Detection of movement adjacent an earpiece device

Information

  • Patent Grant
  • 10397686
  • Patent Number
    10,397,686
  • Date Filed
    Friday, August 11, 2017
    7 years ago
  • Date Issued
    Tuesday, August 27, 2019
    5 years ago
Abstract
An earpiece includes an earpiece housing, a processor disposed within the housing and a sensor system associated with the earpiece housing, the sensor system operatively connected to the processor. The sensor system is configured to detect skin touches proximate the earpiece housing. The sensor system may include an emitter and a detector which may be a light emitters/light detectors or other types of emitters and detectors. The skin touches may be skin touches on an ear of the housing while the earpiece is positioned within the ear. The earpiece may further include a speaker and wherein the earpiece provides audio feedback through the speaker in response to the skin touches.
Description
FIELD OF THE INVENTION

The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to ear pieces.


BACKGROUND

Natural and user friendly interfaces are desirable, particularly for wearable devices. What is needed are new and improved apparatus, methods, and systems for wearable devices which allow for natural and user friendly interactions.


SUMMARY

Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to provide a wearable device that captures skin touches.


It is a still further object, feature, or advantage of the present invention to use skin touches to provide user input.


Another object, feature, or advantage is to monitor and classify skin touches.


Yet another object, feature, or advantage is to provide greater accuracy and reliability of input modality


A still further object, feature, or advantage is to provide greater range of options for movements, gestures including three dimensional or complex movement.


Another object, feature, or advantage is to provide a user interface for a wearable device that permits a wider area of input than a wearable device surface.


Yet another object, feature, or advantage is to provide a user interface for a wearable device that provides for multi-touch input.


One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.


According to one aspect, an earpiece includes an earpiece housing, a processor disposed within the housing and a sensor system associated with the earpiece housing, the sensor system operatively connected to the processor. The sensor system is configured to detect skin touches proximate the earpiece housing. The sensor system may include an emitter and a detector which may be a light emitters/light detectors or other types of emitters and detectors. The skin touches may be skin touches on an ear of the housing while the earpiece is positioned within the ear. The earpiece may further include a speaker and wherein the earpiece provides audio feedback through the speaker in response to the skin touches. Alternatively, feedback may be otherwise provided such as thermal feedback or other type of feedback. The processor provides for interpreting the skin touches. The skin touches may be interpreted as indicative of an emotion, as indicative of a medical condition, or as a command. The skin touches may be performed by a person other than a user wearing the earpiece. The skin touches may be associated with physiological measurements. In addition, the sensor system is further configured to detect gestures proximate the earpiece housing, the gestures not touching skin.


According to another aspect, a method for receiving user input at an earpiece is provided. The method may include emitting energy from the earpiece, detecting reflections of the energy at the earpiece, analyzing the reflections to determine the reflection are indicative of a skin touch, and using the skin touch to provide the user input at the earpiece. The skin touch may be a touch of an ear of a user of the earpiece. The method may further include classifying the skin touch as a type of skin touch.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a set of earpieces with a touch based interface.



FIG. 2 is a block diagram illustrating a wearable device with a touch based interface.



FIG. 3 is a block diagram illustrating a wearable device with an IR LED touch based interface.



FIG. 4 is a block diagram illustrating a wearable device with an ultrasound touch based interface.



FIG. 5 is a block diagram illustrating a wearable device with a radar touch based interface.



FIG. 6 illustrates an example of providing skin touch input to an earpiece.



FIG. 7 illustrates an example of providing skin touch input.



FIG. 8 illustrates another example of providing skin touch input.



FIG. 9 illustrates a mobile app in communication with wearable devices having gesture based interfaces.





DETAILED DESCRIPTION

The present invention relates to using wearable devices to sense touch such as the touching of the skin of the human body. FIG. 1 illustrates one example. As shown in FIG. 1, the wearable device is an earpiece. The earpiece includes one or more sensors configured to sense when the individual touches the skin or other area proximate to or within range of the earpiece.


