The disclosure relates to systems and methods for shadow analysis and stent detection.
Interventional cardiologists incorporate a variety of diagnostic tools during catheterization procedures in order to plan, guide, and assess therapies. Fluoroscopy is generally used to perform angiographic imaging of blood vessels. In turn, such blood vessel imaging is used by physicians to diagnose, locate and treat blood vessel disease during interventions such as bypass surgery or stent placement. Intravascular imaging technologies such as optical coherence tomography (OCT) are also valuable tools that can be used in lieu of or in combination with fluoroscopy to obtain high-resolution data regarding the condition of the blood vessels for a given subject.
Intravascular optical coherence tomography is a catheter-based imaging modality that uses light to peer into coronary artery walls and generate images for study. Utilizing coherent light, interferometry, and micro-optics, OCT can provide video-rate in-vivo tomography within a diseased vessel with micrometer level resolution. Viewing subsurface structures with high resolution using fiber-optic probes makes OCT especially useful for minimally invasive imaging of internal tissues and organs, as well as implanted medical devices such as stents.
Stents are a common intervention for treating vascular stenoses. It is critical for a clinician to develop a personalized stent plan that is customized to the patient's vascular anatomy to ensure optimal outcomes in intravascular procedures. Stent planning encompasses selecting the length, diameter, and landing zone for the stent with an intention to restore normal blood flow to the downstream tissues. Clinicians often reimage a stented vessel immediately after stent implantation to confirm that stent placement is correct. Clinicians also reimage stented vessels as routine follow up for stent interventions.
Stent detection methods typically detect individual metal stent struts by first detecting shadows cast by the struts onto the blood vessel wall to localize the region of search and then detect the location of the strut within the detected shadows. However, existing methods are inadequate and often result in missed struts or in the detection of false positive struts.
The present disclosure addresses the need for enhanced detection of metal stent struts.
Disclosed herein are systems and methods for precise identification of metal stent strut offsets, or locations, within shadows cast in OCT image data. Methods of stent strut detection can include accessing a plurality of frames of intravascular imaging data, the plurality of frames comprising optical coherency tomography (OCT) scan lines, identifying a shadow region corresponding to a candidate stent strut, identifying scan lines that correspond to a candidate stent strut shadow region to generate candidate strut shadow scan lines, and analyzing the candidate strut shadow scan lines to identify the location of a stent strut.
Methods of stent strut detection also can include storing a plurality of frames of intravascular imaging data, detecting stent struts in a first group of frames of the plurality of frames, detecting one or more shadow regions in the first group of frames, wherein one or more of the shadow regions is adjacent to a detected stent strut, determining on a per shadow region basis if a given shadow region is a guidewire induced region or a side branch induced region to generate a set of candidate stent strut shadow regions, wherein each candidate stent strut shadow region comprises a shadow boundary, and identifying scan lines of a candidate stent strut shadow region within the shadow boundary.
Methods of the invention can include additional steps or features. For example, the methods can include identifying a shadow region corresponding to a candidate stent strut by eliminating shadow regions corresponding to non-stent features. The non-stent features can be selected, for example, from the group consisting of: a guidewire, a side branch, and combinations thereof.
The methods can include eliminating candidate strut shadow scan lines that contain spillage from lumen pixels.
The methods can include determining a projection across each of the candidate strut shadow scan lines by summing a signal response across the candidate strut shadow scan lines, or a portion or sample of the scan lines.
The methods can include identifying up to three local maxima in the projection.
The methods can include ranking local maxima based on peak signal intensity to generate a peak score. The ranking can be an ordinal ranking, with local maxima having higher peak signal intensity receiving a higher peak score.
The methods can include ranking the local maxima based on proximity to the blood vessel wall to generate a proximity score. The ranking can be an ordinal ranking, with local maxima closer to the blood vessel wall receiving a higher proximity score.
The methods can include assigning a malapposition score to each local maxima.
The malapposition score can be binary, with malapposed local maxima receiving a score of zero.
The methods can include summing the peak score, the proximity score, and the malapposition score, wherein the local maximum with the highest total score is designated as the location of the stent strut.
The methods can include identifying a plurality shadow region corresponding to a candidate stent strut, identifying scan lines that correspond to each candidate stent strut shadow region, and identifying, within each candidate stent strut shadow region, the location of a stent strut.
The methods can include performing a cross-frame analysis to validate designated stent struts across multiple optical coherence tomography (OCT) imaging frames.
The methods can include displaying on a graphical user interface the validated stent struts.
The invention also includes a computer readable medium comprising non-transitory instructions that when executed cause a processor to perform any of the foregoing steps.
The figures are not necessarily to scale, emphasis instead generally being placed upon illustrative principles. The figures are to be considered illustrative in all respects and are not intended to limit the disclosure, the scope of which is defined only by the claims.
The disclosure provides, in part, methods and systems for identifying within a detected stent shadow the precise offset, or location, of the strut resulting in the detected shadow. Sometimes, within a shadow there is a single possible strut location corresponding to a bright strut bloom, or peak, against a dark shadow background in the scan line. However, multiple strut peaks often are detected inside a strut shadow, making it difficult to identify the exact location of a stent strut. Spurious peaks can be caused by, for example, blood pooling, poor blood clearing in the pullback zone, or ringing artifacts due to the imaging optics interacting with the metal strut. The present disclosure provides methods and systems for identifying the best candidate for a true stent within a stent shadow.
