DETECTION OF MUTATIONS IN A GENE ASSOCIATED WITH RESISTANCE TO VIRAL INFECTION, MX1

Information

  • Patent Application
  • 20090155234
  • Publication Number
    20090155234
  • Date Filed
    August 25, 2006
    18 years ago
  • Date Published
    June 18, 2009
    15 years ago
Abstract
A method for detecting a mutation related to the gene encoding MxA. This and other disclosed mutations correlate with resistance of humans to viral infection including hepatitis C. Also provided is a therapeutic agent consisting of a protein or polypeptide encoded by the wild-type and mutated genes, or a polynucleotide encoding the protein or polypeptide. Inhibitors of human MxA, including antisense oligonucleotides, methods, and compositions specific for human MxA, are also provided.
Description
1. TECHNICAL FIELD

The present invention relates to a method for detecting a mutation in a human interferon-inducible protein p78 gene, also known as MxA and Mx1, wherein a mutation confers resistance to viral infection, including flavivirus infection, and including infection by hepatitis C virus. The invention also relates to treating hepatitis C and other viral infections by mimicking naturally occurring virus resistance mutations discovered in the human population. Pharmaceutical compositions are described.


2. BACKGROUND OF THE INVENTION

The hepatitis C virus (HCV) is a flavivirus that is responsible for infection of more than 4 million persons in the United States and more than 170 million people worldwide. HCV infection is the leading cause of liver disease necessitating liver transplantation in the United States. Eighty-five percent or more of subjects infected with HCV genotype 1, the most common genotype in the United States, develop a chronic infection with associated progressive liver disease. The only approved treatment for HCV infection, a combination of interferon and ribavirin, results in viral clearance in fewer than 50% of treated subjects, many of whom experience intolerable side-effects during therapy. Clearly additional novel therapeutic strategies are needed to treat this disease.


We describe in this patent application the discovery of mutations in the MxA gene that confer resistance to HCV infection in the human population. We further describe methods and applications of the invention that identify, develop, and test novel pharmaceutical compounds for the treatment of virus infection.


BRIEF SUMMARY OF THE INVENTION

We describe mutations in the human MxA gene that confer increased susceptibility in human populations to infection with the hepatitis C virus (HCV). This is the first reported association of MxA mutations with host resistance to HCV infection. We further describe methods for treating HCV infection that are based upon knowledge of these host susceptibility mutations.


The invention results from human studies wherein one or more particular genetic mutations in the MxA gene were found to be associated with an individual's status as resistant to or, conversely, susceptible to infection with HCV. Haplotypic combinations of a plurality of the aforementioned genetic mutations were also found to be associated with an individual's HCV resistance or, conversely, susceptibility status. Thus, the invention also embraces the combinatorial effect of the disclosed mutations on increasing or decreasing an individual's degree of susceptibility to HCV.


We claim herein, methods for treating HCV and other viral infection involving agonists of the MxA protein, methods for identifying MxA agonists, protein replacement therapies involving the administration of the MxA protein or its antiviral derivatives, and gene therapies to treat HCV and other viral infection involving the use of the MxA gene or its derivatives. We further claim diagnostic methods for predicting subject susceptibility to HCV infection or infection with related viruses.


DESCRIPTION OF INVENTION

The present invention relates to detecting hepatitis C resistance- or susceptibility-related mutations which are characterized as point mutations in the MxA gene.


In one embodiment, a human genetic screening method is contemplated. The method comprises assaying a nucleic acid sample isolated from a human for the presence of an MxA gene mutation at nucleotide position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 with reference to Genbank Sequence Accession No. NT011512.10 (consecutive nucleotides 28,459,861-28,493,160 of which are shown as SEQUENCE:1 in FIG. 1).


In a preferred embodiment, the method comprises treating, under amplification conditions, a sample of genomic DNA from a human with a polymerase chain reaction (PCR) primer pair for amplifying a region of human genomic DNA containing nucleotide position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of MxA gene NT011512.10. The PCR treatment produces an amplification product containing the region, which is then assayed for the presence of a point mutation. One preferred method of assaying the amplification product is DNA sequencing. Other preferred embodiments for assaying the amplification product include but are not limited to oligonucleotide hybridization, Southern blotting, and TaqMan®.


In a further embodiment, the invention provides a protein encoded by a gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10, and use of the protein to prepare a diagnostic for specifically detecting the mutant protein or for measuring resistance to viral infection, preferably RNA virus infection, preferably flaviviral infection, most preferably hepatitis C infection. In specific embodiments, the diagnostic is an antibody.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably an RNA virus, preferably a flavivirus, most preferably the hepatitis C virus, wherein the therapeutic compound is a protein encoded by the MxA gene.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably a flavivirus, most preferably the hepatitis C virus, wherein the therapeutic compound is a protein encoded by an MxA gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT-011512.10. In other embodiments the therapeutic compound is a polynucleotide, such as DNA or RNA, encoding the protein.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably an RNA virus, preferably a flavivirus, most preferably a hepatitis C virus, wherein the therapeutic compound comprises any enzymatically active fragment of the protein encoded by the MxA gene. In a still further embodiment, the enzymatically active fragment may contain one or more of the mutations at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10. In a preferred embodiment, enzymatic activity is measured by GTP binding, GTP hydrolysis, homo-oligomerization, RNA binding, or virus polyprotein binding.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably an RNA virus, preferably a flavivirus, most preferably a hepatitis C virus, wherein the therapeutic compound is a protein of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12 or SEQUENCE:13.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably an RNA virus, preferably a flavivirus, most preferably a hepatitis C virus, wherein the therapeutic compound is a protein comprised of at least 10, 15, 20 or more consecutive amino acids of the polypeptides of sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


In a still further embodiment, the invention provides a therapeutic compound for preventing or inhibiting infection by a virus, preferably an RNA virus, preferably a flavivirus, most preferably a hepatitis C virus, wherein the therapeutic compound mimics the beneficial effects of at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10. The therapeutic compound can be a small molecule, antisense, lipid, protein, peptide, DNA or RNA molecule, ribozyme, siRNA, RNAi, or antibody.


In a still further embodiments, the therapeutic compound is capable of inhibiting the activity of MxA or at least one sub-region or sub-function of the entire protein, and such compounds are represented by small molecules, antisense molecules, ribozymes, siRNA molecules, and RNAi molecules capable of specifically binding to MxA polynucleotides, and by antibodies and fragments thereof capable of specifically binding to MxA proteins and polypeptides, and by MxA ligands or naturally interacting proteins, and fragments thereof capable of specifically binding to MxA proteins and polypeptides.


