | Sep 2010 | B2 |
7819822 | Calasso et al. | Oct 2010 | B2 |
7841992 | Freeman et al. | Nov 2010 | B2 |
7850621 | Briggs et al. | Dec 2010 | B2 |
7879058 | Ikeda | Feb 2011 | B2 |
7883473 | LeVaughn et al. | Feb 2011 | B2 |
7887494 | Emery et al. | Feb 2011 | B2 |
7892183 | Boecker et al. | Feb 2011 | B2 |
7955492 | Fujiwara et al. | Jun 2011 | B2 |
7959583 | DeNuzzio et al. | Jun 2011 | B2 |
7964372 | Marfurt | Jun 2011 | B2 |
D642191 | Barnett et al. | Jul 2011 | S |
7972861 | Deng et al. | Jul 2011 | B2 |
7988644 | Freeman et al. | Aug 2011 | B2 |
8012103 | Escutia et al. | Sep 2011 | B2 |
8012104 | Escutia et al. | Sep 2011 | B2 |
8105849 | McDevitt et al. | Jan 2012 | B2 |
D654926 | Lipman et al. | Feb 2012 | S |
8173439 | Petrich et al. | May 2012 | B2 |
8184273 | Dosmann et al. | May 2012 | B2 |
8202231 | Freeman et al. | Jun 2012 | B2 |
8231832 | Zanzucchi et al. | Jul 2012 | B2 |
8251920 | Vreeke et al. | Aug 2012 | B2 |
8262614 | Freeman et al. | Sep 2012 | B2 |
8267870 | Freeman et al. | Sep 2012 | B2 |
8280476 | Jina | Oct 2012 | B2 |
8298255 | Conway et al. | Oct 2012 | B2 |
8303518 | Aceti et al. | Nov 2012 | B2 |
8360993 | Escutia et al. | Jan 2013 | B2 |
8360994 | Escutia et al. | Jan 2013 | B2 |
8372015 | Escutia et al. | Feb 2013 | B2 |
8372016 | Freeman et al. | Feb 2013 | B2 |
8376959 | Deck | Feb 2013 | B2 |
8382680 | Kistner et al. | Feb 2013 | B2 |
8382681 | Escutia et al. | Feb 2013 | B2 |
8391940 | Matzinger et al. | Mar 2013 | B2 |
8419657 | Roe | Apr 2013 | B2 |
D691174 | Lipman et al. | Oct 2013 | S |
8574168 | Freeman et al. | Nov 2013 | B2 |
8574895 | Freeman et al. | Nov 2013 | B2 |
8696880 | Beer et al. | Apr 2014 | B2 |
8702624 | Alden | Apr 2014 | B2 |
8795201 | Escutia et al. | Aug 2014 | B2 |
8801631 | Escutia et al. | Aug 2014 | B2 |
8919605 | Lipman et al. | Dec 2014 | B2 |
8920455 | Roe | Dec 2014 | B2 |
8969097 | Emery et al. | Mar 2015 | B2 |
9017356 | Schraga et al. | Apr 2015 | B2 |
9034639 | Freeman et al. | May 2015 | B2 |
9060723 | Escutia et al. | Jun 2015 | B2 |
9060727 | Saikley et al. | Jun 2015 | B2 |
9063102 | Hoenes et al. | Jun 2015 | B2 |
9089678 | Freeman et al. | Jul 2015 | B2 |
9095292 | Zanzucchi et al. | Aug 2015 | B2 |
9095847 | Porsch et al. | Aug 2015 | B2 |
9097679 | List et al. | Aug 2015 | B2 |
9101302 | Mace et al. | Aug 2015 | B2 |
9131886 | Harttig et al. | Sep 2015 | B2 |
9138179 | Hoenes et al. | Sep 2015 | B2 |
9149215 | Werner et al. | Oct 2015 | B2 |
9173608 | Kuhr et al. | Nov 2015 | B2 |
9179872 | Roe et al. | Nov 2015 | B2 |
9186097 | Frey et al. | Nov 2015 | B2 |
9186104 | Kraemer et al. | Nov 2015 | B2 |
9186468 | Freeman et al. | Nov 2015 | B2 |
9226704 | Deck | Jan 2016 | B2 |
9301171 | List et al. | Apr 2016 | B2 |
9314194 | Deshmukh et al. | Apr 2016 | B2 |
9326718 | Petrich et al. | May 2016 | B2 |
9332931 | Chan | May 2016 | B2 |
9332932 | Okuyama et al. | May 2016 | B2 |
9339612 | Freeman et al. | May 2016 | B2 |
9351680 | Boecker et al. | May 2016 | B2 |
9364172 | Konya et al. | Jun 2016 | B2 |
9366636 | Emery et al. | Jun 2016 | B2 |
9375169 | Choi et al. | Jun 2016 | B2 |
9375177 | Planman et al. | Jun 2016 | B2 |
9380963 | Gofman et al. | Jul 2016 | B2 |
9380974 | Litherland et al. | Jul 2016 | B2 |
9386944 | Freeman et al. | Jul 2016 | B2 |
9392968 | Schraga | Jul 2016 | B2 |
9439591 | Frey et al. | Sep 2016 | B2 |
9463463 | He et al. | Oct 2016 | B2 |
9480419 | Weiss et al. | Nov 2016 | B2 |
9480420 | Konya et al. | Nov 2016 | B2 |
9486164 | Roe | Nov 2016 | B2 |
9488585 | Emeric et al. | Nov 2016 | B2 |
9517027 | Kan et al. | Dec 2016 | B2 |
9560993 | Freeman | Feb 2017 | B2 |
9561000 | Lum | Feb 2017 | B2 |
9573761 | List | Feb 2017 | B2 |
9599552 | Baldus et al. | Mar 2017 | B2 |
9603562 | Aceti et al. | Mar 2017 | B2 |
9636051 | Emery et al. | May 2017 | B2 |
9668687 | Volkmuth et al. | Jun 2017 | B2 |
9671387 | Thoes et al. | Jun 2017 | B2 |
9717452 | Roe et al. | Aug 2017 | B2 |
9724021 | Freeman et al. | Aug 2017 | B2 |
9730625 | Krasnow et al. | Aug 2017 | B2 |
9782114 | Reynolds et al. | Oct 2017 | B2 |
9795334 | Freeman et al. | Oct 2017 | B2 |
9820684 | Freeman et al. | Nov 2017 | B2 |
9833183 | Escutia et al. | Dec 2017 | B2 |
9839384 | Escutia et al. | Dec 2017 | B2 |
9877676 | Konya et al. | Jan 2018 | B2 |
9880254 | Richter et al. | Jan 2018 | B2 |
9883828 | Haar et al. | Feb 2018 | B2 |
9897610 | Lipman et al. | Feb 2018 | B2 |
9927386 | Wang et al. | Mar 2018 | B2 |
9931478 | Hirshberg et al. | Apr 2018 | B2 |