Various types of sensors may be used. Generally, a set of emitters and detectors may be used in order to determine a change in a field associated with a touch. In one embodiment, infrared LEDs may be used. According to one aspect, touching on the skin proximate to an earpiece may provide for providing user input to the earpiece such as taps, double taps, triple taps, holds, and swipes of various directionalities. This may be advantageous over touching the earpiece itself which may affect the fit of the earpiece to the ear or possibly create minor discomfort and limit the area within which the input is received. In addition, it may be more natural and intuitive to an individual to touch their skin as opposed to the earpiece. There are numerous other advantages. For example, the area being touched may be expanded beyond the relatively small area available on an earpiece. Thus, more types of movements or touches may be detected. This may include multi-touches such as multi-touches with multiple fingers. The movements may include pinches, taps, drifts, soft touches, strokes, chordic touches (multiple fingers in a particular sequence), and other types of touches.


Because the skin or body may be touched, more natural types of touches may be performed. This may also include multiple hands, especially where there are sensors on more than one wearable device, such as with left and right earpieces. This also may include gestures close to but not touching the skin. For example, one or more hands may be shaken. One or more hands may hide all or a portion of the face, one or more hands may move side to side, up and down, rotate, or any number of other hand and/finger movement combinations. Because of the natural use of hands for expression, a more natural user interface may be provided to communicate with the device.


In addition, these various hand or finger movements may be sensed not only for directly communicating with the device, but also for the wearable device to gain insight into actions or even emotions of a user. For example, a person rubbing their eyes, putting their hand in their mouth or ear, or nose may be indicative of a medical condition or medical need. The wearable device may sense and characterize these movements so that the device may take appropriate actions such as providing audio feedback to the user or storing the data for later reporting. These characterizations may be performed in any number of ways. For example, these characterizations may be performed by a statistical analysis of the movements, the characterizations may be based on comparisons of the movements to movements within a library of movements and their characterizations. The library may be built based on a number of different users, or may be built based on a training mode in which the user confirms the characterization of different movements. Of course, any number of other analyses or models may be used including those using fuzzy logic, genetic algorithms, neural networks, or other types of analysis.


The sensors may be placed in any number of positions on the body or on peripherals. This may include being placed on earpieces, articles of clothing, articles of jewelry, or otherwise. The sensors may be used to not only detect skin touch of the user but also skin touch between another individual of the user such as may occur during a handshake, a hug, a kiss, an intimate encounter or otherwise. Information from the sensors sensing skin touch may be combined with other information to provide additional user context including through information from image sensors, microphones, physiological sensors, or other types of sensors. For example, changes in impedance may be measured to assist in identifying an individual.



FIG. 1 illustrates one example of a wearable device in the form of a set of earpieces 10 including a left ear piece 12A and a right earpiece 12B. Each of the ear pieces 12A, 12B has an ear piece housing 14A, 14B which may be in the form of a protective shell or casing. A light display area 16A, 16B is present on each of the ear pieces 12A, 12B. The light generation areas 16A, 16B each provide for producing light of one or more colors.


The wearable device may be used to sense touches of the user within an area in proximity or range of the wearable device. One or more detectors or receivers 24A, 24B may also be present to detect changes in energy fields associated with gestures performed by a user. The receivers 24A, 24B in combination with one or more emitters provide a gesture based user interface.



FIG. 2 is a block diagram illustrating a device with a housing 14. The device may include a touch based user interface including one or more energy field emitters and one or more energy field detectors. One or more energy field emitters 20 (such as IR LEDs, other type of light emitters, ultrasound emitters, or other types of sound emitters, or other energy field emitters) may be used. The energy field emitters are operatively connected to the processor 30. It should be understood that interconnecting logic and circuits is not shown. It is to be further understood that the processor shown may include a plurality of different processors or additional circuitry. The processor 30 may also be operatively connected to one or more energy field detectors 24. The energy field detectors may be optical detectors, light detectors, sound detectors or other types of detectors or receivers and not capacitive sensors. For example, wherein the energy field emitters 20 are IR LEDs, the energy field detectors 24 may be IR receivers. The processor 30 may also be electrically connected to one or more sensors 32 (such as, but not limited to an inertial sensor, one or more contact sensors, a bone conduction sensor, one or more microphones, a pulse oximeter, or other biological sensors) and a transceiver 34 such as a short range transceiver using Bluetooth, UWB, magnetic induction, or other means of communication.