The present invention provides, in another embodiment, inhibitors of MxA. Inventive inhibitors include, but are not limited to, antisense molecules, ribozymes, siRNA, RNAi, antibodies or antibody fragments, proteins or polypeptides as well as small molecules. Exemplary antisense molecules comprise at least 10, 15 or 20 consecutive nucleotides of, or that hybridize under stringent conditions to the polynucleotide of SEQUENCE 1 or SEQUENCE 2. More preferred are antisense molecules that comprise at least 25 consecutive nucleotides of, or that hybridize under stringent conditions to the sequence of SEQUENCE 1 or SEQUENCE 2.


In a still further embodiment, inhibitors of MxA are envisioned that specifically bind to the region of the protein defined by the polypeptide of sequence SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13. Inventive inhibitors include but are not limited to antibodies, antibody fragments, small molecules, proteins, or polypeptides.


In a still further embodiment, inhibitors of viral infection are envisioned that are derived from the natural ligands of MxA. Since MxA forms homo-oligomers, natural ligands include, in one preferred embodiment, components of the MxA protein itself. Inventive inhibitors include but are not limited to the polypeptides of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13. More preferred are polypeptides that comprise at least 10, 15, 20, or 25 consecutive amino acids of the polypeptides of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


In further embodiments, compositions are provided that comprise one or more MxA inhibitors in a pharmaceutically acceptable carrier.


Additional embodiments provide methods of decreasing MxA gene expression or biological activity.


Additional embodiments provide for methods of specifically increasing or decreasing the expression of certain forms of the MxA gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10.


The invention provides an antisense oligonucleotide comprising at least one modified internucleoside linkage.


The invention further provides an antisense oligonucleotide having a phosphorothioate linkage.


The invention still further provides an antisense oligonucleotide comprising at least one modified sugar moiety.


The invention also provides an antisense oligonucleotide comprising at least one modified sugar moiety which is a 2′-O-methyl sugar moiety.


The invention further provides an antisense oligonucleotide comprising at least one modified nucleobase.


The invention still further provides an antisense oligonucleotide having a modified nucleobase wherein the modified nucleobase is 5-methylcytosine.


The invention also provides an antisense compound wherein the antisense compound is a chimeric oligonucleotide.


The invention provides a method of inhibiting the expression of human MxA in human cells or tissues comprising contacting the cells or tissues in vivo with an antisense compound or a ribozyme of 8 to 35 nucleotides in length targeted to a nucleic acid molecule encoding human MxA so that expression of human MxA is inhibited.


The invention further provides a method of decreasing or increasing expression of specific forms of MxA in vivo, such forms being defined by having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10, using antisense, siRNA or RNAi compounds or ribozymes.


The invention further provides a method of increasing expression of specific forms of MxA in vivo by delivering a gene therapy vector containing the 1×A gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10. Preferred embodiments include lentivirus, retrovirus, and adenovirus-derived gene therapy vectors.


The invention still further provides for identifying target regions of MxA polynucleotides. The invention also provides labeled probes for identifying MxA polynucleotides by in situ hybridization.


The invention provides for the use of an MxA inhibitor according to the invention to prepare a medicament for preventing or inhibiting HCV infection. The invention further provides for the use of an MxA inhibitor according to the invention to prepare a medicament for preventing or inhibiting viral infection.


The invention further provides for directing an MxA inhibitor to specific regions of the MxA protein or at specific functions of the protein; in a preferred embodiment, the inhibitor will be directed to the region of the protein defined by the polypeptide of sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


The invention also provides a pharmaceutical composition for inhibiting expression of MxA, comprising an antisense oligonucleotide according to the invention in a mixture with a physiologically acceptable carrier or diluent.


The invention further provides a ribozyme capable of specifically cleaving MxA RNA, and a pharmaceutical composition comprising the ribozyme.


The invention also provides small molecule inhibitors of MxA wherein the inhibitors are capable of reducing the activity of MxA or of reducing or preventing the expression of MxA mRNA.


The invention further provides for compounds that alter post-translational modifications of MxA including but not limited to glycosylation, meristoylation, and phosphorylation.


The invention further provides a human genetic screening method for identifying an MxA gene mutation comprising: (a) treating, under amplification conditions, a sample of genomic DNA from a human with a polymerase chain reaction (PCR) primer pair for amplifying a region of human genomic DNA containing nucleotide position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of the MxA gene, said treatment producing an amplification product containing said region; and (b) detecting in the amplification product of step (a) the presence of a nucleotide mutation as described by any one of the group consisting of SEQUENCE:14-50 and SEQUENCE:115, thereby identifying said mutation.


In certain embodiments of this method, the region comprises a nucleotide sequence represented by a sequence selected from the group consisting of: SEQUENCE:14-50 and SEQUENCE:115. Also provided is a method of detecting, wherein the detecting comprises treating, under hybridization conditions, the amplification product of step (a) above with an oligonucleotide probe specific for the point mutation, and detecting the formation of a hybridization product. In certain embodiments of the method, the oligonucleotide probe comprises a nucleotide sequence from the group consisting of SEQUENCE:14-50 and SEQUENCE:115 or some derivative thereof.


Also provided is an isolated MxA inhibitor selected from the group consisting of an antisense oligonucleotide, a ribozyme, a small inhibitory RNA (RNAi), a protein, a polypeptide, an antibody or antibody fragment, and a small molecule. The isolated inhibitor may be an antisense molecule or the complement thereof comprising at least 15 consecutive nucleic acids of the sequence of SEQUENCE:1 or SEQUENCE:2. In other embodiments, the isolated MxA inhibitor (antisense molecule or the complement thereof) hybridizes under high stringency conditions to the sequence of SEQUENCE:1 or SEQUENCE:2.


The isolated MxA inhibitor may be selected from the group consisting of an antibody and an antibody fragment. Inventive methods further include the development of humanized antibodies. Also provided is a composition comprising a therapeutically effective amount of at least one MxA inhibitor in a pharmaceutically acceptable carrier.


The invention also relates to a method of inhibiting the expression of MxA in a mammalian cell, comprising administering to the cell an MxA inhibitor selected from the group consisting of an antisense oligonucleotide, a ribozyme, a protein, an RNAi, an siRNA, a polypeptide, an antibody, and a small molecule.


The invention further relates to a method of inhibiting the expression of the MxA gene in a subject, comprising administering to the subject, in a pharmaceutically effective vehicle, an amount of an antisense oligonucleotide which is effective to specifically hybridize to all or part of a selected target nucleic acid sequence derived from said MxA gene.


The invention still further relates to a method of preventing infection by a flavivirus, or other virus, in a human subject susceptible to the infection, comprising administering to the human subject an MxA inhibitor selected from a group consisting of an antisense oligonucleotide, a ribozyme, an RNAi, an siRNA, a protein, a polypeptide, an antibody, and a small molecule, wherein said MxA inhibitor prevents infection by said flavivirus.