9939403 | Richter et al. | Apr 2018 | B2 |
9939404 | Richter et al. | Apr 2018 | B2 |
9943256 | Varsavsky et al. | Apr 2018 | B2 |
9943259 | Kuhr et al. | Apr 2018 | B2 |
9949679 | Renlund | Apr 2018 | B2 |
9965587 | Aykroyd et al. | May 2018 | B2 |
9968284 | Vidalis et al. | May 2018 | B2 |
9974471 | Kam et al. | May 2018 | B1 |
9983140 | Dickopf | May 2018 | B2 |
9987427 | Polsky et al. | Jun 2018 | B1 |
10034628 | Freeman et al. | Jul 2018 | B2 |
10080517 | Chen et al. | Sep 2018 | B2 |
10194838 | Weiss et al. | Feb 2019 | B2 |
10226208 | Emery et al. | Mar 2019 | B2 |
10278621 | List | May 2019 | B2 |
10309905 | Dickopf | Jun 2019 | B2 |
10327689 | Krasnow et al. | Jun 2019 | B2 |
10330667 | Lipman et al. | Jun 2019 | B2 |
10383556 | Lipman et al. | Aug 2019 | B2 |
10429337 | Malecha et al. | Oct 2019 | B2 |
10433780 | Escutia et al. | Oct 2019 | B2 |
10441205 | Litherland et al. | Oct 2019 | B2 |
10729386 | Lipman et al. | Aug 2020 | B2 |
10772550 | Aceti et al. | Sep 2020 | B2 |
10842427 | Escutia et al. | Nov 2020 | B2 |
11002743 | Lipman et al. | May 2021 | B2 |
11051734 | Escutia et al. | Jul 2021 | B2 |
20010001034 | Douglas | May 2001 | A1 |
20010027328 | Lum et al. | Oct 2001 | A1 |
20010053891 | Ackley | Dec 2001 | A1 |
20020002326 | Causey, III et al. | Jan 2002 | A1 |
20020002344 | Douglas et al. | Jan 2002 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020006355 | Whitson | Jan 2002 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020020688 | Sherman et al. | Feb 2002 | A1 |
20020022934 | Vogel et al. | Feb 2002 | A1 |
20020023852 | Mcivor et al. | Feb 2002 | A1 |
20020042594 | Lum et al. | Apr 2002 | A1 |
20020045243 | Laska et al. | Apr 2002 | A1 |
20020052618 | Haar et al. | May 2002 | A1 |
20020067481 | Wolf et al. | Jun 2002 | A1 |
20020087056 | Aceti et al. | Jul 2002 | A1 |
20020136667 | Subramanian et al. | Sep 2002 | A1 |
20020137998 | Smart et al. | Sep 2002 | A1 |
20020160520 | Orloff et al. | Oct 2002 | A1 |
20020168290 | Yuzhakov et al. | Nov 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169411 | Sherman et al. | Nov 2002 | A1 |
20020177761 | Orloff et al. | Nov 2002 | A1 |
20020177764 | Sohrab | Nov 2002 | A1 |
20020183102 | Withers et al. | Dec 2002 | A1 |
20020188223 | Perez et al. | Dec 2002 | A1 |
20020198444 | Uchigaki et al. | Dec 2002 | A1 |
20030012693 | Otillar et al. | Jan 2003 | A1 |
20030028087 | Yuzhakov et al. | Feb 2003 | A1 |
20030028125 | Yuzhakov et al. | Feb 2003 | A1 |
20030039587 | Niermann | Feb 2003 | A1 |
20030060730 | Perez | Mar 2003 | A1 |
20030083685 | Freeman et al. | May 2003 | A1 |
20030083686 | Freeman et al. | May 2003 | A1 |
20030105961 | Zatloukal et al. | Jun 2003 | A1 |
20030116596 | Terasawa | Jun 2003 | A1 |
20030135166 | Gonnelli | Jul 2003 | A1 |
20030135333 | Aceti | Jul 2003 | A1 |
20030143746 | Sage | Jul 2003 | A1 |
20030153844 | Smith et al. | Aug 2003 | A1 |
20030153900 | Aceti et al. | Aug 2003 | A1 |
20030175987 | Verdonk et al. | Sep 2003 | A1 |
20030187395 | Gabel et al. | Oct 2003 | A1 |
20030206302 | Pugh | Nov 2003 | A1 |
20030207441 | Eyster et al. | Nov 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208140 | Pugh | Nov 2003 | A1 |
20030211617 | Jones | Nov 2003 | A1 |
20030211619 | Olson et al. | Nov 2003 | A1 |
20030212344 | Yuzhakov et al. | Nov 2003 | A1 |
20030212345 | McAllister et al. | Nov 2003 | A1 |
20030212347 | Sohrab | Nov 2003 | A1 |
20030216628 | Bortz et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040030353 | Schmelzeisen-redeker et al. | Feb 2004 | A1 |
20040039303 | Wurster et al. | Feb 2004 | A1 |
20040049219 | Briggs et al. | Mar 2004 | A1 |
20040059256 | Perez | Mar 2004 | A1 |
20040072357 | Stiene et al. | Apr 2004 | A1 |
20040073140 | Douglas | Apr 2004 | A1 |
20040092842 | Boecker et al. | May 2004 | A1 |
20040092995 | Boecker et al. | May 2004 | A1 |
20040094432 | Neel et al. | May 2004 | A1 |
20040096959 | Stiene et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040098009 | Boecker et al. | May 2004 | A1 |
20040102803 | Boecker et al. | May 2004 | A1 |
20040120848 | Teodorczyk | Jun 2004 | A1 |
20040122339 | Roe et al. | Jun 2004 | A1 |
20040132167 | Rule et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040155084 | Brown | Aug 2004 | A1 |
20040157339 | Burke et al. | Aug 2004 | A1 |
20040178218 | Schomakers et al. | Sep 2004 | A1 |
20040186394 | Roe et al. | Sep 2004 | A1 |
20040191119 | Zanzucchi et al. | Sep 2004 | A1 |