As shown, the catheter 20 is introduced into the lumen 11 such as an arterial lumen. The probe 7 can include a rotating or slidable fiber 15 that directs light forward into the lumen 14 or at a direction perpendicular to the longitudinal axis of the fiber 15. As a result, in the case of light that is directed from the side of the probe as the fiber 15 rotates, OCT data is collected with respect to the walls of the blood vessel 5. The walls of the blood vessel 5 define a lumen boundary. This lumen boundary can be detected using the distance measurements obtained from the optical signals collected at the probe tip 17 using lumen detection software component. Side branches and stent struts and shadow regions and other features can be identified in the scan lines generated during a pullback through the artery by the probe. The probe 7 can include other imaging modalities in addition to OCT such as ultrasound in one embodiment. In one embodiment, the lumen/lumen boundary refers to a portion of the vessel that is first impinged upon when light or ultrasound exists an intravascular imaging probe that generates a signal of interest for imaging the vessel. This excludes any blood flowing in the vessel which is typically removed using image processing in the form of masking. In one embodiment, the lumen or lumen boundary refers to a region of tissue that is disposed in front of the vessel wall and facing the blood containing region of the vessel.
As shown in
In one embodiment, an optical receiver 31 such as a balanced photodiode based system can receive light exiting the probe 7. A computing device 40 such as a computer, processor, ASIC or other device can be part of the OCT system 10 or can be included as a separate subsystem in electrical or optical communication with the OCT system 10. The computing device 40 can include memory, storage, buses and other components suitable for processing data and software 44 such as image data processing stages configured for side branch detection, stent strut candidate selection or identification, candidate stent strut shadow region detection, correlations and comparisons of stent image data stent visualization, and pullback data collection as discussed below.
In one embodiment, the computing device 40 includes or accesses software modules or programs 44, such as a side branch detection module, a lumen detection module, a stent detection module, a stent strut validation module, a candidate stent strut identification module and other software modules. The software modules or programs 44 can include an image data processing pipeline or component modules thereof and one or more graphical user interfaces (GUI). The modules can be subsets of each other and arranged and connected through various inputs, outputs, and data classes.
An exemplary image processing pipeline and components thereof can constitute one or more software programs or modules 44. The software modules 44 may comprise several image processing algorithms tailored to detect the vessel lumen, side-branches, guide-wires, guide-catheters, stent struts and stent regions. This disclosure relates to image processing to determine the location of a metal strut within its shadow. The image data processing pipeline, its components software modules and related methods and any of the methods described herein are stored in memory and executed using one or more computing devices such as a processor, device, or other integrated circuit.
As shown, in
In addition, display information 47 can include, without limitation, cross-sectional scan data, longitudinal scans, diameter graphs, image masks, stents, areas of malapposition, lumen border, and other images or representations of a blood vessel or the underlying distance measurements obtained using an OCT system and data collection probe. The computing device 40 can also include software or programs 44, which can be stored in one or more memory devices 45, configured to identify stent struts and malapposition levels (such as based on a threshold and measured distance comparison), shadow regions, and struts within shadow regions and other blood vessel features such as with text, arrows, color coding, highlighting, contour lines, or other suitable human or machine readable indicia.
In Step 110, each shadow in the OCT image data is cross-examined with data inputs from a side branch detection module 130 and a guide-wire detection module 140 to determine if the shadow is attributable to a side branch vessel or guidewire. Methods, systems, and devices for detecting strut shadows, side branches, and guidewire shadows are known. See, e.g., U.S. Pat. Nos. 8,412,312; 8,478,387; 8,831,321; 9,138,147 and 9,173,591.
At Step 150, if a given shadow is determined to be attributable to the guidewire or a side branch, the shadow is discarded and the analysis ends with respect to that shadow. At Step 160, if a given shadow is determined to be attributable to a stent strut, either by direct detection or by process of elimination, the shadow is analyzed to compute, or isolate, the interior part of the shadow. The shadow boundaries are trimmed away such that only the scan lines, or A-Lines, corresponding to the interior (and hence the “darkest”) portion of the shadow are retained. The reason for this is that the shadow region, specifically the start and stop scan lines of the shadow, can sometimes contain spillage from the neighboring lumen pixels. Isolating the interior of the shadow and ignoring transitionary scan lines at the shadow margins improves assessment of strut offsets.
At step 170, the shadow interior is analyzed to compute the projection (or sum) of each sample across scan lines corresponding to the interior part of the shadow. Each scan-line is sampled into discrete pixels or “samples”. In the input OCT image data, each scan line refers to data acquired along a particular angular direction with the imaging catheter at the center. Each scan line is in turn radially sampled into a discrete set of pixels or “samples”. Each sample in the OCT data is typically a few microns wide and is typically uniform in size. A “projection” refers to the process of adding across each scan line. In other words, the 2-dimensional shadow in the {scan-line, sample} space is collapsed into a 1-dimensional signal where the i-th index corresponds to the sum of the i-th sample of each scan-line involved in the process. The projection contains samples, at radius R, which are the average of samples from the constituent scanlines at that same radius R.
At step 180, the projection is searched for up to three (e.g., 1, 2, or 3) of the largest local maxima. The location, or offset, of each selected maximum may be noted as potential strut locations, and certain features of the selected maxima are then analyzed to determine which one is the best candidate for being a true strut. In various embodiments, only the largest maximum is selected. In other embodiments, two or three of the largest maxima are selected. The initial selection of multiple local maxima increases sensitivity. Although more than three local maxima can be selected, this typically is unnecessary because one of the three highest maxima usually indicates the true strut location. The maxima selection process is illustrated by
Additional filters can be applied to the local maxima to remove false positives. In various embodiments, a local maximum is selected only if it has a signal greater than 1/10 (i.e., 10%) of the global peak (largest maximum along the projection). The global peak is the peak with the greatest amplitude. The 10% threshold reduces the chance of selecting spurious local maxima due to noise. The threshold can be set between 5% (i.e., 1/20) and 10% of the global peak, such as 5%, 6%, 7%, 8%, 9%, or 10%, with 10% being preferred. In various embodiments, if multiple peaks are detected in close proximity to each other, only the largest peak is selected for further analysis.