The invention still further relates to a method of preventing or curing infection by a flavivirus or other virus in a human subject susceptible to the infection, comprising administering to the human subject an MxA inhibitor selected from the group consisting of an antisense oligonucleotide, a ribozyme, an RNAi, an siRNA, a protein, a polypeptide, an antibody, and a small molecule, wherein said MxA inhibitor prevents infection by said flavivirus or other virus and wherein said MxA inhibitor is directed at one or more specific forms of the protein defined by a mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10.


The invention still further relates to a method of preventing or curing infection by a flavivirus or any other virus in a human subject susceptible to the infection by administering one of the polypeptides of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


The invention still further relates to a method of preventing or curing infection by a flavivirus or any other virus in a human subject susceptible to the infection by administering a polypeptide composed of 5 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


The invention further relates to a method of identifying antiviral compounds by measuring the ability of said compound to bind to a polypeptide composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


The invention further relates to a method of identifying antiviral compounds by (a) measuring the ability of said compound to bind to a polypeptide composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13, and (b) subsequently testing said compound for its ability to inhibit virus infection, preferably RNA virus infection, preferably positive strand RNA virus infection, preferably flavivirus infection, most preferably hepatitis C virus infection. Preferred embodiments include but are not limited to the use of high-throughput screening methods or compounds from small molecule libraries, antibodies, antibody fragments, hybridoma libraries, or polypeptides composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13. Preferred embodiments further include but are not limited to the use of cytopathic and noncytopathic viruses, virus replicons, hybrid viruses, cytotoxicity assays, cell viability assays, cell fusion assays, reporter genes, reverse transcriptase polymerase chain reaction, TaqMan, and western blotting of viral proteins to assess the inhibition of virus infection, replication or pathogenicity.


The invention further relates to a method of identifying antiviral compounds by (a) measuring the ability of said compound to bind to a polypeptide composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13 while (b) further measuring the ability of said compound to inhibit the homo-oligomerization of the MxA protein or the binding of MxA to virus derived proteins. Preferred embodiments include methods that permit the identification of antiviral compounds that bind the polypeptides of the present invention: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13 while preserving the ability of the MxA protein to homo-oligomerize. Preferred embodiments further involve the use of high-throughput screening methods and libraries of small molecule compounds, antibodies, antibody fragments, hybridoma libraries, or polypeptides composed of 5, 10, 15, 20 or more consecutive amino acids of the MxA-derived sequences: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13. Further preferred embodiments involve the use of cells expressing the polypeptide of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13. In still further embodiments, MxA protein expression can be the result of endogenous or transgenic expression of the nucleic acid sequence of SEQUENCE:1 or SEQUENCE:2 or a component thereof. In a still further embodiment, cells can be stimulated to express the MxA protein by treatment with the tumor necrosis factor, interferon alpha, beta, or gamma, or another cytokine.


The invention further relates to a method of identifying antiviral compounds by (a) formulating a polypeptide fragment of the MxA protein composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13, and (b) subsequently testing said polypeptide fragment for its ability to inhibit virus infection, preferably RNA virus infection, preferably positive strand RNA virus infection, preferably flavivirus infection, most preferably hepatitis C virus infection. Preferred embodiments include the endogenous or transgeneic expression of the polypeptide fragment inside cells or organisms susceptible to infection using all or a component of the polynucleotides of sequence: SEQUENCE:1 or SEQUENCE:2. In a still further embodiment, the polypeptide fragments of the invention can be used to treat cells by contacting the cells directly. Preferred embodiments further include but are not limited to the use of cytopathic and noncytopathic viruses, virus replicons, hybrid viruses, cytotoxicity assays, cell viability assays, cell fusion assays, reporter genes, reverse transcriptase polymerase chain reaction, TaqMan, Northern blotting and Western blotting of viral proteins to assess the inhibition of virus infection, replication or pathogenicity. In a still further embodiment, the life or death of a susceptible organism can be measured and autopsy or necropsy of infected organisms can be performed.


Also provided is a method for inhibiting expression of an MxA target gene in a cell in vitro comprising introduction of a ribonucleic acid (RNA) into the cell in an amount sufficient to inhibit expression of the MxA target gene, wherein the RNA is a double-stranded molecule with a first strand consisting essentially of a ribonucleotide sequence which corresponds to a nucleotide sequence of the MxA target gene and a second strand consisting essentially of a ribonucleotide sequence which is complementary to the nucleotide sequence of the MxA target gene, wherein the first and the second ribonucleotide strands are separate complementary strands that hybridize to each other to form said double-stranded molecule, and the double-stranded molecule inhibits expression of the target gene.


In certain embodiments of the method, the first ribonucleotide sequence comprises at least 20 bases which correspond to the MxA target gene and the second ribonucleotide sequence comprises at least 20 bases which are complementary to the nucleotide sequence of the MxA target gene. In still further embodiments, the target gene expression is inhibited by at least 10%.


In still further embodiments of the method, the double-stranded ribonucleic acid structure is at least 20 bases in length and each of the ribonucleic acid strands is able to specifically hybridize to a deoxyribonucleic acid strand of the MxA target gene over the at least 20 bases.


Also provided is the use of any of the proteins consisting of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13 as a component of a therapeutic composition.


Also provided is the use of a protein composed of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13 as a component of a therapeutic composition.


In a further embodiment, a nucleic acid encoding the MxA protein, MxA mutant protein, or MxA polypeptide can be administered in the form of gene therapy. In a preferred embodiment, the gene therapy will be used to treat virus infection or cancer or to prevent angiogenesis.


Also provided is a method of treating cancer involving administering to a patient a therapeutic composition containing proteins consisting of one or more of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


Also provided is a method of treating cancer involving administering to a patient a therapeutic composition containing proteins consisting of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


Also provided is a method of preventing angiogenesis involving administering to a patient a therapeutic composition containing proteins consisting of one or more of SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.


Also provided is a method of preventing angiogenesis involving administering to a patient a therapeutic composition containing proteins consisting of 5, 10, 15, 20 or more consecutive amino acids of the sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, or SEQUENCE:13.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 (SEQUENCE:1) is a polynucleotide sequence consisting of the consecutive nucleotide bases at positions 28,459,861-28,493,160 of NCBI Accession No. NT011512.10, MxA.



FIG. 2 shows SEQUENCE:2 and SEQUENCE:4-6, polynucleotides of the present invention, and SEQUENCE:3 and SEQUENCE:10-13, polypeptides of the present invention.