20040202576 | Aceti et al. | Oct 2004 | A1 |
20040230216 | LeVaughn et al. | Nov 2004 | A1 |
20040230316 | LeVaughn et al. | Nov 2004 | A1 |
20040236251 | Roe et al. | Nov 2004 | A1 |
20040238675 | Banaszkiewicz et al. | Dec 2004 | A1 |
20040242982 | Sakata et al. | Dec 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040259180 | Burke et al. | Dec 2004 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010134 | Douglas et al. | Jan 2005 | A1 |
20050015020 | LeVaughn et al. | Jan 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050033340 | Lipoma et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050070819 | Poux et al. | Mar 2005 | A1 |
20050096686 | Allen | May 2005 | A1 |
20050106713 | Phan et al. | May 2005 | A1 |
20050109386 | Marshall | May 2005 | A1 |
20050153428 | Matsumoto | Jul 2005 | A1 |
20050154410 | Conway et al. | Jul 2005 | A1 |
20050159678 | Taniike et al. | Jul 2005 | A1 |
20050176133 | Miyashita et al. | Aug 2005 | A1 |
20050187532 | Thurau et al. | Aug 2005 | A1 |
20050192492 | Cho et al. | Sep 2005 | A1 |
20050202567 | Zanzucchi et al. | Sep 2005 | A1 |
20050202733 | Yoshimura et al. | Sep 2005 | A1 |
20050209518 | Sage et al. | Sep 2005 | A1 |
20050215872 | Berner et al. | Sep 2005 | A1 |
20050215923 | Wiegel | Sep 2005 | A1 |
20050234494 | Conway et al. | Oct 2005 | A1 |
20050245844 | Mace et al. | Nov 2005 | A1 |
20050255001 | Padmaabhan et al. | Nov 2005 | A1 |
20050277972 | Wong et al. | Dec 2005 | A1 |
20060008389 | Sacherer et al. | Jan 2006 | A1 |
20060036134 | Tarassenko et al. | Feb 2006 | A1 |
20060052724 | Roe | Mar 2006 | A1 |
20060064035 | Wang et al. | Mar 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060094985 | Aceti et al. | May 2006 | A1 |
20060117616 | Jones et al. | Jun 2006 | A1 |
20060122536 | Haar et al. | Jun 2006 | A1 |
20060135873 | Karo et al. | Jun 2006 | A1 |
20060155317 | List | Jul 2006 | A1 |
20060161078 | Schraga | Jul 2006 | A1 |
20060178600 | Kennedy et al. | Aug 2006 | A1 |
20060189908 | Kennedy | Aug 2006 | A1 |
20060200044 | Freeman et al. | Sep 2006 | A1 |
20060204399 | Freeman et al. | Sep 2006 | A1 |
20060224172 | LeVaughn et al. | Oct 2006 | A1 |
20060229533 | Hoenes et al. | Oct 2006 | A1 |
20060241517 | Fowler et al. | Oct 2006 | A1 |
20060257993 | Mcdevitt et al. | Nov 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060264996 | LeVaughn et al. | Nov 2006 | A1 |
20060281187 | Emery et al. | Dec 2006 | A1 |
20070016104 | Jansen et al. | Jan 2007 | A1 |
20070017824 | Rippeth et al. | Jan 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070060842 | Alvarez-Icaza et al. | Mar 2007 | A1 |
20070078313 | Emery et al. | Apr 2007 | A1 |
20070078358 | Escutia et al. | Apr 2007 | A1 |
20070083130 | Thomson et al. | Apr 2007 | A1 |
20070083131 | Escutia et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100255 | Boecker et al. | May 2007 | A1 |
20070112281 | Olson | May 2007 | A1 |
20070179404 | Escutia et al. | Aug 2007 | A1 |
20070253531 | Okuzawa et al. | Nov 2007 | A1 |
20070255181 | Alvarez-icaza et al. | Nov 2007 | A1 |
20070255302 | Koeppel et al. | Nov 2007 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080046831 | Imai et al. | Feb 2008 | A1 |
20080064986 | Kraemer et al. | Mar 2008 | A1 |
20080077048 | Escutia et al. | Mar 2008 | A1 |
20080119702 | Reggiardo | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080200838 | Goldberger | Aug 2008 | A1 |
20080255598 | LeVaughn et al. | Oct 2008 | A1 |
20080268485 | Guarino et al. | Oct 2008 | A1 |
20080269625 | Halperin et al. | Oct 2008 | A1 |
20080274447 | Mecklenburg | Nov 2008 | A1 |
20090054810 | Zanzucchi et al. | Feb 2009 | A1 |
20090149717 | Brauer et al. | Jun 2009 | A1 |
20090149729 | Young et al. | Jun 2009 | A1 |
20090156923 | Power et al. | Jun 2009 | A1 |
20090292489 | Burke et al. | Nov 2009 | A1 |
20090301899 | Hodges et al. | Dec 2009 | A1 |
20100010374 | Escutia et al. | Jan 2010 | A1 |
20100021947 | Emery et al. | Jan 2010 | A1 |
20100021948 | Lipman et al. | Jan 2010 | A1 |
20100095229 | Dixon et al. | Apr 2010 | A1 |
20100152660 | Mack et al. | Jun 2010 | A1 |
20100174211 | Frey et al. | Jul 2010 | A1 |
20100185120 | Sacherer et al. | Jul 2010 | A1 |
20100217155 | Poux et al. | Aug 2010 | A1 |
20100249652 | Rush et al. | Sep 2010 | A1 |
20100331650 | Batman et al. | Dec 2010 | A1 |
20110098599 | Emery et al. | Apr 2011 | A1 |
20110105872 | Chickering et al. | May 2011 | A1 |
20110294152 | Lipman et al. | Dec 2011 | A1 |