At Step 190, the selected local maxima are analyzed to determine which maximum has the highest probability of being the true strut based on the information available from the immediate neighborhood of the strut. A relative score is assigned to each strut based on one or more of the following criteria:
These scoring criteria are exemplary, and additional scoring criteria based on other strut and shadow features may be used.
Each local maxima gets a combined score which is the linear sum of the abovementioned criteria. At Step 200, the local maximum with the highest score is selected as the valid strut. At Step 210, the remaining local maxima are saved as alternative or backup struts pending further analysis. In the event of a tie, the local maximum closest to the lumen and/or the brightest local maximum are used as tiebreakers. Table 1 provides an exemplary ranking of local maxima for a stent shadow.
As shown in Table 1, local maximum 1 has the highest total score and therefore would be selected as the candidate valid strut. Local maxima 2 and 3 would be designated as backup struts.
At Step 220, all local maxima (valid strut and any backup struts) undergo multi-frame validation. In this step, adjacent frames are compared to verify that a valid strut in one frame aligns with valid struts selected for adjacent frames. If a valid strut does not align with other cross-frame struts, then the valid strut may be replaced by a backup strut if the backup strut better fits the cross-frame model. One embodiment of the multi-frame validation step can use stent strut geometry and location information. Other embodiments with a bigger set of strut and shadow features can also be used for this step.
Once detected, the valid or chosen struts can be displayed on a user interface, which conveys vital visual aid to the clinician about the precise location of stent struts and whether adjustments may be necessary to optimize and/or speed-up stent placement and reduce the risk of side effects. The user interface can include cross-sectional images, L-Mode images, scan line images, three dimensional renderings, or any other suitable display format for visualizing detected struts.
The detection algorithm accurately identified the location of struts, with a sensitivity of that ranges from greater than about 80% in one embodiment. The detection algorithm accurately identified the location of struts, with a sensitivity of that ranges from greater than about 00% in one embodiment. Sensitivity is the proportion of struts correctly located over the total number of struts (struts correctly located plus struts missed). The positive predictive value is the proportion of struts correctly detected over all positive calls (struts correctly detected plus false positive struts).
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations can be used by those skilled in the computer and software related fields. In one embodiment, an algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations performed as methods stops or otherwise described herein are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, transformed, compared, and otherwise manipulated.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below.
Embodiments of the disclosure may be implemented in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device, (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. Some or all of the processing of data collected using an OCT probe and other imaging devices is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a processor, for example, under the control of an operating system. Thus, user interface instructions or automated imaging processing of intravascular data received from a cath lag system, for example, are transformed into processor understandable instructions suitable for generating OCT data, performing image procession using various and other features and embodiments described above.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the internet or World Wide Web).
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the internet or World Wide Web).
Various examples of suitable processing modules are discussed below in more detail. As used herein a module refers to software, hardware, or firmware suitable for performing a specific data processing or data transmission task. In one embodiment, a module refers to a software routine, program, or other memory resident application suitable for receiving, transforming, routing and processing instructions, or various types of data such as detected stents, candidate stent struts, FFR data, IVUS data, shadows, pixels, intensity patterns, scores, projections, side branch data, and guidewire data and other information of interest as described herein.
Computers and computer systems described herein may include operatively associated computer-readable media such as memory for storing software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system.
Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, DVD (digital versatile disc), CD (compact disc), memory stick, flash memory, ROM (read only memory), RAM (random access memory), DRAM (dynamic random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
In general, computer-readable memory media applied in association with embodiments of the disclosure described herein may include any memory medium capable of storing instructions executed by a programmable apparatus. Where applicable, method steps described herein may be embodied or executed as instructions stored on a computer-readable memory medium or memory media. These instructions may be software embodied in various programming languages such as C++, C, Java, and/or a variety of other kinds of software programming languages that may be applied to create instructions in accordance with embodiments of the disclosure.
The aspects, embodiments, features, and examples of the disclosure are to be considered illustrative in all respects and are not intended to limit the disclosure, the scope of which is defined only by the claims. Other embodiments, modifications, and usages will be apparent to those skilled in the art without departing from the spirit and scope of the claimed disclosure.
The use of headings and sections in the application is not meant to limit the disclosure; each section can apply to any aspect, embodiment, or feature of the disclosure.
Throughout the application, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including or comprising specific process steps, it is contemplated that compositions of the present teachings also consist essentially of, or consist of, the recited components, and that the processes of the present teachings also consist essentially of, or consist of, the recited process steps.
In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components and can be selected from a group consisting of two or more of the recited elements or components. Further, it should be understood that elements and/or features of a composition, an apparatus, or a method described herein can be combined in a variety of ways without departing from the spirit and scope of the present teachings, whether explicit or implicit herein.
The use of the terms “include,” “includes,” “including,” “have,” “has,” or “having” should be generally understood as open-ended and non-limiting unless specifically stated otherwise.
The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. Moreover, the singular forms “a,” “an,” and “the” include plural forms unless the context clearly dictates otherwise. In addition, where the use of the term “about” is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise. As used herein, the term “about” refers to a ±10% variation from the nominal value.
It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present teachings remain operable. Moreover, two or more steps or actions may be conducted simultaneously.
Where a range or list of values is provided, each intervening value between the upper and lower limits of that range or list of values is individually contemplated and is encompassed within the disclosure as if each value were specifically enumerated herein. In addition, smaller ranges between and including the upper and lower limits of a given range are contemplated and encompassed within the disclosure. The listing of exemplary values or ranges is not a disclaimer of other values or ranges between and including the upper and lower limits of a given range.