FIG. 3 shows the mutations of the present invention Mutation:5589, Mutation:5590, Mutation:5591, Mutation:13648, Mutation:5594, Mutation:13647, Mutation:5596, Mutation:13594, Mutation:5597, Mutation:5598, Mutation:5599, Mutation:14433, Mutation:5600, Mutation:14429, Mutation:13904, Mutation:13994, Mutation:5603, Mutation:8268, Mutation:5607, Mutation:5608, Mutation:5609, Mutation:5611, Mutation:5612, Mutation:5613, Mutation:13595, Mutation:13644, Mutation:8269, Mutation:5614, Mutation:13645, Mutation:5615, Mutation:13903, Mutation:13649, Mutation:13652, Mutation:13646, Mutation:8271, Mutation:5668, Mutation:13996, and Mutation:13921. Each of these mutations is defined with respect to the reference genomic sequence Genbank Accession No. NT011512.10 (also provided as SEQUENCE:1) and provides the allelic variants (base substitutions), genomic surrounding sequence, coordinates of the mutation on the genomic sequence, and NCBI dbSNP ID if any.



FIG. 4 shows a polypeptide sequence alignment of primate Mx1 genes.



FIG. 5 is a Table showing the location in human therapeutic Mx1 proteins of the primate amino acid mutations of the present invention.





DETAILED DESCRIPTION OF THE INVENTION
Introduction and Definitions

This invention relates to novel mutations in the MxA gene (also known as myxovirus resistance 1, interferon inducible protein p78, p78, MX, Mx1, IFI78, IFI-78K), use of these mutations for diagnosis of susceptibility or resistance to viral infection, to proteins encoded by a gene having a mutation according to the invention, and to prevention or inhibition of viral infection using the proteins, antibodies, and related nucleic acids. These mutations correlate with resistance of the carrier to infection with viruses, particularly RNA viruses, particularly positive strand RNA viruses, particularly flavivirus, most particularly hepatitis C virus.


Much of current medical research is focused on identifying mutations and defects that cause or contribute to disease. Such research is designed to lead to compounds and methods of treatment aimed at the disease state. Less attention has been paid to studying the genetic influences that allow people to remain healthy despite exposure to infectious agents and other risk factors. The present invention represents a successful application of a process developed by the inventors by which specific populations of human subjects are ascertained and analyzed in order to discover genetic variations or mutations that confer resistance to disease. The identification of a sub-population segment that has a natural resistance to a particular disease or biological condition further enables the identification of genes and proteins that are suitable targets for pharmaceutical intervention, diagnostic evaluation, or prevention, such as prophylactic vaccination.


We have previously described a method of identifying novel drug targets and developing pharmaceutical products through the identification of beneficial mutations that occur naturally in the human population (U.S. patent application Ser. No. 09/707,576). We describe here the fourth target identified from our program in hepatitis C infection.


As one skilled in the art will appreciate, many populations have evolved genetic mutations that confer resistance to infectious disease. Pathogens that cause significant morbidity and mortality in the target population negatively impact the reproductive success of susceptible individuals. Individuals who carry naturally occurring gene mutations that confer protection from infection escape negative selective pressures, and over time, their beneficial alleles are enriched in the overall population.


Using this principal as our starting point, we investigated the possibility that human populations carry gene mutations that confer resistance to the hepatitis C virus. The purpose of this investigation was to identify resistance-conferring mutations and develop drugs that mimic their antiviral effects in susceptible, virus-infected populations.


The sub-population segment identified herein is comprised of individuals who, despite repeated exposure to hepatitis C virus (HCV) have nonetheless remained sero-negative, while other cohorts have become infected (sero-positive). The populations studied included hemophiliac patients subjected to repeated blood transfusions, and intravenous drug users who become exposed through shared needles and other risk factors. By comparing the genetic make-up of serially exposed seronegative subjects to HCV seropositive control subjects, we have identified several mutations in the MxA gene that confer resistance to HCV infection.


MxA is a member of the dynamin family of large GTPases (Haller, O, et. al. Traffic. 3(10):710-7, 2002; Kochs, G, et al. J Biol Chem. 277(16):14172-6, 2002). MxA is a cytoplasmic protein, the transcription and activity of which are stimulated by both interferon and viral infection (Samuel, C, Clin Microbiol Rev. 14(4):778-809, 2001; Staeheli, P, et al. Mol Cell Biol. 5(8):2150-3, 1985; Simon, A, et al., J Virol. 65(2):968-71, 1991). In addition to the PKR and oligoadenylate synthetase pathways, MxA constitutes one of the principal effector enzymes of the innate Type I immune response (Samuel, C, Clin Microbiol Rev. 14(4):778-809, 2001). The exact mechanism by which MxA mediates its antiviral response is unknown. MxA functions without added effector molecules, and is able to inhibit RNA synthesis by influenza A and vesicular stomatitis viruses in cell free systems in the presence of GTP or its non-hydrolysable analogues (Schwemmle, M, et al. Virology. 206(1):545-54, 1995). MxA is a cytoplasmic protein that resides in punctate intracellular deposits until mobilized by the interferon response or viral infection (Kochs, G, et al., Proc Natl Acad Sci USA. 99(5):3153-8, 2002). MxA exerts its antiviral effect primarily by blocking replication of RNA viruses within the cytoplasm (Frese, M, et al. J Virol. 70(2):915-23, 1996), but may also block the transport of viral proteins or nucleic acids across the nuclear membrane (Weber, F, et al. J Virol. 74(1):560-3, 2000; Kochs, G, et al. Proc Natl Acad Sci USA. 96(5):2082-6, 1999). The exact mechanism of this block to viral replication is not understood, but clearly involves a physical interaction between MxA and the viral nucleocapsid protein and/or components thereof (Kochs, G, et al., Proc Natl Acad Sci USA. 99(5):3153-8, 2002; Weber, F, et al. J Virol. 74(1):560-3, 2000). Antiviral activity requires GTP, but not GTP hydrolysis, being equally effective in the presence of the non-hydrolysable GTPγS (Kochs, G, et al. Proc Natl Acad Sci USA 96(5):2082-6, 1999). Like other members of the dynamin family, MxA can form homo-oligomeric molecules within the cell and may vesiculate viral proteins and particles as part of its antiviral activity (Kochs, G, et al. J Biol Chem. 277(16):14172-6, 2002; Di Paolo, C, et al. J Biol Chem. 274(45):32071-8, 1999). Numerous studies have shown that during viral infection, MxA is released from its cytoplasmic stores and forms, along with viral nucleocapsid proteins, filament-like structures associated with the nuclear membrane (Kochs, G, et al. Proc Natl Acad Sci USA. 99(5):3153-8, 2002; Frese, M, et al. J Virol. 70(2):915-23, 1996; Andersson, I, et al. J Virol. 78(8):4323-9, 2004). MxA has been shown to inhibit replication of the following viruses: La Crosse virus (Frese, M, et al. J Virol. 70(2):915-23, 1996; Hefti, H, et al. J Virol. 73(8):6984-91, 1999), bunyamwera virus (Kochs, G, et al. Proc Natl Acad Sci USA. 99(5):3153-8, 2002), Rift Valley fever virus (Kochs, G, et al. Proc Natl Acad Sci USA. 99(5):3153-8, 2002), influenza A virus (Pavlovic, J, et al. J Virol. 64(7):3370-5, 1990), thogoto virus (Frese, M, et al. J Virol. 69(6):3904-9, 1995), vesicular stomatitis virus (Pavlovic, J, et al. J Virol. 64(7):3370-5, 1990), sandfly fever Sicilian virus (Frese, M, et al. J Virol. 70(2):915-23, 1996), Hantaan virus (Frese, M, et al. J Virol. 70(2):915-23, 1996; Kanerva, M, et al. Virology. 224(1):55-62, 1996), Puumala virus (Kanerva, M, et al. Virology. 224(1):55-62, 1996), Crimean-Congo hemorrhagic fever virus (Andersson, I, et al. J Virol. 78(8):4323-9, 2004), Dugbe nairovirus (Bridgen, A, et al. Virus Res. 99(1):47-50, 2004), Semliki Forest virus (Landis, H, et al. J Virol. 72(2): 1516-22, 1998), hepatitis B virus (Gordien, E, et al. J Virol. 75(6):2684-91, 2001), measles virus (Schnorr, J, et al. J Virol. 67(8):4760-8, 1993), and other members of the Phlebovirus, Hantavirus, orthomyxoviruses, rhabdoviruses, parmayxoviruses, and bunyaviruses.