20120166090 | Lipman et al. | Jun 2012 | A1 |
20120271197 | Castle et al. | Oct 2012 | A1 |
20120296179 | Zanzucchi et al. | Nov 2012 | A1 |
20130110516 | Abulhaj et al. | May 2013 | A1 |
20130158430 | Aceti et al. | Jun 2013 | A1 |
20130158432 | Escutia et al. | Jun 2013 | A1 |
20130172698 | Reynolds et al. | Jul 2013 | A1 |
20130274568 | Escutia et al. | Oct 2013 | A1 |
20130274579 | Richter et al. | Oct 2013 | A1 |
20140012116 | Okuyama | Jan 2014 | A1 |
20140316301 | Escutia et al. | Oct 2014 | A1 |
20140336480 | Escutia et al. | Nov 2014 | A1 |
20140376762 | Lipman et al. | Dec 2014 | A1 |
20150037898 | Baldus et al. | Feb 2015 | A1 |
20150153351 | Lipman et al. | Jun 2015 | A1 |
20150182157 | Boriah et al. | Jul 2015 | A1 |
20150238131 | Richter et al. | Aug 2015 | A1 |
20150268228 | Schulat et al. | Sep 2015 | A1 |
20150335272 | Natale et al. | Nov 2015 | A1 |
20160011178 | Hoenes et al. | Jan 2016 | A1 |
20160038066 | Escutia et al. | Feb 2016 | A1 |
20160256106 | Krasnow et al. | Sep 2016 | A1 |
20160367178 | Litherland et al. | Dec 2016 | A1 |
20160374603 | Shaanan et al. | Dec 2016 | A1 |
20170095188 | Emery et al. | Apr 2017 | A1 |
20170319121 | Aceti et al. | Nov 2017 | A1 |
20180008178 | Escutia et al. | Jan 2018 | A1 |
20180214059 | Escutia et al. | Aug 2018 | A1 |
20180296143 | Anderson et al. | Oct 2018 | A1 |
20180310865 | Escutia et al. | Nov 2018 | A1 |
20180338713 | Polsky et al. | Nov 2018 | A1 |
20190000365 | Beyerlein et al. | Jan 2019 | A1 |
20190025318 | Lipman et al. | Jan 2019 | A1 |
20190104976 | Reynolds et al. | Apr 2019 | A1 |
20190175086 | Yang | Jun 2019 | A1 |
20190209064 | Emery et al. | Jul 2019 | A1 |
20190209820 | Chickering, III et al. | Jul 2019 | A1 |
20190269358 | Messerschmidt | Sep 2019 | A1 |
20190274607 | Krasnow et al. | Sep 2019 | A1 |
20190391129 | Lipman et al. | Dec 2019 | A1 |
20200214605 | Lipman et al. | Jul 2020 | A1 |
20200237280 | Escutia et al. | Jul 2020 | A1 |
20210177361 | Lipman et al. | Jun 2021 | A1 |
20210330225 | Escutia et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
2 513 465 | Aug 2004 | CA |
199 22 413 | Nov 2000 | DE |
103 02-501 | Aug 2004 | DE |
0103426 | Mar 1984 | EP |
0 256 806 | Feb 1988 | EP |
0 160 708 | Oct 1989 | EP |
0 356 418 | Feb 1990 | EP |
0 396-016 | Nov 1990 | EP |
0 396-016 | Nov 1990 | EP |
0 409 032 | Jan 1991 | EP |
0 255-338 | Feb 1998 | EP |
0 877 250 | Nov 1998 | EP |
1 037 048 | Sep 2000 | EP |
1 060 768 | Dec 2000 | EP |
1 118 856 | Jul 2001 | EP |
1 266-607 | Dec 2002 | EP |
1 266-607 | Dec 2002 | EP |
1 369 688 | Oct 2003 | EP |
1 369 688 | Oct 2003 | EP |
1 360-934 | Nov 2003 | EP |
1 360-934 | Nov 2003 | EP |
1 486-766 | Dec 2004 | EP |
1 486-766 | Dec 2004 | EP |
1 529-489 | May 2005 | EP |
1 529-489 | May 2005 | EP |
1 769-735 | Apr 2007 | EP |
1 987 766 | Nov 2008 | EP |
61-290342 | Dec 1986 | JP |
63-305841 | Dec 1988 | JP |
1-318963 | Dec 1989 | JP |
3-63570 | Mar 1991 | JP |
03093189 | Apr 1991 | JP |
7-67861 | Mar 1995 | JP |
7-213925 | Aug 1995 | JP |
9-168530 | Jun 1997 | JP |
9-313465 | Sep 1997 | JP |
9-266889 | Oct 1997 | JP |
9-294737 | Nov 1997 | JP |
10-024028 | Jan 1998 | JP |
10-318970 | Dec 1998 | JP |
11-056822 | Mar 1999 | JP |
11281779 | Oct 1999 | JP |
2000-116629 | Apr 2000 | JP |
2000-126161 | May 2000 | JP |
2000-168754 | Jun 2000 | JP |
2000-254111 | Sep 2000 | JP |
2001-159618 | Jun 2001 | JP |
2001-515203 | Sep 2001 | JP |
2001-281242 | Oct 2001 | JP |
2001-305096 | Oct 2001 | JP |
2001-330581 | Nov 2001 | JP |
2002-502045 | Jan 2002 | JP |
2002-085384 | Mar 2002 | JP |
2002-514453 | May 2002 | JP |
2002-168862 | Jun 2002 | JP |
2003-507719 | Feb 2003 | JP |
2003108679 | Apr 2003 | JP |
2003-180417 | Jul 2003 | JP |
2004-000598 | Jan 2004 | JP |
2004-500948 | Jan 2004 | JP |
2004-117339 | Apr 2004 | JP |
2004-209266 | Jul 2004 | JP |
2004-519302 | Jul 2004 | JP |
2004-522500 | Jul 2004 | JP |
2004-528936 | Sep 2004 | JP |
2005-503538 | Feb 2005 | JP |
2005-087613 | Apr 2005 | JP |
2006-512969 | Apr 2005 | JP |
2005-525149 | Aug 2005 | JP |
2005-237938 | Sep 2005 | JP |
2005-525846 | Sep 2005 | JP |
2005-527254 | Sep 2005 | JP |
2006-512974 | Apr 2006 | JP |
2006-516723 | Jul 2006 | JP |
2006-521555 | Sep 2006 | JP |
2006-284481 | Oct 2006 | JP |
2006-527013 | Nov 2006 | JP |
2007-054407 | Mar 2007 | JP |
2007-067698 | Mar 2007 | JP |
2007-521031 | Aug 2007 | JP |
2007-527287 | Sep 2007 | JP |
2007-311196 | Nov 2007 | JP |
2008-043741 | Feb 2008 | JP |
2008-125813 | Jun 2008 | JP |