This application is a continuation of U.S. patent application Ser. No. 16/002,554, filed on Jun. 7, 2018, which is a continuation of U.S. patent application Ser. No. 14/975,516, filed on Dec. 18, 2015, now U.S. Pat. No. 9,996,921, which claims the benefit of U.S. Provisional Patent Application No. 62/196,997 filed on Jul. 25, 2015 and U.S. Provisional Patent Application No. 62/162,795 filed on May 17, 2015, the disclosures of which are each herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4548473 | Lo et al. | Oct 1985 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5477858 | Norris et al. | Dec 1995 | A |
5488674 | Burt et al. | Jan 1996 | A |
5509093 | Miller et al. | Apr 1996 | A |
5518810 | Nishihara et al. | May 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5586201 | Whiting et al. | Dec 1996 | A |
5619368 | Swanson | Apr 1997 | A |
5632767 | Sinofsky | May 1997 | A |
5643253 | Baxter et al. | Jul 1997 | A |
5662109 | Hutson | Sep 1997 | A |
5715827 | Corl et al. | Feb 1998 | A |
5748598 | Swanson et al. | May 1998 | A |
5771895 | Slager | Jun 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5822391 | Whitting | Oct 1998 | A |
5908415 | Sinofsky | Jun 1999 | A |
5921931 | O'Donnell et al. | Jul 1999 | A |
5947959 | Sinofsky | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5965355 | Swanson et al. | Oct 1999 | A |
5989189 | LeBlanc et al. | Nov 1999 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6148095 | Prause et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6191862 | Swanson et al. | Feb 2001 | B1 |
6195445 | Jolly et al. | Feb 2001 | B1 |
6208883 | Holupka et al. | Mar 2001 | B1 |
6270492 | Sinofsky | Aug 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6348960 | Etori et al. | Feb 2002 | B1 |
6381350 | Klingensmith et al. | Apr 2002 | B1 |
6385332 | Zahalka et al. | May 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6471656 | Shalman et al. | Oct 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6564087 | Pitris | May 2003 | B1 |
6565514 | Svanerudh et al. | May 2003 | B2 |
6570659 | Schmitt | May 2003 | B2 |
6585660 | Dorando et al. | Jul 2003 | B2 |
6692824 | Benz et al. | Feb 2004 | B2 |
6697667 | Lee et al. | Feb 2004 | B1 |
6706004 | Tearney et al. | Mar 2004 | B2 |
6716178 | Kilpatrick et al. | Apr 2004 | B1 |
6718089 | James et al. | Apr 2004 | B2 |
6728566 | Subramanyan et al. | Apr 2004 | B1 |
6731973 | Voith | May 2004 | B2 |
6760112 | Reed et al. | Jul 2004 | B2 |
6785409 | Suri | Aug 2004 | B1 |
6868736 | Sawatari et al. | Mar 2005 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6891984 | Petersen et al. | May 2005 | B2 |
6932809 | Sinofsky | Aug 2005 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6947040 | Tek et al. | Sep 2005 | B2 |
6973202 | Mostafavi | Dec 2005 | B2 |
6974557 | Webler et al. | Dec 2005 | B1 |
7048716 | Kucharczyk et al. | May 2006 | B1 |
7068831 | Florent et al. | Jun 2006 | B2 |
7134994 | Alpert et al. | Nov 2006 | B2 |
7191100 | Mostafavi | Mar 2007 | B2 |
7208333 | Flanders et al. | Apr 2007 | B2 |
7231243 | Tearney et al. | Jun 2007 | B2 |
7241286 | Atlas | Jul 2007 | B2 |
7298478 | Gilbert et al. | Nov 2007 | B2 |
7301644 | Knighton et al. | Nov 2007 | B2 |
7321677 | Evron et al. | Jan 2008 | B2 |
7329223 | Ainsworth et al. | Feb 2008 | B1 |
7355699 | Gilbert et al. | Apr 2008 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7397935 | Kimmel et al. | Jul 2008 | B2 |
7408648 | Kleen et al. | Aug 2008 | B2 |
7412141 | Gowda et al. | Aug 2008 | B2 |
7414779 | Huber et al. | Aug 2008 | B2 |
7415049 | Flanders et al. | Aug 2008 | B2 |
7450241 | Zuluaga | Nov 2008 | B2 |
RE40608 | Glover et al. | Dec 2008 | E |
7492522 | Gilbert et al. | Feb 2009 | B2 |
7532920 | Ainsworth et al. | May 2009 | B1 |
7576861 | Gilbert et al. | Aug 2009 | B2 |
7593559 | Toth et al. | Sep 2009 | B2 |
7610081 | Redel | Oct 2009 | B2 |
7619646 | Freifeld et al. | Nov 2009 | B2 |
7625366 | Atlas | Dec 2009 | B2 |
7627156 | Margolis et al. | Dec 2009 | B2 |
7650179 | Redel et al. | Jan 2010 | B2 |
7679754 | Zuluaga | Mar 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7706585 | Kleen | Apr 2010 | B2 |
7711413 | Feldman et al. | May 2010 | B2 |
7729746 | Redel et al. | Jun 2010 | B2 |
7733497 | Yun et al. | Jun 2010 | B2 |
7742797 | Redel et al. | Jun 2010 | B2 |
7783337 | Feldman et al. | Aug 2010 | B2 |
7783338 | Ainsworth et al. | Aug 2010 | B2 |
7785286 | Magnin et al. | Aug 2010 | B2 |
7792342 | Barbu et al. | Sep 2010 | B2 |
7801343 | Unal et al. | Sep 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7831078 | Unal et al. | Nov 2010 | B2 |
7843976 | Cable et al. | Nov 2010 | B2 |