In view of this complex role of the MxA gene, it is of significant interest that the present invention has identified a strong correlation between mutations in the MxA gene, and resistance to HCV infection in carriers of these mutations. The present invention therefore will permit further elucidation of the role of MxA in HCV viral entry, persistence, and resistance. The present invention further provides a method for treating HCV and related flaviviral infections by the development of therapeutic strategies designed to mimic the biochemical effects of MxA resistance mutations. In reference to the detailed description and preferred embodiment, the following definitions are used:


A: adenine; C: cytosine; G: guanine; T: thymine (in DNA); and U: uracil (in RNA)


Allele: A variant of DNA sequence of a specific gene. In diploid cells a maximum of two alleles will be present, each in the same relative position or locus on homologous chromosomes of the chromosome set. When alleles at any one locus are identical the individual is said to be homozygous for that locus, and when they differ the individual is said to be heterozygous for that locus. Since different alleles of any one gene may vary by only a single base, the possible number of alleles for any one gene is very large. When alleles differ, one is often dominant to the other, which is said to be recessive. Dominance is a property of the phenotype and does not imply inactivation of the recessive allele by the dominant. In numerous examples the normally functioning (wild-type) allele is dominant to all mutant alleles of more or less defective function. In such cases the general explanation is that one functional allele out of two is sufficient to produce enough active gene product to support normal development of the organism (i.e., there is normally a two-fold safety margin in quantity of gene product).


Haplotype: The set of alleles across one or more genes or DNA segments carried by one particular homologous chromosome of the chromosome set. The haplotype is often represented by a reduced sequence containing only the particular allelic forms found at a plurality of polymorphic sites spanning the segment or gene(s) of interest.


Nucleotide: A monomeric unit of DNA or RNA consisting of a sugar moiety (pentose), a phosphate, and a nitrogenous heterocyclic base. The base is linked to the sugar moiety via the glycosidic carbon (1′ carbon of the pentose) and that combination of base and sugar is a nucleoside. When the nucleoside contains a phosphate group bonded to the 3′ or 5′ position of the pentose it is referred to as a nucleotide. A sequence of operatively linked nucleotides is typically referred to herein as a “base sequence” or “nucleotide sequence”, and their grammatical equivalents, and is represented herein by a formula whose left to right orientation is in the conventional direction of 5′-terminus to 3′-terminus.


Base Pair (bp): A partnership of adenine (A) with thymine (T), or of cytosine (C) with guanine (G) in a double stranded DNA molecule. In RNA, uracil (U) is substituted for thymine.


Nucleic Acid: A polymer of nucleotides, either single or double stranded.


Polynucleotide: A polymer of single or double stranded nucleotides. As used herein “polynucleotide” and its grammatical equivalents will include the full range of nucleic acids. A polynucleotide will typically refer to a nucleic acid molecule comprised of a linear strand of two or more deoxyribonucleotides and/or ribonucleotides. The exact size will depend on many factors, which in turn depends on the ultimate conditions of use, as is well known in the art. The polynucleotides of the present invention include primers, probes, RNA/DNA segments, oligonucleotides or “oligos” (relatively short polynucleotides), genes, vectors, plasmids, and the like.


Gene: A nucleic acid whose nucleotide sequence codes for an RNA or polypeptide. A gene can be either RNA or DNA.


Duplex DNA: A double-stranded nucleic acid molecule comprising two strands of substantially complementary polynucleotides held together by one or more hydrogen bonds between each of the complementary bases present in a base pair of the duplex. Because the nucleotides that form a base pair can be either a ribonucleotide base or a deoxyribonucleotide base, the phrase “duplex DNA” refers to either a DNA-DNA duplex comprising two DNA strands (ds DNA), or an RNA-DNA duplex comprising one DNA and one RNA strand.


Complementary Bases: Nucleotides that normally pair up when DNA or RNA adopts a double stranded configuration.


Complementary Nucleotide Sequence: A sequence of nucleotides in a single-stranded molecule of DNA or RNA that is sufficiently complementary to that on another single strand to specifically hybridize to it with consequent hydrogen bonding.


Conserved: A nucleotide sequence is conserved with respect to a preselected (reference) sequence if it non-randomly hybridizes to an exact complement of the preselected sequence.


Hybridization: The pairing of substantially complementary nucleotide sequences (strands of nucleic acid) to form a duplex or heteroduplex by the establishment of hydrogen bonds between complementary base pairs. It is a specific, i.e. non-random, interaction between two complementary polynucleotides that can be competitively inhibited.


Nucleotide Analog: A purine or pyrimidine nucleotide that differs structurally from A, T, G, C, or U, but is sufficiently similar to substitute for the normal nucleotide in a nucleic acid molecule.


DNA Homolog: A nucleic acid having a preselected conserved nucleotide sequence and a sequence coding for a receptor capable of binding a preselected ligand.