2008-212324 | Sep 2008 | JP |
2009-509645 | Mar 2009 | JP |
2009-509667 | Mar 2009 | JP |
2012-213477 | Nov 2012 | JP |
2013-505747 | Feb 2013 | JP |
100458978 | May 2005 | KR |
WO-8807666 | Oct 1988 | WO |
WO-9114212 | Sep 1991 | WO |
WO-9413203 | Jun 1994 | WO |
WO-9510223 | Apr 1995 | WO |
WO-9510223 | Apr 1995 | WO |
WO-9604857 | Feb 1996 | WO |
WO-9607907 | Mar 1996 | WO |
WO-9614026 | May 1996 | WO |
WO-9625088 | Aug 1996 | WO |
WO-9715227 | May 1997 | WO |
WO-9729847 | Aug 1997 | WO |
WO-9730344 | Aug 1997 | WO |
WO-9741421 | Nov 1997 | WO |
WO-9831275 | Jul 1998 | WO |
WO-9835225 | Aug 1998 | WO |
WO-9912008 | Mar 1999 | WO |
WO-9944508 | Sep 1999 | WO |
WO-9958051 | Nov 1999 | WO |
WO-0009184 | Feb 2000 | WO |
WO-0013573 | Mar 2000 | WO |
WO-0014269 | Mar 2000 | WO |
WO-0014535 | Mar 2000 | WO |
WO-0018449 | Apr 2000 | WO |
WO-0018449 | Apr 2000 | WO |
WO-0019185 | Apr 2000 | WO |
WO-0036400 | Jun 2000 | WO |
WO-0042422 | Jul 2000 | WO |
WO-0074763 | Dec 2000 | WO |
WO-0074763 | Dec 2000 | WO |
WO-0078208 | Dec 2000 | WO |
WO-0113795 | Mar 2001 | WO |
WO-0116575 | Mar 2001 | WO |
WO-0152727 | Jul 2001 | WO |
WO-0164105 | Sep 2001 | WO |
WO-0164105 | Sep 2001 | WO |
WO-0172220 | Oct 2001 | WO |
WO-0180728 | Nov 2001 | WO |
WO-0185233 | Nov 2001 | WO |
WO-0185233 | Nov 2001 | WO |
WO-0191634 | Dec 2001 | WO |
WO-0191634 | Dec 2001 | WO |
WO-0200101 | Jan 2002 | WO |
WO-0200101 | Jan 2002 | WO |
WO-0249507 | Jun 2002 | WO |
WO-0249509 | Jun 2002 | WO |
WO-0249509 | Jun 2002 | WO |
WO-02078533 | Oct 2002 | WO |
WO-02078533 | Oct 2002 | WO |
WO-02082052 | Oct 2002 | WO |
WO-02082052 | Oct 2002 | WO |
WO-02093144 | Nov 2002 | WO |
WO-02100251 | Dec 2002 | WO |
WO-02100251 | Dec 2002 | WO |
WO-02101359 | Dec 2002 | WO |
WO-02101359 | Dec 2002 | WO |
WO-03007819 | Jan 2003 | WO |
WO-2003030984 | Apr 2003 | WO |
WO-2003066128 | Aug 2003 | WO |
WO-2003066128 | Aug 2003 | WO |
WO-2003070099 | Aug 2003 | WO |
WO-2003071940 | Sep 2003 | WO |
WO-2003071940 | Sep 2003 | WO |
WO-03088834 | Oct 2003 | WO |
WO-2004062499 | Jul 2004 | WO |
WO-2004062500 | Jul 2004 | WO |
WO-2004062500 | Jul 2004 | WO |
WO-2004064636 | Aug 2004 | WO |
WO-2004085995 | Oct 2004 | WO |
WO-2004085995 | Oct 2004 | WO |
WO-2004091693 | Oct 2004 | WO |
WO-2004091693 | Oct 2004 | WO |
WO-2005006939 | Jan 2005 | WO |
WO-2005006939 | Jan 2005 | WO |
WO-2005009238 | Feb 2005 | WO |
WO-2005018709 | Mar 2005 | WO |
WO-2005018709 | Mar 2005 | WO |
WO-2005054840 | Jun 2005 | WO |
WO-2005084546 | Sep 2005 | WO |
WO-2005084546 | Sep 2005 | WO |
WO-2005085995 | Sep 2005 | WO |
WO-2006031920 | Mar 2006 | WO |
WO-2006138226 | Dec 2006 | WO |
WO-2006138226 | Dec 2006 | WO |
WO-2007041062 | Apr 2007 | WO |
WO-2007041062 | Apr 2007 | WO |
WO-2007041063 | Apr 2007 | WO |
WO-2007041063 | Apr 2007 | WO |
WO-2007041244 | Apr 2007 | WO |
WO-2007041244 | Apr 2007 | WO |
WO-2007041287 | Apr 2007 | WO |
WO-2007041287 | Apr 2007 | WO |
WO-2007041355 | Apr 2007 | WO |
WO-2007041355 | Apr 2007 | WO |
WO-2007054317 | May 2007 | WO |
WO-2007108519 | Sep 2007 | WO |
WO-2007112034 | Oct 2007 | WO |
WO-2007112034 | Oct 2007 | WO |
WO 2007131036 | Nov 2007 | WO |
WO-2008027319 | Mar 2008 | WO |
WO-2008027319 | Mar 2008 | WO |
WO-2008062648 | May 2008 | WO |
WO-2009145920 | Dec 2009 | WO |
WO-2009148624 | Dec 2009 | WO |
WO-2009148626 | Dec 2009 | WO |
WO-2011065981 | Jun 2011 | WO |
WO-2011162823 | Dec 2011 | WO |
WO-2012127870 | Sep 2012 | WO |
WO-2013020103 | Feb 2013 | WO |
WO-2014205412 | Dec 2014 | WO |
WO-2005018710 | Mar 2015 | WO |
WO-2005018710 | Mar 2015 | WO |
WO-2018191700 | Oct 2018 | WO |
Entry |
---|
ADA Consensus Development Panel. (Jan.-Feb. 1987). “Consensus Statement on Self-Monitoring of Blood Glucose,” Diabetes Care 10(1):95-99. |
ADA (Jan. 1994). “Self-Monitoring of Blood Glucose,” Consensus Statement Diabetes Care 17(1):81-86. |
Anonymous. (Sep. 30, 1993). “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus.” The New England Journal of Medicine 329(14):977-986. |
Anonymous. (Jun. 23, 1998). Taking the “Ouch” Out of Needles: Arrays of “Microneedles” Offer New Techniques for Drug Delivery, Science Daily, located at <http:www.sciencedaily.com/releases/1998/06/980623045850.htm>, last visited Jan. 14, 2014, 3 pages. |
Beregszàszi, M. et al. (Jul. 1997). “Nocturnal Hypoglycemia in Children and Adolescents with Insulin-Dependent Diabetes Mellitus: Prevalence and Risk Factors,” J. Pediatrics 131(1 Pt. 1):27-33. |