7848791 | Schmitt et al. | Dec 2010 | B2 |
7853316 | Milner et al. | Dec 2010 | B2 |
7869663 | Buckland et al. | Jan 2011 | B2 |
7872759 | Tearney et al. | Jan 2011 | B2 |
7916387 | Schmitt | Mar 2011 | B2 |
7918793 | Altmann et al. | Apr 2011 | B2 |
7925327 | Weese | Apr 2011 | B2 |
7930014 | Huennekens et al. | Apr 2011 | B2 |
7935060 | Schmitt et al. | May 2011 | B2 |
7967743 | Ishihara | Jun 2011 | B2 |
7988633 | Hossack et al. | Aug 2011 | B2 |
7991105 | Mielekamp et al. | Aug 2011 | B2 |
8029447 | Kanz et al. | Oct 2011 | B2 |
8116605 | Petersen et al. | Feb 2012 | B2 |
8206374 | Duane et al. | Jun 2012 | B2 |
8206377 | Petroff | Jun 2012 | B2 |
8208995 | Tearney et al. | Jun 2012 | B2 |
8223143 | Dastmalchi et al. | Jul 2012 | B2 |
8259303 | Johnson et al. | Sep 2012 | B2 |
8290228 | Cohen et al. | Oct 2012 | B2 |
8298147 | Huennekens et al. | Oct 2012 | B2 |
8315282 | Huber et al. | Nov 2012 | B2 |
8325419 | Schmitt | Dec 2012 | B2 |
8351665 | Tearney et al. | Jan 2013 | B2 |
8358461 | Huber et al. | Jan 2013 | B2 |
8412312 | Judell et al. | Apr 2013 | B2 |
8423121 | Wang et al. | Apr 2013 | B2 |
8449468 | Petersen et al. | May 2013 | B2 |
8457375 | Rieber et al. | Jun 2013 | B2 |
8457440 | Johnson | Jun 2013 | B1 |
8463007 | Steinberg et al. | Jun 2013 | B2 |
8478384 | Schmitt et al. | Jul 2013 | B2 |
8478387 | Xu | Jul 2013 | B2 |
8503844 | Petersen et al. | Aug 2013 | B2 |
8542900 | Tolkowsky et al. | Sep 2013 | B2 |
8556820 | Alpert et al. | Oct 2013 | B2 |
8562537 | Alpert et al. | Oct 2013 | B2 |
8571639 | Mostafavi | Oct 2013 | B2 |
8581643 | Schmitt | Nov 2013 | B1 |
8582109 | Schmitt | Nov 2013 | B1 |
8582619 | Adler | Nov 2013 | B2 |
8582934 | Adler et al. | Nov 2013 | B2 |
8670603 | Tolkowsky et al. | Mar 2014 | B2 |
8687201 | Adler | Apr 2014 | B2 |
8693756 | Tolkowsky et al. | Apr 2014 | B2 |
8700130 | Iddan et al. | Apr 2014 | B2 |
8781193 | Steinberg et al. | Jul 2014 | B2 |
8786336 | Schmitt | Jul 2014 | B1 |
8831321 | Elbasiony | Sep 2014 | B1 |
8855744 | Tolkowsky et al. | Oct 2014 | B2 |
8909323 | Baumgart | Dec 2014 | B2 |
8913084 | Chen et al. | Dec 2014 | B2 |
8948228 | Adler | Feb 2015 | B2 |
8953911 | Xu et al. | Feb 2015 | B1 |
8983580 | Boppart et al. | Mar 2015 | B2 |
9069396 | Adler et al. | Jun 2015 | B2 |
9173591 | Elbasiony | Nov 2015 | B2 |
9308052 | Tolkowsky et al. | Apr 2016 | B2 |
9351698 | Dascal et al. | May 2016 | B2 |
9404731 | Adler et al. | Aug 2016 | B2 |
9435956 | Xu et al. | Sep 2016 | B1 |
9488464 | Schmitt | Nov 2016 | B1 |
9629571 | Tolkowsky et al. | Apr 2017 | B2 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020161351 | Samson et al. | Oct 2002 | A1 |
20040006277 | Langenhove et al. | Jan 2004 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050049672 | Murphy | Mar 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050238067 | Choi | Oct 2005 | A1 |
20050249391 | Kimmel et al. | Nov 2005 | A1 |
20060095065 | Tanimura et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060165270 | Borgert et al. | Jul 2006 | A1 |
20060187537 | Huber et al. | Aug 2006 | A1 |
20060203859 | Cable et al. | Sep 2006 | A1 |
20060241465 | Huennekens et al. | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20070024617 | Poole | Feb 2007 | A1 |
20070055132 | Camus et al. | Mar 2007 | A1 |
20070060822 | Alpert et al. | Mar 2007 | A1 |
20070066890 | Maschke | Mar 2007 | A1 |
20070115481 | Toth et al. | May 2007 | A1 |
20070123771 | Redel et al. | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070165916 | Cloutier et al. | Jul 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070232933 | Gille et al. | Oct 2007 | A1 |
20070260198 | Atlas | Nov 2007 | A1 |
20070293932 | Zilla et al. | Dec 2007 | A1 |
20080100612 | Dastmalchi et al. | May 2008 | A1 |
20080161696 | Schmitt et al. | Jul 2008 | A1 |
20080165366 | Schmitt et al. | Jul 2008 | A1 |
20080177139 | Courtney et al. | Jul 2008 | A1 |
20080221439 | Iddan et al. | Sep 2008 | A1 |
20080221440 | Iddan et al. | Sep 2008 | A1 |
20080221442 | Tolkowsky et al. | Sep 2008 | A1 |
20080228086 | Ilegbusi et al. | Sep 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20090027051 | Stuber et al. | Jan 2009 | A1 |
20090174931 | Huber et al. | Jul 2009 | A1 |
20090204134 | Kassab | Aug 2009 | A1 |
20090264768 | Courtney et al. | Oct 2009 | A1 |
20090306520 | Schmitt et al. | Dec 2009 | A1 |
20100076320 | Petersen et al. | Mar 2010 | A1 |
20100094127 | Xu | Apr 2010 | A1 |
20100142785 | Dahnke et al. | Jun 2010 | A1 |
20100157041 | Klaiman et al. | Jun 2010 | A1 |
20100160764 | Steinberg et al. | Jun 2010 | A1 |
20100160773 | Cohen et al. | Jun 2010 | A1 |
20100161023 | Cohen et al. | Jun 2010 | A1 |