The processor 30 may also be operatively connected to one or more speakers 35. In operation, the processor 30 may be programed to receive different information using a touch-based user interface including the energy field emitter(s) 20 and the energy field detector(s) 24


The wearable device may be a wireless earpiece designed to fit into the external ear and concha cavum segment of the pinna. The system may be responsive in a number of harsh environments. These vary from complete submersion in water to being able to be accessed while wearing gloves, among others.


As shown in FIG. 3, one embodiment utilizes an optical sensor chip as the detector 24A with associated LEDs 20A as a part of an IR LED interface 21A. These LEDs 20A are spatially segregated. The LEDs 20A are designed so that the user reflects some of the emitted light back to the sensor. If the user gets near the range of the IR, then an action is triggered. In order to allow for precise identification of signal vs. artifact, the preferred embodiment sets the IR emission at a slow rate, e.g. 100 ms intervals. When an object comes within the range of the light emitted, this then triggers an algorithm control for proximity detection. If an object is within the proximity of the one or more LED emitters, the algorithm directs the IR LED emitters to adopt a high sample rate e.g. 4 ms intervals. Reflection patterns can then be read correctly identified as touches. More than one LED emitter may be used to allow for more sophisticated touch interactions. Greater numbers, intensities, and placements of the LED emitters may be used to increase the area where touch may be sensed.


In operation, a user may wear the ear piece. The user may touch the skin near the IR LED interface (or other type of interface). The touch may be in the form of a tap, a double tap, a triple tap, a swipe (such as a swipe with a particular directionality), a hold, or other type of touch. Note that different functionalities may be associated with different type of touches and different functionalities may be associated with the same touch when the device is operating in different modes of operation or based on the presence or absence of other contextual information. Other types of technology may be used including ultrasound emitters 20B and ultrasound detectors 24B in the touch interface 21B of FIG. 4 or radar emitters 20C and radar detectors 24C in the touch interface 21C of FIG. 5.


It is also contemplated that more than one wearable device may be used. For example, two earpieces may be used each with its own user interface. Where multiple devices are used, it is to be understood that the same gesture performed at one device may be associated with one function while the same gesture performed at the other device may associated with a different function. Alternatively, the same gesture may perform the same function regardless of which device the gesture is performed at.


It is further contemplated that haptic or audio feedback or a combination thereof may be provided to the user in response to touches made. For example, the haptic, the haptic thermal, or audio feedback may simply indicate that the touch was received or may specify the functionality associated with the touch. Alternatively, the audio feedback may request further input in the form of touches or otherwise. Alternatively, still, the audio feedback may offer a suggestion based on an interpretation of the touches such as where the touches are indicative of an emotion or physical condition, or otherwise. The haptic feedback may be in the form of pressure, heat, cold, or other sensation.


As shown in FIG. 6, a user is wearing an earpiece 12A equipped with a sensor system for detecting touch. A user may use their finger 52 to touch an area 50 proximate the earpiece 12A. It is also contemplated that the skin surface being used may be remote from where the wearable device is worn. For example, a user may lift their hand near the earpiece and use fingers on the other hand to make motions which provide input. Thus, remote sensors may be used. The user may touch any number of different areas proximate to the wearable device. For example, where the wearable device is an earpiece 12A, the user may touch different areas on the ear. Thus, for example, stroking the posterior helical rim in an up or down fashion may be used to control volume of the earpiece or other functions. Touching the superior helical rim could advance a song forward or perform other functions. Squeezing the lobule with a thumb and pointing finger, for example, could pause or stop the current function among other actions.


