This patent relates generally to performing diagnostics and maintenance in a process plant and, more particularly, to providing diagnostics capabilities within a process plant in a manner that reduces or prevents abnormal situations within the process plant.
Fluid catalytic cracking is a commonly used process in modem oil refineries to crack high molecular weight oil (hydrocarbons) into lighter components including liquefied petroleum gas, gasoline, aviation fuel, and diesel. Generally, the fluid catalytic cracking process uses a catalyst to first break down the high molecular weight hydrocarbons and then uses at least one cyclone to separate the resulting mixture into collectible byproducts. The used catalytic substance may then be recycled for injection into another reaction cycle. One problem that may occur in the fluid catalytic cracking processes is that the catalyst loss from either a reactor component or a regenerator component may be too high. If left uncorrected, this catalyst loss may lead to problems in subsequent processing units downstream from a fluid catalytic cracker.
The claimed method and system detects and/or predicts abnormal rate of catalyst loss in a fluid catalytic cracking unit. A differential pressure may be monitored across portions of a fluid catalytic cracker such as a reactor cyclone or a regenerator cyclone. Significant changes to the normal differential pressure across the portions of the fluid catalytic cracking unit during operation may indicate an increase in catalyst loss, and may also indicate a malfunction in the fluid catalytic cracker or a need for maintenance. The claimed method and system implements algorithms using computing devices to detect or predict an abnormal condition based on a change in a monitored differential pressure across a fluid catalytic cracking cyclone. When an abnormal situation is detected, an alert may be generated to notify appropriate entities.
Generally,
When the cracking catalyst moves tip the riser 14, the cracking catalyst is “spent” by reactions which deposit coke on the catalyst and reduce the activity and selectivity of the catalyst. The used catalyst is disengaged from the cracked hydrocarbon vapors in the disengaging vessel 19 and is sent to a stripper 24 where the used catalyst may be contacted with stripping steam 26 to remove residual hydrocarbons remaining in the catalyst. The spent catalyst may then be directed into a fluidized-bed regenerator 28 where hot air 30 (or in some cases, air plus oxygen) is used to burn off the coke deposits to restore the catalyst to an active state and also to provide the necessary heat for the next reaction cycle. Burning the coke deposits yields flue gas which includes carbon dioxide and carbon monoxide. A regenerator cyclone 31 may be used to separate or filter flue gas from the solid catalyst and solid coke mixture of the regenerator 28. The “regenerated” catalyst may be returned to the base of the riser 14 for repeating the cycle.
A problem that may occur in the operation of the fluid catalytic cracking apparatus is loss of catalyst, which may occur along the cyclical catalyst path. While some nominal catalyst loss may be expected in a fluid catalytic cracking process, larger catalyst loss may indicate an equipment failure (e.g., a leak) or a need for maintenance and repair. In one embodiment, catalyst loss may be detected by measuring a differential pressure (ΔP) across either the reactor cyclone 20, the regenerator cyclone 31, or both, as shown in
An abnormal operation detection system as described herein may be implemented to predict or detect catalyst loss so that preventative measures may be taken to reduce the loss of catalyst in the fluid catalytic cracking unit. The abnormal operation detection system may be implemented in an existing process control system or installed as an independently functioning computing unit. Generally, the abnormal operation detection system may be implemented as hardware or software running on a computing device. The following describes various types of algorithms that may be implemented by the abnormal operation detection system to detect or predict catalyst loss in a fluid catalytic cracker.
One algorithm that may be used for determining catalyst loss in a fluid catalytic cracking unit is a statistical process monitoring (SPM) algorithm. SPM may be used to monitor variables, such as quality variables, associated with a process, and flag an operator when the quality variable is detected to have moved from its “statistical” norm. The SPM algorithm may generally calculate the mean and standard deviation of a process variable, such as the pressure differential, over non-overlapping sampling windows.