20100172556 | Cohen et al. | Jul 2010 | A1 |
20100191102 | Steinberg et al. | Jul 2010 | A1 |
20100222671 | Cohen et al. | Sep 2010 | A1 |
20100228076 | Blank | Sep 2010 | A1 |
20100232672 | Jandt et al. | Sep 2010 | A1 |
20100253949 | Adler et al. | Oct 2010 | A1 |
20110007315 | Petersen et al. | Jan 2011 | A1 |
20110034814 | Kopperschmidt | Feb 2011 | A1 |
20110071404 | Schmitt et al. | Mar 2011 | A1 |
20110071405 | Judell et al. | Mar 2011 | A1 |
20110101207 | Schmitt | May 2011 | A1 |
20110151980 | Petroff | Jun 2011 | A1 |
20110157686 | Huber et al. | Jun 2011 | A1 |
20110172511 | Schmitt et al. | Jul 2011 | A1 |
20110178413 | Schmitt et al. | Jul 2011 | A1 |
20110190586 | Kemp | Aug 2011 | A1 |
20110216325 | Schmitt | Sep 2011 | A1 |
20110228280 | Schmitt et al. | Sep 2011 | A1 |
20110230758 | Eichler | Sep 2011 | A1 |
20110257545 | Suri | Oct 2011 | A1 |
20110263960 | Mitchell | Oct 2011 | A1 |
20110319752 | Steinberg et al. | Dec 2011 | A1 |
20120004529 | Tolkowsky et al. | Jan 2012 | A1 |
20120029339 | Cohen et al. | Feb 2012 | A1 |
20120057157 | Petersen et al. | Mar 2012 | A1 |
20120075638 | Rollins | Mar 2012 | A1 |
20120130243 | Balocco et al. | May 2012 | A1 |
20120162660 | Kemp | Jun 2012 | A1 |
20120224751 | Kemp et al. | Sep 2012 | A1 |
20120236883 | Adler | Sep 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120250028 | Schmitt et al. | Oct 2012 | A1 |
20120300215 | Johnson et al. | Nov 2012 | A1 |
20120300216 | Johnson et al. | Nov 2012 | A1 |
20120310081 | Adler et al. | Dec 2012 | A1 |
20120316433 | Maruyama | Dec 2012 | A1 |
20120316491 | Jonsson | Dec 2012 | A1 |
20120323311 | McClain et al. | Dec 2012 | A1 |
20130006105 | Furuichi | Jan 2013 | A1 |
20130010303 | Petersen et al. | Jan 2013 | A1 |
20130012811 | Schmitt et al. | Jan 2013 | A1 |
20130023761 | Petroff | Jan 2013 | A1 |
20130051728 | Petroff | Feb 2013 | A1 |
20130072805 | Schmitt et al. | Mar 2013 | A1 |
20130123616 | Merritt et al. | May 2013 | A1 |
20130303910 | Hubbard et al. | Nov 2013 | A1 |
20130310698 | Judell et al. | Nov 2013 | A1 |
20140018669 | Xu | Jan 2014 | A1 |
20140024931 | Winston et al. | Jan 2014 | A1 |
20140094660 | Tolkowsky et al. | Apr 2014 | A1 |
20140094689 | Cohen et al. | Apr 2014 | A1 |
20140094691 | Steinberg et al. | Apr 2014 | A1 |
20140094692 | Tolkowsky et al. | Apr 2014 | A1 |
20140094693 | Cohen et al. | Apr 2014 | A1 |
20140094697 | Petroff et al. | Apr 2014 | A1 |
20140114182 | Petersen et al. | Apr 2014 | A1 |
20140114184 | Klaiman et al. | Apr 2014 | A1 |
20140114185 | Tolkowsky et al. | Apr 2014 | A1 |
20140142427 | Petroff | May 2014 | A1 |
20140142432 | Hutchins et al. | May 2014 | A1 |
20140142436 | Hutchins et al. | May 2014 | A1 |
20140146950 | Chida et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140187929 | Schmitt et al. | Jul 2014 | A1 |
20140218742 | Adler | Aug 2014 | A1 |
20140249407 | Adler et al. | Sep 2014 | A1 |
20140257087 | Elbasiony et al. | Sep 2014 | A1 |
20140268167 | Friedman et al. | Sep 2014 | A1 |
20140270445 | Kemp | Sep 2014 | A1 |
20140276011 | Schmitt et al. | Sep 2014 | A1 |
20140276020 | Hutchins et al. | Sep 2014 | A1 |
20140286541 | Kiyomizu et al. | Sep 2014 | A1 |
20140309536 | Douk et al. | Oct 2014 | A1 |
20140316758 | Yagi et al. | Oct 2014 | A1 |
20140379269 | Schmitt | Dec 2014 | A1 |
20150119707 | Schmitt | Apr 2015 | A1 |
20150153157 | Schmitt et al. | Jun 2015 | A1 |
20150190054 | Kaneko | Jul 2015 | A1 |
20150192405 | Schmitt | Jul 2015 | A1 |
20150297373 | Schmitt et al. | Oct 2015 | A1 |
20150370229 | Adler et al. | Dec 2015 | A1 |
20160000406 | Petroff | Jan 2016 | A1 |
20160022208 | Gopinath | Jan 2016 | A1 |
20160058307 | Svanerudh | Mar 2016 | A1 |
20160066880 | Stigall et al. | Mar 2016 | A1 |
20160070066 | Schmitt et al. | Mar 2016 | A1 |
20160073885 | Adler | Mar 2016 | A1 |
20160166232 | Merritt | Jun 2016 | A1 |
20160174925 | Dascal et al. | Jun 2016 | A1 |
20160292857 | Begin et al. | Oct 2016 | A1 |
20160313507 | Adler et al. | Oct 2016 | A1 |
20160335763 | Ambwani et al. | Nov 2016 | A1 |
20160335766 | Ambwani et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2887360 | Apr 2014 | CA |
101264014 | Sep 2008 | CN |
101779222 | Jul 2010 | CN |
102014984 | Apr 2011 | CN |
102046071 | May 2011 | CN |
102802492 | Nov 2012 | CN |
103619256 | Mar 2014 | CN |
104063679 | Sep 2014 | CN |
1833363 | Sep 2007 | EP |
2062526 | May 2009 | EP |
2713858 | Apr 2014 | EP |
3053505 | Aug 2016 | EP |
S63127201 | May 1988 | JP |
2012505669 | Mar 2012 | JP |
2013505782 | Feb 2013 | JP |
2013154192 | Aug 2013 | JP |
2014158619 | Sep 2014 | JP |
2014525761 | Oct 2014 | JP |
20140092102 | Jul 2014 | KR |