Movement may be able to augment physiological sensing. Thus, for example, placing a finger anterior to the tragus would allow sensor capture of heart rate by monitoring finger movement or other movement. Another example, is that skin temperature may be determined from a finger placed near the wearable device.


As shown in FIG. 7, in a system 60, a user may touch their finger 52 at or near a wearable device 64 having a sensor system 62.


As shown in FIG. 8, more than one sensor may be present. For example, a wearable device 64 with a sensor system 62 may be present on a wrist of a user such as in a watch of the user, a ring or other jewelry item, article of clothing, or other wearable. Movement of a portion of a hand 70 or finger 52 may be detected. Data detected with the wearable device 64 may be combined with data detected from other sensors such as those associated with a device 72 which is touched with a finger 52.


As shown in FIG. 9, user settings may be changed through the device or through other devices in operative communication with the device such as through a mobile application 67 operating on a mobile device 66 in wireless communication with one or more wearable devices 12A, 12B, each having a touch-based user interface.


Therefore, various apparatus, systems, and methods have been shown and described. Differences in the type of energy detection, the algorithms used, the gestures used, and other options, variations, and alternatives are contemplated.

Claims
  • 1. An earpiece comprising: an earpiece housing;a processor disposed within the housing; anda sensor system associated with the earpiece housing, the sensor system operatively connected to the processor, wherein the sensor system comprises an emitter and a detector;wherein the sensor system is configured to detect skin touches on skin of a user, the skin touches proximate to, but not touching, the sensor system;wherein the processor is configured to interpret data from the sensor system to identify occurrences of the skin touches on the skin of the user.
  • 2. The earpiece of claim 1 wherein the skin touches on the skin of the user are skin touches indicative of a user intent on an ear of the user while the earpiece is positioned within the ear.
  • 3. The earpiece of claim 1 wherein the earpiece comprises a speaker and wherein the earpiece provides audio feedback through the speaker in response to the skin touches.
  • 4. The earpiece of claim 1 wherein the processor interprets the skin touches as indicative of a medical condition.
  • 5. The earpiece of claim 1 wherein the skin touches are by a person other than the user of the earpiece.
  • 6. The earpiece of claim 1 wherein the skin touches are associated with physiological measurements.
  • 7. The earpiece of claim 1 wherein the sensor system is further configured to detect gestures proximate the earpiece housing, the gestures not touching the skin of the user of the earpiece.
  • 8. A method for receiving user input at an earpiece, the method comprising: emitting energy from the earpiece;detecting reflections of the energy at the earpiece;analyzing the reflections by a processor of the earpiece to determine occurrences of at least one finger touch on skin of a user, the skin touch proximate to, but not touching, the earpiece; andusing the skin touch to provide the user input at the earpiece.
  • 9. The method of claim 8 wherein the skin touch on the skin of the user is a skin touch on an ear of the user of the earpiece, the skin touch indicative of a user intent.
  • 10. The method of claim 8 further comprising classifying the skin touch on the skin of the user as a type of skin touch.
  • 11. An earpiece comprising: an earpiece housing;a processor disposed within the housing;an optical emitter operatively connected to the processor; andan optical detector operatively connected to the processor;wherein the optical emitter and the optical detector are positioned to detect skin touches made by a person on their skin, the skin touches proximate to, but not touching, the earpiece housing;wherein the processor is configured to analyze optical sensing data to determine occurrence of the skin touches made by the user on their skin, the skin touches proximate to, but not touching the earpiece housing, the optical emitter and/or the optical detector.
  • 12. The earpiece of claim 11 wherein the earpiece comprises a speaker and wherein the earpiece provides audio feedback through the speaker in response to the skin touches.
  • 13. The earpiece of claim 11 wherein the processor interprets the skin touches as indicative of a medical condition.
  • 14. The earpiece of claim 11 wherein the person is not a user of the earpiece.
  • 15. The earpiece of claim 11 wherein the skin touches are associated with physiological measurements.
  • 16. An earpiece comprising: an earpiece housing;a processor disposed within the housing; anda sensor system associated with the earpiece housing, the sensor system operatively connected to the processor;wherein the sensor system is configured to detect skin touches proximate the earpiece housing;wherein the processor provides for interpreting the skin touches; andwherein the processor interprets the skin touches as indicative of an emotion.
  • 17. An earpiece comprising: an earpiece housing;a processor disposed within the housing;an optical emitter operatively connected to the processor; andan optical detector operatively connected to the processor;wherein the optical emitter and the optical detector are positioned to detect skin touches made by a person, the skin touches proximate to the earpiece housing;wherein the processor provides for interpreting the skin touches; andwherein the processor interprets the skin touches as indicative of an emotion.
PRIORITY STATEMENT