S=STANDARD_DEVIATION=σ
ΔR=XMAX−XMIN
In the equations above, N is the total number of data points in the sample period, xi and xx−1 are two consecutive values of the process signal, and T is the time interval between the two values. Further, XMAX and XMIN are the respective maximum and minimum of the process signal over a sampling or training time period. These statistical parameters may be calculated alone or in any combination. Additionally, it will be understood that the invention includes any statistical parameter other than those explicitly set forth which may be implemented to analyze a process signal. The calculated statistical parameter(s) may be received by a calculation block 76 which operates in accordance with rules contained in a rules block 78. The rules block 78 may be implemented, for example, in a portion of the memory 54 of computing device 50 (
In another embodiment, the trained values may be calculated and periodically updated, for example, by the computing device 50. For example, in one embodiment, the trained values may be generated by the statistical parameter logical block 72 which generates, or learns, the nominal or normal statistical parameters during a first period of operation, typically a period during normal operation of the process. These nominal statistical parameters may then be stored as trained values in the trained values block 80 for future use (as described further below). This operation allows dynamic adjustment of trained values 80 for a specific loop and operating condition. In this situation, statistical parameters (which may be used for the trained values) may be monitored for a user selectable period of time based upon the process dynamic response time. In one embodiment, a computing device such as the computing device 50 may generate or receive the trained values or be used to transmit the trained values to another process device.
In one embodiment, the SPM block 70 illustrated in
Using the SPM algorithm via the SPM block 70, catalyst loss may be detected at the calculation block 76 if the actual or current mean differs from the baseline mean by more than some threshold and an indication or an alarm 82 may be outputted. For example, catalyst loss may be detected if the current mean is more than a certain percent below the baseline mean:
where α is some user-defined percent (e.g., 5%). This equation may be represented as one or more rules in the rules block 78. In one embodiment, the SPM block 70 may include an input for a detection threshold (e.g., one determined by a user). In this embodiment, the detection threshold may be stored as a trained value.
One drawback to the above described approach may be that a user with knowledge of the process may have to determine an appropriate value for α. This requirement may be tedious and time consuming if there are many different process variables for which a threshold needs to be set.
In another embodiment, the threshold may be set based on a variance observed during the learning phase. For example, catalyst loss may be detected if
The SPM algorithm may be appropriate for detecting catalyst losses if the pressure differential ΔP changes only when high catalyst losses occur. However, if the pressure differential ΔP changes due to other factors (e.g., when the pressure differential ΔP changes due to load changes or other expected process conditions), then the SPM algorithm may trigger false alarms. In one embodiment, more than a single set of SPM derived characteristics (e.g., mean, standard deviation, etc.) may be generated depending on the operating condition or operating state of the fluid catalytic cracking unit. For example, if there are two different loads in which the cracking unit operates, then the calculation block 76 may be programmed to implement one set of rules for a first load condition and to implement a second set of rules for a second load condition. In this embodiment, two SPM blocks may be used. Activation of one or the other SPM block may be based on a detected load condition or other expected process condition.
While multiple SPM blocks may be used for simple condition changes (e.g., when only two load possibilities exist), multiple SPM blocks may be inefficient when many expected operating conditions exist. In this case, some form of regression (e.g., developing a regression model and then monitoring the residuals) may be used to detect catalyst losses.
In general, during a learning phase, data is collected from both the cyclone pressure differential ΔP (y), and from the process variable(s) which may have some effect on the cyclone pressure differential ΔP (x1, x2, . . . xm). A model may be developed to predict the value of y as a function of the x's:
ŷ=f(x1, x2, . . . xm)
This model may be anything from a simple multiple linear regression model, e.g.,
f(x1, x2, . . . xm)=α0α1x1+α2x2+ . . . +αmxm,
with coefficients calculated according to any known method such as ordinary least squares (OLS), principal component regression (PCR), partial least squares (PLS), variable subset selection (VSS), support vector machine (SVM), etc.), to something more complicated, such as a neural network model. As discussed further below, once the model is developed during the monitoring phase, the model may be used to calculate the residual (difference between actual and predicted values). If the residual exceeds some threshold, then an abnormal situation may be detected.