0122870 | Apr 2001 | WO |
2006076409 | Jul 2006 | WO |
2007002685 | Jan 2007 | WO |
2011038044 | Mar 2011 | WO |
2012126070 | Sep 2012 | WO |
2012166332 | Dec 2012 | WO |
2012176191 | Dec 2012 | WO |
2013049123 | Apr 2013 | WO |
2013175472 | Nov 2013 | WO |
2014002095 | Jan 2014 | WO |
2014045327 | Mar 2014 | WO |
2014137353 | Sep 2014 | WO |
2014175853 | Oct 2014 | WO |
2015044987 | Apr 2015 | WO |
Entry |
---|
Wang et al: “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs”, Int. J. Cardiovasc Imaging, 2013 (Year: 2013). |
International Search Report and Written Opinion for International application No. PCT/US2016/032933 mailed from International Searching Authority dated Aug. 1, 2016 (14 pages). |
Chinese Search Report for Application No. 201680049576.4, dated Jul. 5, 2021, 7 pages. |
Li Y, Gutierréz-Chico JL, Holm NR, Yang W, Hebsgaard L, Christiansen EH, Mæng M, Lassen JF, Yan F, Reiber JH, Tu S. Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3D angiography and OCT. Journal of the American College of Cardiology. Jul. 14, 2015;66(2):125-35. |
Search Report from Third Office Action for Chinese Application No. 201680048506.7 dated Jul. 1, 2021; 3 pages. |
Wang et al., Biomedical Optics Express “Fully automated side branch detection in intravascular optical coherence tomography pullback runs”. |
Briguori et al., “Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve,” Am J. Cardiol 87:136-141, 2001. |
Kassab et al., “The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis,” Annals of Biomedical Engineering 23 (1): 13-20,1995. |
Hariri et al., “An automatic image processing algorithm for initiating and terminating intracoronary OFDI pullback” Biomedical Optics Express 1:2 566-573 (Sep. 1, 2010). |
Harrison et al., “The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses,” Circulation 69:6 1111-1119, 1984. |
Kirkeeide, “Coronary obstructions, morphology, and physiological significance,” in Reiber JHC and Serruys PW (eds), Quantitative Coronary Arteriography, Kluwer Academic Publishers, the Netherlands, 1991, pp. 229-244. |
Kolyva et al., “Increased diastolic time fraction as beneficial adjunct of alpha. 1-adrenergic receptor blockade after percutaneous coronary intervention,” Am J Physiol Heart Circ Physiol 295: H2054-H2060, 2008. |
Kolyva et al., “‘Windkesselness’ of coronary arteries hampers assessment of human coronary wave speed by single-point technique,” Am J Physiol Heart Circ Physiol, 295: H482-H490, 2008. |
Laslett, “Normal left main coronary artery diameter can be predicted from diameters of its branch vessels,” Clinical Cardiology 18 (10): 580-582, 1995. |
Ofili et al., “Differential characterization of blood flow, velocity, and vascular resistance between proximal and distal normal epicardial human coronary arteries: analysis by intracoronary Doppler spectral flow velocity,” Am Heart J. 130:137-46,1995. |
Ohta et al., “Rheological Changes After Stenting of a Cerebral Aneurysm: A Finite Element Modeling Approach,” Cardiovascular and Interventional Radiology (2005) 28:768-772. |
Pijls et al., “Fractional Flow Reserve (FFR) Post-Stent Registry Investigators” Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry, Circulation 2002; 105:2950-2954. |
Seiler et al., “Basic structure-function relations of the epicardial coronary vascular tree, Basis of quantitative coronary arteriography for diffuse coronary artery disease,” Circulation 85 (6): 1987-2003,1992. |
Siebes et al., “Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and affects of percutaneous interventions,” Circulation 109:756-762, 2004. |
Sihan et al., “A Novel Approach to Quantitative Analysis of Intravascular Optical Coherence Tomography Imaging,” Computers in Cardiology 2008; 35:1089-1092. |
Sihan et al., “Fully Automatic Three-Dimensional Quantitative Analysis of Intracoronary Optical Coherence Tomography: Method and Validation,” Catheterization and Cardiovascular Interventions 74:1058-1065 (2009). |
Span, “Coronary Blood Flow,” Ch 12. Dordrecht, The Netherlands: Kluwer Acedemic Publishers, Boston; 1991: pp. 333-361. |
Takagi et al., “Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis,” Circulation 100: 250-255, 1999. |
Verhoeff et al., “Influence of percutaneous coronary intervention on coronary microvascular resistance index,” Circulation 111:76-82, 2005. |
White et al., “Does visual interpretation of the coronary angiogram predict the physiologic importance of coronary stenoses?,” N. Engl J Med 310:13 819-824, 1984. |
Wilson et al., “Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease,” Circulation 75: 723-732, 1987. |