Upstream: In the direction opposite to the direction of DNA transcription, and therefore going from 5′ to 3′ on the non-coding strand, or 3′ to 5′ on the mRNA.


Downstream: Further along a DNA sequence in the direction of sequence transcription or read out, that is traveling in a 3′- to 5′-direction along the non-coding strand of the DNA or 5′- to 3′-direction along the RNA transcript.


Stop Codon: Any of three codons that do not code for an amino acid, but instead cause termination of protein synthesis. They are UAG, UAA and UGA and are also referred to as a nonsense or termination codon.


Reading Frame: Particular sequence of contiguous nucleotide triplets (codons) employed in translation. The reading frame depends on the location of the translation initiation codon.


Intron: Also referred to as an intervening sequence, a noncoding sequence of DNA that is initially copied into RNA but is cut out of the final RNA transcript.


Resistance: As used herein with regard to viral infection, resistance specifically includes all degrees of enhanced resistance or susceptibility to viral infection as observed in the comparison between two or more groups of individuals.


siRNA: small inhibitory RNA, a short sequence of RNA which can be used to silence gene expression.


RNAi: RNA interference; the introduction of double-stranded RNA into a cell to inhibit the expression of a gene. Also known as RNA silencing, inhibitory RNA, and RNA inactivation.


Antisense: A medication containing part of the non-coding strand of messenger RNA (mRNA). Antisense drugs hybridize with and inactivate mRNA.


The terms “amino-terminal” or “N-terminal” and “carboxyl-terminal” or “C-terminal” are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.


A “fusion protein” is a hybrid protein expressed by a nucleic acid molecule comprising nucleotide sequences of at least two genes.


The term “affinity tag” is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A (Nilsson et al., EMBO J. 4:1075 (1985); Nilsson et al., Methods Enzymol. 198:3 (1991)), glutathione S transferase (Smith and Johnson, Gene 67:31 (1988)), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952 (1985)), substance P, FLAG peptide (Hopp et al., Biotechnology 6:1204 (1988)), streptavidin binding peptide, or other antigenic epitope or binding domain. See, in general, Ford et al., Protein Expression and Purification 2:95 (1991). DNA molecules encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, N.J.).


Modes of Practicing the Invention


As known to those skilled in the art, multiple experimental and analytical approaches are applied to the study design of the present invention. Without limiting the scope of the present invention, several preferred modes are presented below and in the examples attached. The present invention provides a novel method for screening humans for MxA alleles and haplotypes associated with resistance to infection by a virus, particularly an RNA virus, most particularly a flavivirus, most particularly hepatitis C. The invention is based on the discovery that such resistance is associated with the particular base(s) encoded at a site of mutation (as further described herein) in the MxA gene DNA sequence at nucleotide position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of Genbank Accession No. NT011512.10 (consecutive bases 28,459,861-28,493,160 of which are provided as SEQUENCE:1 in FIG. 1), which encodes the human MxA gene.


This invention discloses the results of a study that identified populations of subjects resistant or partially resistant to infection with the hepatitis C virus (HCV) and that further identified genetic mutations that confer this beneficial effect. Several genetic mutations in the MxA gene are identified, that are significantly associated with resistance to HCV infection. The study design used was a case-control, allele association analysis. Cases had serially documented or presumed exposure to HCV, but did not develop infection as documented by the development of antibodies to the virus (i.e. HCV seronegative). Control subjects were serially exposed subjects who did seroconvert to HCV positive. Case and control subjects were recruited from three populations, hemophilia patients from Vancouver, British Columbia, Canada; hemophilia patients from Northwestern France; and injecting drug users from the Seattle metropolitan region.


Case and control definitions differed between the hemophilia and IDU groups and were based upon epidemiological models of infection risk published in the literature and other models developed by the inventors, as described herein. For the hemophilia population, control subjects were documented to be seropositive for antibodies to HCV using commercial diagnostics laboratory testing. Case subjects were documented as being HCV seronegative, having less than 5% of normal clotting factor, and having received concentrated clotting factors before January 1987. Control injecting drug users were defined as documented HCV seropositive. Case injecting drug users were defined as documented HCV seronegative, having injected drugs for more than ten years, and having reported engaging in one or more additional risk behaviors. Additional risk behaviors include the sharing of syringes, cookers, or cottons with another IDU. 44 cases and 95 controls were included in this study population.


Selection of case and control subjects was performed essentially as described in U.S. patent application Ser. No. 09/707,576 using the population groups at-risk affected (“controls”) and at-risk unaffected (“cases”).


The present inventive approach to identifying gene mutations associated with resistance to HCV infection involved the selection of candidate genes. Approximately 21 candidate genes involved in viral binding to the cell surface, viral propagation within the cell, the interferon response, and aspects of the innate immune system and the antiviral response, were interrogated. Candidate genes were sequenced in cases and controls by using the polymerase chain reaction to amplify target sequences from the genomic DNA of each subject. PCR products from candidate genes were sequenced directly using automated, fluorescence-based DNA sequencing and an ABI3730 automated sequencer.


Exhaustive sequencing of the coding and regulatory regions of the MxA gene in the present population identified 38 polymorphic mutations occurring more than once. These mutations are characterized and identified in FIG. 3 as Mutation:5589, Mutation:5590, Mutation:5591, Mutation:13648, Mutation:5594, Mutation:13647, Mutation:5596, Mutation:13594, Mutation:5597, Mutation:5598, Mutation:5599, Mutation:14433, Mutation:5600, Mutation:14429, Mutation:13904, Mutation:13994, Mutation:5603, Mutation:8268, Mutation:5607, Mutation:5608, Mutation:5609, Mutation:5611, Mutation:5612, Mutation:5613, Mutation:13595, Mutation:13644, Mutation:8269, Mutation:5614, Mutation:13645, Mutation:5615, Mutation:13903, Mutation:13649, Mutation:13652, Mutation:13646, Mutation:8271, Mutation:5668, Mutation:13996, and Mutation:13921. Variant forms of the MxA gene are produced by the presence of one or more of these 38 mutations. As further described below, resistance to HCV infection in the present population was found to be significantly associated (p<0.05) with distinct subsets of this group of mutations. Therefore, variant forms of the MxA gene are believed to confer resistance to viral infection.


In one preferred mode of numerical analysis, allele association analysis is performed to identify bias in the frequency of occurrence of a particular allele at one or more sites of mutation with respect to either the case or control group, thereby identifying one or mutations associated with resistance to HCV infection. Said association is tested for statistical significance using any of a number of accepted statistical tests known to those skilled in the art, including chi-square analysis.