The model implementation block 96 may receive, during a first period, a dependent variable Y representing a differential pressure AP across a cyclone and an independent variable X representing a set of process variables that may have some effect on the ΔP. As will be described in more detail below, the model implementation block 96 may generate a regression model using a plurality of data sets (X, Y) to model Y (e.g., the pressure difference ΔP) as a function of X (e.g., one or more independent variables affecting ΔP).
The model implementation block 96 may include one or more regression models, each of which may utilize a function to model the dependent variable Y as a function of the independent variable X over any range of X, over a specified range of X, and/or over multiple ranges of X. For example, it is possible that a single X-variable might be used to predict the Y-variable under all normal operating conditions. In this case, any known univariate regression method may be used. In another embodiment, different models may be developed for different ranges. For example, in an extensible regression approach, a regression model may be developed for multiple ranges of the independent variable X. This general approach is further described in U.S. application Ser. No. 11/492,467, which is hereby incorporated by reference herein.
In one embodiment, the regression model may include or use a linear regression model. Generally, a linear regression model uses some linear combination of functions f(X), g(X), h(X), etc. or, for modeling an industrial process, a typically adequate linear regression model may include a first order function of X (e.g., Y=m*X+b) or a second order function of X (e.g., Y=a*X2+b*X+c). Of course, other types of functions may be utilized as well, such as higher order polynomials, sinusoidal functions, logarithmic functions, exponential functions, power functions, etc.
After the model has been trained, the model implementation block 96 may be used to generate a predicted value (YP) of a dependent variable Y during a second period of operation based on a given independent variable X input. In the case of a fluid catalytic cracking unit, YP may represent a predicted differential pressure ΔP whereas Y may represent an actual or current measure of the differential pressure ΔP. The predicted ΔP (or YP) of the model implementation block 96 may be provided to a deviation detector 98. The deviation detector 98 may receive the predicted ΔP (or YP) of the regression model of the block 96 as well as the dependent variable input Y (representing an actual or current measure of ΔP). Generally speaking, the deviation detector 98 may compare the actual pressure differential ΔP to the predicted pressure differential ΔP to determine if the actual pressure differential ΔP is significantly deviating from the predicted pressure differential ΔP. If the actual pressure differential ΔP is significantly deviating from the predicted pressure differential ΔP, this may indicate that an abnormal situation catalyst loss has occurred, is occurring, or may occur in the near future. As a result, the deviation detector 98 may generate an indicator of the deviation. In some implementations, the indicator may be an alert or alarm indicating abnormal catalytic loss.
The difference between the actual pressure differential ΔP and the predicted pressure differential ΔP may be called a residual. The deviation detector 98 may be configured to generate an alarm only after a certain threshold residual value is reached or exceeded. Any of various known methods may be used to establish the threshold for detecting the abnormal catalytic loss condition. Similar to the SPM model described above, the threshold may be, for example, a certain percentage of the predicted Y-value, or it may be based on the variance of the residuals calculating using the training data. Also, any form of alarming logic (e.g., two or more consecutive observations exceeding a threshold) may be used prior to generating an alarm seen by plant personnel.
One of ordinary skill in the art will recognize that the AOD module 90 may be modified in various ways. For example, the process variable data may be filtered, trimmed, etc., prior to being received by the SPM blocks 92 and 94. In another embodiment the SPM blocks 92 and 94 may not be used. Additionally, although the model used in block 96 is illustrated as having a single independent variable input X, a single dependent variable input Y, and a single predicted value YP, the model in block 96 may include a regression model that models multiple variables Y (e.g., differential pressure across two or more cyclones) as a function of multiple variables X. The model in block 96 may comprise a multiple linear regression (MLR) model, a principal component regression (PCR) model, a partial least squares (PLS) model, a ridge regression (RR) model, a variable subset selection (VSS) model, a support vector machine (SVM) model, etc. In one embodiment two differential pressures may be modeled such as the differential pressure ΔP1 over the reactor cyclone 20 and differential pressure ΔP2 over regenerator cyclone 31. In this manner, the independent variable set X may represent process characteristics that effect both the differential pressure ΔP1 over the reactor cyclone 20 and differential pressure ΔP2 over regenerator cyclone 31.