Perez-Rovira et al., “Deformable Registration of Retinal Fluorescein Angiogram Sequences Using Vasculature Structures”, 32nd Annual Conf, of IEEE EMBS, 2010, pp. 4383-4386. |
Herrington et al., “Semi-automated boundary detection for intravascular ultrasound,” Computers in Cardiology 1992 Proceedings , pp. 103-106, Oct. 1992. |
Sonka et al., “Segmentation of intravascular ultrasound images: a knowledge-based approach,” IEEE Transactions on Medical Imaging, 14(4):719-732, Dec. 1995. |
Mojsilovic et al., “Automatic segmentation of intravascular ultra-sound images: A texture-based approach,” Annals of Biomedical Engineering, 25:1059-1071, Nov. 1997. |
Sil et al., “Automatic segmentation of artery wall in coronary IVUS images: a probabilistic approach,” Computers in Cardiology 2000; 27:687-690. |
Haas et al., “Segmentation of 3D intravascular ultrasonic images based on a random field model,” Ultrasound in Medicine & Biology, 26:2, 297-306, 2000. |
Kovalski et al., “Three-dimensional automatic quantitative analysis of intravascular ultrasound images,” Ultrasound in Medicine & Biology, 26(4):527-537, 2000. |
Pujol et al., “Intravascular Ultrasound Images Vessel Characterization using AdaBoost,” Functional Imaging and Modeling of the Heart: Lecture Notes in Computer Science, pp. 242-251, 2003. |
Taki et al., “Automatic segmentation of calcified plaques and vessel borders in IVUS images,” International Journal of Computer Assisted Radiology and Surgery, 3(3-4):347-354, Sep. 2008. |
Van den Berg et al., “Using three-dimensional rotational angiography for sizing of covered stents,” Am. J. Roentgenology, 178:149-152 (2002). |
Wong et al., “A novel method of coronary stent sizing using intravascular ultrasound: safety and clinical outcomes,” Int. J. Anglol., 18(1): 22-24 2009. |
Bonnema et al., “An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets”, Physics in Medicine and Biology, 53:12, Jun. 21, 2008, pp. 3083-3098. |
Unal et al., “Stent implant follow-up in intravascular optical coherence tomography images,” Int J Cardiovasc Imaging, DOI 10.1007/s10554 009 9508-4, published online Sep. 24, 2009, 8 pgs. |
Xu et al., “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” Journal of Biomedical Optics, 13:3, May/Jun. 2008, 8 pgs. |
Takano et al.. “Evaluation by Optical Coherence Tomography of Neointimal Coverage of Sirolimus-Eiuting Stent Three Months After Implantation,” American Journal of Cardiology, vol. 99, No. 8, Apr. 14, 2007, pp. 1033-1038. |
Tung et al., “Automatic Detection of Coronary Stent Struts in Intravascular OCT Imaging,” Proceedings of SPIE, vol. 3315, Feb. 22, 2012 (8 pgs.). |
Shengxian Tu et al., “In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography”, Int. J. Cardiovasc Imaging (2012)28:1315-1327. |
Palti-Wasserman et al., “Identifying and Tracking a Guide Wire in the Coronary Arteries During Angioplasty from X-Ray Images”, IEEE transactions on biomedical engineering, 44:2, Feb. 1997, pp. 152-164. |
Dave Fomell, “The Advantages and Disadvantages of OCT vs. IVUS”, Diagnostic and Interventional Cardiology, May 18, 2011, pp. 1-4. |
International Search Report and Written Opinion of the International Searching Authority for International application No. PCT/US2016/032908, dated Sep. 23, 2016 (13 pages). |
Wang et al., “Automatic stent strut detection in intravascular optical coherence tomographic pullback runs”, Int.J. Cardiovasc. Imaging (2013) 29:29-38. |
Chinese Search Report for International Application No. 201680036611.9, dated Mar. 1, 2021, 8 pages. |
Wang et al., “3D Assessment of Stent Cell Size and Side Branch Access in Intravascular Optical Coherence Tomographic Pullback Runs,” Computerized Medical Imaging and Graphics, Mar. 1, 2014, pp. 113-122, vol. 38, No. 2, abstract only. |
Gabriele Alex et al.: “Reproducibility of the Carpet View system: a novel technical solution for display and off line analysis of OCT images”, International Journal of Cardiovascular Imaging, Kluwer Academic Publishers, Dordrecht, NL, vaL 30, No. 7, Jun. 14, 2014 (Jun. 14, 2014), pp. 1225-1 233, XP035393911, ISSN: 1569-5794, DOI: 10.1007/810554-014-0464-2 [retrieved on Jun. 14, 201414]. |
Gabriele Ei Al., “Reproducibility of the Carpet View system: a novel technical solution for display and off line analysis of OCT images,” International Journal of Cardiovascular Imaging, Oct. 1, 2014, pp. 1225-1233, vol. 30, No. 7, abstract only. |
Number | Date | Country | |
---|---|---|---|
20210004955 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62196997 | Jul 2015 | US | |
62162795 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16002554 | Jun 2018 | US |
Child | 16928602 | US | |
Parent | 14975516 | Dec 2015 | US |
Child | 16002554 | US |