Brazzle, J. et al. Active Microneedles with Integrated Functionality, Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, Jun. 4-8, 2000, Technical Digest, 199-202. |
Chase, H.P. et al. (Feb. 2001). “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics 107(2):222-226. |
Clarke, W.L. et al. (Sep.-Oct. 1987). “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” Diabetes Care 10(5):622-628. |
Clarke, W.L. et al. (1981). “Evaluation of a New Reflectance Photometer for Use in Home Blood Glucose Monitoring,” Diabetes Care 4(5):547-550. |
Collison, M.E. et al. (Sep. 1999). “Analytical Characterization of Electrochemical Biosensor Test Strips for Measurement of Glucose in Low-Volume Interstitial Fluid Samples,” Clinical Chemistry 45(9):1665-1673. |
Coster, S. et al. (2000). “Monitoring Blood Glucose Control in Diabetes Mellitus: A Systematic Review.” Health Technology Assessment 4(12):1-93. |
Cox, D.J. et al. (Jun. 1997). “Understanding Error Grid Analysis,” Diabetes Care 20(6):911-912. |
D'Arrigo, T.D. (Mar. 2000). “GlucoWatch Monitor Poised for Approval,” Diabetes Forecast, 53(3):43-44. |
Extended European Search Report dated Jun. 16, 2014, for EP Application No. 09 758 787.7, filed on Jun. 8, 2009, 6 pages. |
Extended European Search Report dated Jul. 18, 2013, for EP Application No. 06 772 943.4, filed on Jun. 13, 2006, 7 pages. |
Extended European Search Report dated Aug. 27, 2012, for European Patent Application No. 09 758 789.3, filed on Jun. 8, 2009, 13 pages. |
Extended European Search Report dated Oct. 27, 2016, for EP Application No. 11 798 518.4, filed on Jun. 24, 2011, 7 pages. |
Final Office Action dated May 8, 2012, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages. |
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 10 pages. |
Final Office Action dated May 5, 2016, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 11 pages. |
Final Office Action dated May 5, 2016, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 13 pages. |
Final Office Action dated Oct. 15, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 13 pages. |
Final Office Action dated Aug. 14, 2012, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Final Office Action dated Sep. 23, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Final Office Action dated Mar. 27, 2014, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 11 pages. |
Final Office Action dated Jan. 20, 2016, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 10 pages. |
Final Office Action dated Apr. 30, 2013, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 10 pages. |
Final Office Action dated Sep. 30, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 16 pages. |
Final Office Action dated Aug. 12, 2016, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 18 pages. |
Feldman, B. et al. (2000). “Freestyle™: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing,” Diabetes Technology and Therapeutics, 2(2):221-229. |
International Search Report dated Jul. 28, 2009, for PCT Patent Application No. PCT/US2009/03441, filed on Jun. 8, 2009, 10 pages. |
International Search Report dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 2 pages. |
International Search Report dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 1 page. |
International Search Report dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03445, filed on Jun. 8, 2009, 2 pages. |
International Search Report dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 2 pages. |
INTEG. (2000). “LifeGuideÔ Glucose Meter. No Lancets. No Blood,” located at <http://www.integonline.com>, last visited May 1, 2000, 10 pages. |
Johnson, R.N. et al. (Jan. 1998). “Accuracy of Devices Used for Self-Monitoring of Blood Glucose,” Annals of Clinical Biochemistry 35(1):68-74. |
Johnson, R.N. et al. (Jan. 1999). “Analytical Error of Home Glucose Monitors: A Comparison of 18 Systems,” Annals of Clinical Biochemistry 36(1):72-79. |
Johnson, R.N. et al. (2001). “Error Detection and Measurement In Glucose Monitors,” Clinica Chimica Acta 307:61-67. |
Kumetrix, Inc. (Dec. 1999). “Painless Blood Glucose Monitoring, Courtesy of the Mosquito,” Start-Up pp. 27-28. |
Lee, S-C. (Jun. 1999). “Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab,” Journal of the Optical Society of America A 16(6):1350-1361. |
McGarraugh, G. et al. (2001). “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics 3(3):367-376. |
McNichols, R.J. et al. (Jan. 2000). “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, 5(1):5-16. |