Then, at a block 102, the trained model generates predicted values (YP) of the dependent variable Y using values of the independent variable X that it receives. Next, at a block 103, the actual values of Y are compared to the corresponding predicted values YP to determine if Y is significantly deviating from YP. For example, the deviation detector 98 may receive the output YP of the model block 96 and may compare the output YP to the dependent variable Y. If it is determined that Y has significantly deviated from YP an indicator of the deviation may be generated at a block 104. In the AOD module 90, for example, the deviation detector 98 may generate the indicator. The indicator may be an alert or alarm, for example, or any other type of signal, flag, message, etc., indicating that a significant deviation has been detected.
As will be discussed in more detail below, the block 101 may be repeated after the model has been initially trained and after it has generated predicted values YP of the dependent variable Y. For example, the model may be retrained if a set point in the process has been changed, or at other times during operation of the process.
The fluid catalytic cracking unit may operate in a process plant as one part or piece of equipment of many sets of interconnected equipment, thereby forming a process line. Generally, this equipment may be controlled and managed using a process control system such as that illustrated in
Referring specifically to
Still further, maintenance systems may be connected to the process control systems 212 and 214 or to the individual devices therein to perform maintenance and monitoring activities. For example, a maintenance computer 218 may be connected to the controller 212B and/or to the devices 215 via any desired communication lines or networks (including wireless or handheld device networks) to communicate with and, in some instances, reconfigure or perform other maintenance activities on the devices 215. Similarly, maintenance applications may be installed in and executed by one or more of the user interfaces 214A associated with the distributed process control system 214 to perform maintenance and monitoring functions, including data collection related to the operating status of the devices 216.
As illustrated in
Generally speaking, the abnormal situation prevention system 235 may communicate with abnormal operation detection systems (not shown in
The portion 250 of the process plant 210 illustrated in
In any event, one or more user interfaces or computers 272 and 274 (which may be any types of personal computers, workstations, etc.) accessible by plant personnel such as configuration engineers, process control operators, maintenance personnel, plant managers, supervisors, etc. may coupled to the process controllers 260 via a communication line or bus 276 which may be implemented using any desired hardwired or wireless communication structure, and using any desired or suitable communication protocol such as, for example, an Ethernet protocol. In addition, a database 278 may be connected to the communication bus 276 to operate as a data historian that collects and stores configuration information as well as on-line process variable data, parameter data, status data, and other data associated with the process controllers 260 and the field devices 264 and 266 within the process plant 250. Thus, the database 278 may operate as a configuration database to store the current configuration, including process configuration modules, as well as control configuration information for the process control system 254 as downloaded to and stored within the process controllers 260 and the field devices 264 and 266. Likewise, the database 278 may store historical abnormal situation prevention data, including statistical data (e.g., training data) collected by the field devices 264 and 266 within the process plant 210, statistical data determined from process variables collected by the field devices 264 and 266, and other types of data.
While the process controllers 260, P/O devices 268 and 270, and field devices 264 and 266 are typically located down within and distributed throughout the sometimes harsh plant environment, the workstations 272 and 274, and the database 278 are usually located in control rooms, maintenance rooms or other less harsh environments easily accessible by operators, maintenance personnel, etc.
Generally speaking, the process controllers 260 store and execute one or more controller applications that implement control strategies using a number of different, independently executed, control modules or blocks. The control modules may each be made up of what are commonly referred to as function blocks, wherein each function block is a part or a subroutine of an overall control routine and operates in conjunction with other function blocks (via communications called links) to implement process control loops within the process plant 210. As is well known, function blocks, which may be objects in an object-oriented programming protocol, typically perform one of an input function, such as that associated with a transmitter, a sensor or other process parameter measurement device, a control function, such as that associated with a control routine that performs PID, fuzzy logic, etc. control, or an output function, which controls the operation of some device, such as a valve, to perform some physical function within the process plant 250. Of course, hybrid and other types of complex function blocks exist, such as model predictive controllers (MPCs), optimizers, etc. It is to be understood that while the Fieldbus protocol and the DeltaV™ system protocol use control modules and function blocks designed and implemented in an object-oriented programming protocol, the control modules may be designed using any desired control programming scheme including, for example, sequential function blocks, ladder logic, etc., and are not limited to being designed using function blocks or any other particular programming technique.