This application claims priority to U.S. Provisional Patent Application 62/375,337, filed on Aug. 15, 2016, and entitled Detection of movement adjacent an earpiece device, hereby incorporated by reference in its entirety.

US Referenced Citations (270)
Number Name Date Kind
2325590 Carlisle et al. Aug 1943 A
2430229 Kelsey Nov 1947 A
3047089 Zwislocki Jul 1962 A
D208784 Sanzone Oct 1967 S
3586794 Michaelis Jun 1971 A
3934100 Harada Jan 1976 A
3983336 Malek et al. Sep 1976 A
4069400 Johanson et al. Jan 1978 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
D266271 Johanson et al. Sep 1982 S
4375016 Harada Feb 1983 A
4588867 Konomi May 1986 A
4617429 Bellafiore Oct 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4852177 Ambrose Jul 1989 A
4865044 Wallace et al. Sep 1989 A
4984277 Bisgaard et al. Jan 1991 A
5008943 Amdt et al. Apr 1991 A
5185802 Stanton Feb 1993 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5201008 Arndt et al. Apr 1993 A
D340286 Seo Oct 1993 S
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5347584 Narisawa Sep 1994 A
5363444 Norris Nov 1994 A
D367113 Weeks Feb 1996 S
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5748743 Weeks May 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
D397796 Yabe et al. Sep 1998 S
5802167 Hong Sep 1998 A
D410008 Almqvist May 1999 S
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6084526 Blotky et al. Jul 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6208372 Barraclough Mar 2001 B1
6230029 Yegiazaryan et al. May 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
D455835 Anderson et al. Apr 2002 S
6408081 Boesen Jun 2002 B1
6424820 Burdick et al. Jul 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6690807 Meyer Feb 2004 B1
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7010137 Leedom et al. Mar 2006 B1
7113611 Leedom et al. Sep 2006 B2
D532520 Kampmeier et al. Nov 2006 S
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
D549222 Huang Aug 2007 S
D554756 Sjursen et al. Nov 2007 S
7403629 Aceti et al. Jul 2008 B1
D579006 Kim et al. Oct 2008 S
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
D601134 Elabidi et al. Sep 2009 S
7825626 Kozisek Nov 2010 B2
7965855 Ham Jun 2011 B1
7979035 Griffin et al. Jul 2011 B2
7983628 Boesen Jul 2011 B2
D647491 Chen et al. Oct 2011 S
8095188 Shi Jan 2012 B2
8108143 Tester Jan 2012 B1
8140357 Boesen Mar 2012 B1
D666581 Perez Sep 2012 S
8300864 Müllenborn et al. Oct 2012 B2
8406448 Lin Mar 2013 B2
8436780 Schantz et al. May 2013 B2
D687021 Yuen Jul 2013 S
8719877 VonDoenhoff et al. May 2014 B2
8767987 Fretz Jul 2014 B2
8774434 Zhao et al. Jul 2014 B2
8831266 Huang Sep 2014 B1
8891800 Shaffer Nov 2014 B1
8994498 Agrafioti et al. Mar 2015 B2
D728107 Martin et al. Apr 2015 S
9013145 Castillo et al. Apr 2015 B2
9037125 Kadous May 2015 B1
D733103 Jeong et al. Jun 2015 S
9081944 Camacho et al. Jul 2015 B2
9510159 Cuddihy et al. Nov 2016 B1
D773439 Walker Dec 2016 S
D775158 Dong et al. Dec 2016 S
D777710 Palmborg et al. Jan 2017 S
D788079 Son et al. May 2017 S
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010043707 Leedom Nov 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030002705 Boesen Jan 2003 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040160511 Boesen Aug 2004 A1
20050017842 Dematteo Jan 2005 A1
20050043056 Boesen Feb 2005 A1
20050094839 Gwee May 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060073787 Lair et al. Apr 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20060166715 Engelen et al. Jul 2006 A1
20060166716 Seshadri et al. Jul 2006 A1