Mahler, R.J. et al. (1999). “Clinical Review 102, Type 2 Diabetes Melitus: Update on Diagnosis Pathophysiology, and Treatment,” The Journal of Clinical Endocrinology and Metabolism 84(4):1165-1171. |
Medline Plus. (Jun. 17, 2008). , Medical Encyclopedia, Monitor Blood Glucose-Series: Part 1-4, 6 pages. |
Neeley, W.E. et al. (1981). “An Instrument for Digital Matrix Photometry,” Clinical Chemistry 27(10):1665-1668. |
Neeley, W.E. (1983). “Reflectance Digital Matrix Photometry,” Clinical Chemistry 29(6):1038-1041. |
Neeley, W.E. (1983). “Multilayer Film Analysis for Glucose in 1-mL Samples of Plasma,” Clinical Chemistry 29(12):2103-2105. |
Neeley, W.E. (1988). “A Reflectance Photometer with a Square Photodiode Array Detector for Use on Multilayer Dry-Film Slides,” Clinical Chemistry 34(11):2367-2370. |
Non-Final Office Action dated Nov. 23, 2011, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 6 pages. |
Non-Final Office Action dated Jun. 13, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 8 pages. |
Non-Final Office Action dated Jul. 8, 2015, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 13 pages. |
Non-Final Office Action dated Mar. 19, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages. |
Non-Final Office Action dated Sep. 1, 2010, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages. |
Non-Final Office Action dated Aug. 19, 2015, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages. |
Non-Final Office Action dated Sep. 13, 2011, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Non-Final Office Action dated Feb. 28, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 12 pages. |
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Non-Final Office Action dated May 29, 2015, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 13 pages. |
Non-Final Office Action dated Mar. 2, 2012, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages. |
Non-Final Office Action dated May 30, 2013, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages. |
Non-Final Office Action dated Jun. 22, 2012, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 8 pages. |
Non-Final Office Action dated Jan. 13, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 12 pages. |
Non-Final Office Action dated Jun. 25, 2015, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages. |
Notice of Allowance dated Sep. 18, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 9 pages.—(7.01). |
Notice of Allowance dated Feb. 16, 2016, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 7 pages. |
Notice of Allowance dated Jan. 26, 2017, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages. |
Otto, E. et al. (2000). “An Intelligent Diabetes Software Prototype: Predicting Blood Glucose Levels and Recommending Regimen Changes,” Diabetes Technology and Therapeutics 2(4):569-576. |
Pfohl, M. et al. (2000). “Spot Glucose Measurement in Epidermal Interstitial Fluid—An Alternative to Capillary Blood Glucose Estimation,” Experimental and Clinical Endocrinology & Diabetes 108(1):1-4. |
Princen, H.M. (May 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, I. Capillary Rise Between Two Cylinders,” Journal of Colloid and Interface Science 30(1):69-75. |
Princen, H.M. (Jul. 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, II. Capillary Rise in Systems with More Than Two Cylinders,” Journal of Colloid and Interface Science 30(3):359-371. |
Rebrin, K. et al. (Sep. 1999). “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” American Journal of Physiology 277(3):E561-E571. |
Rosen, S. (1999). “Road to New-Age Glucose Monitoring Still Rocky,” Diagnostic Insight, pp. 4-5, 12-13, 16. |
Smart, W.H. et al. (2000). “The Use of Silicon Microfabrication Technology in Painless Glucose Monitoring, ”Diabetes Technology & Therapeutics 2(4):549-559. |
Sonntag, O. (1993). Ektachem. Dry Chemistry, Analysis With Carrier-Bound Reagents, Elsevier Science Publishers, 57 pages. |
Spielman, A. et al. (2001). Mosquito: A Natural History of Our Most Persistent and Deadly Foe, First Edition, Hyperion, New York, NY, 3 pages. (Table of Contents Only). |
Straub F.B. (Mar. 1939). “Isolation and Properties of a flavoprotien from Heart Muscle Tissue”, Biochemical Journal 33: 787-792. |
Svedman, C. et al. (Apr. 1999). “Skin Mini-Erosion Technique for Monitoring Metabolites in Interstitial Fluid: Its Feasibility Demonstrated by OGTT Results in Diabetic and Non-Diabetic Subjects,” Scand. J. Clin. Lab. Invest. 59(2):115-123. |