In another preferred mode of numerical analysis, linkage disequilibrium analysis as known to those skilled in the art is performed to identify predictive relationships between pluralities of mutations in the genotype data. One example is the well-known calculation of a linkage disequilibrium estimate, commonly referred to as D′ (Lewontin, Genetics 49:49-67, 1964). Those skilled in the art will recognize that numerous other analytical methods exist for assessing the evolutionary importance of particular mutations in a genetic analysis. Other particularly relevant methods attempt to estimate selective pressures and/or recent evolutionary, events within a genetic locus (for example, selective sweeps) by comparing the relative abundance of high-, moderate-, or low-frequency mutations in the locus. Most familiar of these tests is the Tajima D statistic (Tajima, Genetics 123:585-595, 1989). Fu and L1, Genetics 133:693-709 (1993) have also developed a variant to the Tajima and other statistics that also makes use of knowledge regarding the ancestral allele for each mutation. These and other methods are applied to the mutations of the present invention to assess their relative contribution to the observed phenotypic effects.


In another preferred mode of numerical analysis, haplotypes comprising combinatorial subsets of MxA mutations are computationally inferred by Expectation Maximation (EM) methods as known to those skilled in the art (Excoffier, L et. al. Mol Biol Evol. 12(5):921-7, 1995). A number of haplotypes are identified in the case and control population by this analysis. Using this method, each subject in the population is assigned two parental haplotypes. Haplotype distributions among case and control subjects are analyzed by known statistical methods (including chi-square analysis) to identify bias toward one or another group, thereby identifying particular haplotypes that confer resistance to HCV infection.


In other preferred modes of analysis, specific genetic models of resistance to HCV infection are examined utilizing mutation allele data or inferred haplotype data (as described above). Exemplary genetic models include those that model resistance as dominant, additive, and recessive effects. Models are tested for their ability to significantly predict resistance to HCV infection by any one of a number of accepted statistical approaches, including without limitation, logistic regression.


Specific haplotypes or allelic states at one or more sites of mutation that are shown to be significantly associated with resistance to HCV infection by any of the above analytical approaches are further analyzed to identify biological effectors of said resistance. Such further analysis includes both computational and experimental modes of analysis. In one such further preferred embodiment, the haplotype identified as associated with resistance to HCV infection (a “resistant haplotype”) is compared with its nearest “neighbors” in terms of total mutational content. Such comparison identifies particular mutational states at specific sites within the gene that act to confer resistance. In another preferred embodiment, further population genotyping analysis is conducted in other portions of the MxA gene and surrounding genomic region, including without limitation the introns, in order to identify additional mutations that are either independently associated with resistance to HCV infection or that contribute to more expansive haplotypes associated with resistance to HCV infection. In another preferred embodiment, a “resistant haplotype” is experimentally analyzed in comparison with related neighbors to identify biological differences that confer resistance. Such experimental analysis includes, without limitation, comparative analysis of expression levels, transcription of variant mRNAs, identification of exonic and intronic splice enhancers, and mRNA stability by methods as described elsewhere herein and as known to those skilled in the art. In one such embodiment, the comparative analyses are performed between samples derived from homozygous individuals carrying the resistant haplotype and one or more samples derived from individuals carrying other haplotypes for comparison.


As further described in Example 6 below, particular haplotypes are determined to be significantly associated with resistance to HCV infection. Thus the invention provides genetic haplotypes that are resistant to HCV infection. As described further below, the mutations in these haplotypes are used to screen human subjects for resistance to viral infection, particularly flavivirus infection, most particularly hepatitis C infection. The invention further provides one or more specific regions of MxA that are targets for therapeutic intervention in viral infection, particularly flavivirus infection, most particularly HCV infection. Furthermore, the invention also provides novel forms of MxA that are resistant to viral infection, particularly flavivirus infection, most particularly HCV infection.


Mutations that contribute to HCV infection-resistant haplotypes include mutations in introns and in the 3′-untranslated region (3′-UTR) of the MxA gene. The concentration of mutations in these regions suggests additional mechanisms contribute to HCV resistance, including without limitation, mRNA stability, splicing control, and expression control. These regions therefore are targets for either genetic screening or therapeutic invention as described elsewhere herein.


As alternative splicing is a mechanism by which gene product diversity and hence functional diversity can be obtained, MX1 is examined for evidence of additional alternate splice forms. Data sets containing multiply sampled cDNA fragments from clone libraries derived from multiple human tissues, such as NCBI's dbEST (Boguski, M. S. et. al., Nat. Genet. 1993 August; 4(4):332-3), are analyzed for evidence of alternate splice forms of MX1 other than those previously known in the art. As an illustrative example of this analysis, Example 7 below provides evidence for novel splice forms of MX1. Such alternate splice forms are further analyzed (as described elsewhere herein) in human tissue samples of known MX1 haplotype as appropriate and the presence and relative expression of such alternate splice forms is correlated with MX1 haplotype.


At least one of these variant forms of the MX1 genes and corresponding transcript variants are believed to encode the polypeptide of SEQUENCE:7. The foregoing polypeptides, either singly or plurally, and any gene or RNA polynucleotides that encode them, are investigated for their relationship to viral resistance or cancer and their utility in developing treatments thereto, in the same manner as with other polypeptides of the present invention. It is further noted that several of these variants were identified in clone libraries developed from carcinoma samples and therefore certain of the variants may be specifically over- or under-expressed in certain cancers and thus represent potential diagnostic or therapeutic targets using methods described elsewhere herein. Specific examples of such variant polynucleotides are provided as SEQUENCE:4-6 of FIG. 2. As SEQUENCE:7 is an extreme variant relative to the MX1 canonical form, it may therefore represent a defective protein whose prevalence and/or function (or lack thereof) may play a significant role in viral resistance or cancer. The foregoing variants and polynucleotides encoding them are validated as therapeutic targets for intervention in viral infection and cancer according to the methods of the present invention and as is known in the art (see for example, WO03033667).


In addition to the simple production (or non-production as the case may be) of such alternative transcripts, resistant forms of the MX1 gene may also contain or abolish specific sequence contexts (such as Exon Splice Enhancers) that modify the selective preference for such specific transcript variants. This in turn would cause differing relative levels of abundance of the product proteins. These variant forms of the MX1 gene may also modify localization or post-translational modification of the resulting proteins. Those skilled in the art will appreciate that increased abundance or other modifications that improve the activity, stability, or availability of a specific MX1 protein form may improve the overall anti-viral performance of the protein. Those skilled in the art can likewise appreciate that depressing the activity or availability of a specific MX1 form may also improve the overall anti-viral performance of the protein in cases where said specific protein is not advantaged, or even disadvantaged, over other specific Mx1 forms. Without limitation, one embodiment of a disadvantaged MX1 protein is one which is specifically targeted by viral protein(s) in such a manner as to preclude the normal activity of said specific MX1 protein. A further embodiment of a non-advantaged MX1 protein is one with lower specific activity polymerizing with other active forms thereby lowering, or abolishing, the overall specific activity (and hence decreasing overall anti-viral effect) of the polymerized protein. One or more of the foregoing mechanisms may contribute to resistance to viral infection or cancer. The present invention is not limited, however, by the specific mechanism of action of the disclosed variant polynucleotides or polypeptides. The present invention is also not limited by any particular allele or haplotype disclosed herein and the examples and modes described herein are purely exemplary.