20060220915 Bauer Oct 2006 A1
20060258412 Liu Nov 2006 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090622 Kim et al. Apr 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20080255430 Alexandersson et al. Oct 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090008275 Ferrari et al. Jan 2009 A1
20090017881 Madrigal Jan 2009 A1
20090073070 Rofougaran Mar 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090191920 Regen et al. Jul 2009 A1
20090245559 Boltyenkov et al. Oct 2009 A1
20090261114 McGuire et al. Oct 2009 A1
20090296968 Wu et al. Dec 2009 A1
20100033313 Keady et al. Feb 2010 A1
20100203831 Muth Aug 2010 A1
20100210212 Sato Aug 2010 A1
20100320961 Castillo et al. Dec 2010 A1
20110140844 McGuire et al. Jun 2011 A1
20110239497 McGuire et al. Oct 2011 A1
20110286615 Olodort et al. Nov 2011 A1
20120057740 Rosal Mar 2012 A1
20130316642 Newham Nov 2013 A1
20130346168 Zhou et al. Dec 2013 A1
20140079257 Ruwe et al. Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140122116 Smythe May 2014 A1
20140153768 Hagen et al. Jun 2014 A1
20140163771 Demeniuk Jun 2014 A1
20140185828 Helbling Jul 2014 A1
20140219467 Kurtz Aug 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140235169 Parkinson et al. Aug 2014 A1
20140270227 Swanson Sep 2014 A1
20140270271 Dehe et al. Sep 2014 A1
20140335908 Krisch et al. Nov 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20150028996 Agrafioti et al. Jan 2015 A1
20150110587 Hori Apr 2015 A1
20150148989 Cooper et al. May 2015 A1
20150245127 Shaffer Aug 2015 A1
20160033280 Moore et al. Feb 2016 A1
20160072558 Hirsch et al. Mar 2016 A1
20160073189 Lindén et al. Mar 2016 A1
20160125892 Bowen et al. May 2016 A1
20160166203 Goldstein Jun 2016 A1
20160360350 Watson et al. Dec 2016 A1
20170013360 Hviid Jan 2017 A1
20170059152 Hirsch et al. Mar 2017 A1
20170060262 Hviid et al. Mar 2017 A1
20170060269 Förstner et al. Mar 2017 A1
20170061751 Loermann et al. Mar 2017 A1
20170062913 Hirsch et al. Mar 2017 A1
20170064426 Hviid Mar 2017 A1
20170064428 Hirsch Mar 2017 A1
20170064432 Hviid et al. Mar 2017 A1
20170064437 Hviid et al. Mar 2017 A1
20170078780 Qian et al. Mar 2017 A1
20170105622 Boesen et al. Apr 2017 A1
20170108918 Boesen Apr 2017 A1
20170109131 Boesen Apr 2017 A1
20170110124 Boesen et al. Apr 2017 A1
20170110899 Boesen Apr 2017 A1
20170111723 Boesen Apr 2017 A1
20170111725 Boesen et al. Apr 2017 A1
20170111726 Martin et al. Apr 2017 A1
20170111740 Hviid et al. Apr 2017 A1
20170111834 Belverato Apr 2017 A1
20170113057 Goodall Apr 2017 A1
20170139668 Steiner May 2017 A1
20170151447 Boesen Jun 2017 A1
20170151668 Boesen Jun 2017 A1
20170151918 Boesen Jun 2017 A1
20170151930 Boesen Jun 2017 A1
20170151956 Boesen Jun 2017 A1
20170151957 Boesen Jun 2017 A1
20170151959 Boesen Jun 2017 A1
20170153114 Boesen Jun 2017 A1
20170153636 Boesen Jun 2017 A1
20170154532 Boesen Jun 2017 A1
20170155985 Boesen Jun 2017 A1
20170155992 Perianu et al. Jun 2017 A1
20170155993 Boesen Jun 2017 A1
20170155997 Boesen Jun 2017 A1
20170155998 Boesen Jun 2017 A1
20170156000 Boesen Jun 2017 A1
20170178631 Boesen Jun 2017 A1
20170180842 Boesen Jun 2017 A1
20170180843 Perianu et al. Jun 2017 A1
20170180897 Perianu Jun 2017 A1
20170188127 Perianu et al. Jun 2017 A1
20170188132 Hirsch et al. Jun 2017 A1
20170195829 Belverato et al. Jul 2017 A1
20170208393 Boesen Jul 2017 A1
20170214987 Boesen Jul 2017 A1
20170215016 Dohmen et al. Jul 2017 A1
20170230752 Dohmen et al. Aug 2017 A1
20170257694 Boesen Sep 2017 A1
20170257698 Boesen et al. Sep 2017 A1
20170257717 Milevski et al. Sep 2017 A1
Foreign Referenced Citations (20)