Tietz, N.W. (1986).Textbook of Clinical Chemistry, W. B. Saunders Company, pp. 1533 and 1556. |
Trinder, P. (1969). “Determination of Glucose in Blood Using Glucose Oxidase with an Alternate Oxygen Acceptor,” Annals of Clinical Biochemistry 6:24-28. |
U.S. Precision Lens, Inc. (1983).The Handbook of Plastic Optics. |
Written Opinion of the International Searching Authority dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03441, filed on Jun. 8, 2009, 2 pages. |
Written Opinion of the International Searching Authority dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 5 pages. |
Written Opinion of the International Searching Authority dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 3 pages. |
Written Opinion of the International Searching Authority dated Jul. 28, 2009, for PCT Application No. PCT/US2009/03445, filed on Jun. 8, 2009, 4 pages. |
Written Opinion dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 6 pages. |
Yum, S. I. et al. (Nov. 1, 1999). “Capillary Blood Sampling for Self-Monitoring of Blood Glucose,” Diabetes Technology & Therapeutics, 1(1):29-37. |
Notice of Allowance dated Aug. 18, 2017, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 10 pages. |
Non-Final Office Action dated Mar. 21, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages. |
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages. |
Extended European Search Report dated Nov. 8, 2016 by the European Patent Office for Application No. 16167087.2, filed Aug. 3, 2012, 7 pages. |
Final Office Action dated Nov. 29, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 13 pages. |
International Search Report dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 4 pages. |
Non-Final Office Action dated Mar. 20, 2017, by The United States Patent and Trademark Office for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages. |
Non-Final Office Action dated Jun. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages. |
Final Office Action dated Dec. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 21 pages. |
Extended European Search Report dated Jan. 20, 2017, for EP Application No. 14 813 126.1, filed Jun. 20, 2014, 8 pages. |
Non-Final Office Action dated Mar. 8, 2017, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 24 pages. |
Final Office Action dated Nov. 13, 2017, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages. |
Final Office Action dated Feb. 8, 2017, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 11 pages. |
Final Office Action dated Mar. 28, 2018, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 13 pages. |
Final Office Action dated Sep. 21, 2017, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 14 pages. |
Notice of Allowance dated Jul. 20, 2018, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages. |
Non-Final Office Action dated Aug. 10, 2018, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 15 pages. |
Non-Final Office Action dated Aug. 15, 2018, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 19 pages. |
Extended European Search Report dated Jan. 17, 2020, for European Application No. 19187252.2, 12 pages. |
Extended European Search Report dated Nov. 10, 2020 from the European Patent Office for Application No. 20169957.6, filed Aug. 3, 2012, 6 pages. |
Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technology & Therapeutics., vol. 6, No. 5, 2004. |
Non-Final Office Action dated Nov. 27, 2019, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 7 pages. |
Non-Final Office Action dated Apr. 20, 2020, for U.S. Appl. No. 16/159,546, filed Oct. 12, 2018, 8 pages. |
Non-Final Office Action dated Aug. 7, 2020, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 10 pages. |
Notice of Allowance dated Mar. 4, 2021, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 9 pages. |
Final Office Action dated Jul. 14, 2021, for U.S. Appl. No. 16/159,546, filed Oct. 12, 2018, 13 pages. |
Non-Final Office Action dated Mar. 27, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages. |
Notice of Allowance dated May 15, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages. |
Final Office Action dated Apr. 25, 2019, for U.S. Appl. No. 14/311,114, filed Jun. 20, 2014, 16 pages. |
Notice of Allowance dated Feb. 4, 2019, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20170354355 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
61129149 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12457331 | Jun 2009 | US |
Child | 15499821 | US |