As illustrated in
Each of one or more of the field devices 264 and 266 may include a memory (not shown) for storing routines such as routines for implementing statistical data collection pertaining to one or more process variables sensed by sensing devices and/or routines for abnormal operation detection, which will be described below. Each of one or more of the field devices 264 and 266 may also include a processor (not shown) that executes routines such as routines for implementing statistical data collection and/or routines for abnormal operation detection. Statistical data collection and/or abnormal operation detection need not be implemented by software. Rather, one of ordinary skill in the art will recognize that such systems may be implemented by any combination of software, firmware, and/or hardware within one or more field devices and/or other devices.
As illustrated in
Generally speaking, the blocks 280 and 282 or sub-elements of these blocks, collect data, such a process variable data, from the device in which they are located and/or from other devices. Additionally, the blocks 280 and 282 or sub-elements of these blocks may process the variable data and perform an analysis on the data for any number of reasons. In other words, the blocks 280 and 282 may represent AOD module 70 or 90 as described above. Consequently, the blocks 280 or 282 may include a set of one or more statistical process monitoring (SPM) blocks or units such as blocks SPM1-SPM4.
It is to be understood that while the blocks 280 and 282 are shown to include SPM blocks in
It is to be understood that although the blocks 280 and 282 are shown to include SPM blocks in
The block 282 of
The AOD modules 70 and 90 of
Because catalyst loss may be detected using a differential pressure across the cyclones 20 and 31, any of the field devices described in
It should be noted that a Rosemount 3051 FOUNDATION® Fieldbus transmitter has an Advanced Diagnostics Block (ADB) with SPM capabilities. This SPM block may have the capability to learn a baseline mean and standard deviation of a process variable, compare the learned process variables against a current mean and standard deviation, and trigger a PlantWeb alert if either of these changes by more than the user-specified threshold. It is possible that the SPM functionality in the field device may be configured to operate as an AOD module (such as AOD module 70) based on the description herein to detect catalyst losses, provided that the differential pressure ΔP does not change as a result of the process moving into other normal operating regions.
The alert/alarm application 243 may be used to manage and/or route alerts created by the AOD modules 280 and 282, which may include AOD modules 70 and/or 90. In this case, when catalyst loss is detected, a meaningful alert may be provided to a person or group responsible for monitoring and maintaining operations (e.g., an operator, an engineer, a maintenance personnel, etc.). Guided help may be provided to help a person to resolve the situation through a user interface (e.g., on workstation 272 or 274 connected to the process control system). Corrective actions that may be presented to a user in response to the alert may include directions to a) increase pressure in regenerator; b) fix cyclones; and/or c) use heavier catalyst.
The AOD modules 70 or 90 may provide information to the abnormal situation prevention system 235 via alert application 243 and/or other systems in the process plant. For example, the deviation indicator generated by the deviation detector 98 or a calculation block 76 may be provided to the abnormal situation prevention system 235 and/or the alert/alarm application 243 to notify an operator of the abnormal condition. As another example, after the model of model implementation block 96 of AOD Module 90 has been trained, parameters of the model may be provided to the abnormal situation prevention system 235 and/or other systems in the process plant so that an operator can examine the model and/or so that the model parameters can be stored in a database. As yet another example, the AOD modules 70 or 90 may provide X, Y, and/or YP values to the abnormal situation prevention system 235 so that an operator may view the values (e.g., when a deviation has been detected).
In a process control system, the AOD module 70 or 90 (implemented via a field device or process controller) may be in communication with configuration application 238 to permit a user to configure the AOD modules 70 or 90. For instance, one or more of the blocks of module 70 or 90 may have user configurable parameters that may be modified via the configuration application 238.
Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/848,596, filed Sep. 29, 2006, the entirety of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60848596 | Sep 2006 | US |