Number Date Country
204244472 Apr 2015 CN
104683519 Jun 2015 CN
104837094 Aug 2015 CN
1469659 Oct 2004 EP
1017252 May 2006 EP
2903186 Aug 2015 EP
2074817 Apr 1981 GB
2508226 May 2014 GB
06292195 Oct 1998 JP
2008103925 Aug 2008 WO
2007034371 Nov 2008 WO
2011001433 Jan 2011 WO
2012071127 May 2012 WO
2013134956 Sep 2013 WO
2014046602 Mar 2014 WO
2014043179 Jul 2014 WO
2015061633 Apr 2015 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
2016032990 Mar 2016 WO
Non-Patent Literature Citations (48)
Entry
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223.
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014).
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013).
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014).
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016).
BRAGI Is on Facebook (2014).
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014).
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015).
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014).
BRAGI Update—Let's Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014).
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014).
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014).
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014).
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014).
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014).
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014).
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014).
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015).
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015).
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014).
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015).
BRAGI Update—Alpha 5 and Back to China, Backer Day, on Track(May 16, 2015).
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015).
BRAGI Update—Certifications, Production, Ramping Up, (Nov. 13, 2015).
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015).
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015).
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015).
BRAGI Update—Getting Close(Aug. 6, 2015).
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015).
BRAGI Update—On Track, On Track and Gems Overview, (Jun. 24, 2015).
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015).
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015).
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016).
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017).
Hyundai Motor America, “Hyundai Motor Company Introduces a Health + Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017).
International Search Report & Written Opinion, PCT/EP2016/070231 (dated Nov. 18, 2016).
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014).
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—It's Your Dash (Feb. 14, 2014).
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014).
Stretchgoal—Windows Phone Support (Feb. 17, 2014).
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014).
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014).
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014).
Wikipedia, “Gamebook”, https://en.wikipedia.org/wiki/Gamebook, Sep. 3, 2017, 5 pages.
Wikipedia, “Kinect”, “https://en.wikipedia.org/wiki/Kinect”, 18 pages, (Sep. 9, 2017).
Wikipedia, “Wii Balance Board”, “https://en.wikipedia.org/wiki/Wii_Balance_Board”, 3 pages, (Jul. 20, 2017).
Related Publications (1)
Number Date Country
20180048954 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
62375337 Aug 2016 US