As discussed above, the invention discloses mutations and haplotypes in MX1 that are associated with resistance to viral infection, particularly with flavivirus resistance, and most particularly with HCV resistance. By implication, such mutations and haplotypes confer advantages that promote antiviral resistance over the alternative (also aptly described as “susceptible” or “non-advantaged”) state of said mutations or haplotypes. Therefore, in certain embodiments of the present invention, the invention contemplates enhancing, supplementing, or mimicking the effects of the “resistance” states of mutations or haplotypes and discloses methods of treating a subject in need of antiviral therapeutic treatment with methods and compositions (including but not limited to delivering the polynucleotides and polypeptides of the present invention). In other embodiments of the present invention, the invention contemplates interfering with, antagonizing, down-regulating, or otherwise preventing the expression or activity of MX1 polynucleotides and polypeptides that derive from the alternative (or susceptible) states of mutations or haplotypes. With regard to such latter embodiments, the present invention discloses methods and compositions aimed at treating a subject in need of antiviral treatment by interfering with, antagonizing, down-regulating, or otherwise preventing the expression or activity of MX1 polynucleotides and polypeptides that derive from the susceptible states of mutations or haplotypes. The present invention also envisions treatment for subjects in need of antiviral therapy that combines elements of both of the foregoing exemplary embodiments to achieve desired therapeutic effect.


The invention also provides forms of the MX1 gene and polypeptide that are characterized by the presence in the respective gene of one or more genetic mutations or haplotypes not previously disclosed in the public databases.


The invention provides for genetic mutations of the MxA gene, associated mRNA transcripts and proteins. The invention also discloses utility for the mutations, mRNA transcripts and proteins. These genetic mutations in MxA confer on carriers a level of resistance to the hepatitis C virus and associated flaviviruses including but not limited to the West Nile virus, dengue viruses, yellow fever virus, tick-borne encephalitis virus, Japanese encephalitis virus, St. Louis encephalitis virus, Murray Valley virus, Powassan virus, Rocio virus, louping-ill virus, Banzi virus, Ilheus virus, Kokobera virus, Kunjin virus, Alfuy virus, bovine diarrhea virus, and the Kyasanur forest disease virus. The methods and compositions of the present invention, however, are not limited to flavivirus infections but are broadly applicable to viral infection as would be understood by one skilled in the art.


Mutant MxA cDNA is cloned from human subjects who are carriers of these mutations. Cloning is carried out by standard cDNA cloning methods that involve the isolation of RNA from cells or tissue, the conversion of RNA to cDNA, and the conversion of cDNA to double-stranded DNA suitable for cloning. As one skilled in the art will recognize, all of these steps are routine molecular biological analyses. Other methods include the use of reverse transcriptase PCR, 5′RACE (Rapid Amplification of cDNA Ends), or traditional cDNA library construction and screening by Southern hybridization. All mutant MxA alleles described herein are recovered from patient carriers. Each newly cloned MxA cDNA is sequenced to confirm its identity and to identify additional sequence differences relative to wild-type. As one skilled in the art will recognize, this method can be used to identify variations in RNA splicing that are caused by MxA mutation.


MxA gene mutations may affect resistance to viral infection by modifying the properties of the resulting MxA mRNA. Therefore, differences in mRNA stability between carriers of the MxA alleles and homozygous wild-type subjects are evaluated. RNA stability is evaluated and compared using known assays including Taqman® and simple Northern hybridization. These constitute routine methods in molecular biology.


MxA mutations may affect infection resistance by modifying the regulation of the MxA gene. The mutant MxA alleles may confer resistance to viral infection through constitutive expression, over-expression, under-expression, or other dysregulated expression. Several methods are used to evaluate gene expression. These methods include but are not limited to expression microarray analysis, Northern hybridization, Taqman®, and others. Samples are collected from tissues known to express the MxA gene such as the peripheral blood mononuclear cells. Gene expression is compared between tissues from mutant MxA carriers and non-carriers. In one embodiment, peripheral blood mononuclear cells are collected from carriers and non carriers, propagated in culture, and stimulated to express MxA by treatment with interferon. The level of expression of mutant MxA alleles during induction is compared to wild-type alleles. In addition to evaluating MxA gene expression by monitoring RNA levels, protein levels can also be evaluated using antibodies specific to the MxA protein. As one skilled in the art will appreciate, numerous methods for evaluating MxA protein levels exist including but not limited to western blotting, mass spectroscopy, fluorescent microscopy, and fluorescent activated cell sorting. As one skilled in the art can appreciate, numerous combinations of tissues, experimental designs, and methods of analysis are used to evaluate mutant MxA gene regulation. All are envisioned by the application.


MxA mutations may affect infection resistance by modifying the normal splicing of the gene. As one skilled in the art will recognize, mutations in intronic sequences can result in the use of novel, alternate splice sites, inclusion of cryptic exons, the skipping of normal exons, or changes to the mRNA stability of mutant forms. Numerous methods can be used to evaluate changes in mRNA splicing in carriers of HCV resistance mutations, including in one preferred embodiment, the use of nested primers and reverse-transcriptase PCR to document and investigate all possible splice forms. As one skilled in the art will recognize, DNA sequencing can be used as an analytical compliment to any of these envisioned methods.


Once the mutated cDNA for each MxA is cloned, it is used to manufacture recombinant MxA proteins using any of a number of different known expression cloning systems. In one embodiment of this approach, a mutant MxA cDNA is cloned by standard molecular biological methods into an Escherichia coil expression vector adjacent to an epitope tag that contains a sequence of DNA coding for a polyhistidine polypeptide. The recombinant protein is then purified from Escherichia coli lysates using immobilized metal affinity chromatography or similar method. One skilled in the art will recognize that there are many different expression vectors and host cells that can be used to purify recombinant proteins, including but not limited to yeast expression systems, baculovirus expression systems, Chinese hamster ovary cells, and others. As one skilled in the art will also appreciate, complex proteins like MxA, which are difficult to express in their entirety, can be studied through the expression of specific functional domains apart from the entire protein. As one skilled in the art will further appreciate, cell-free expression systems may be used, including but not limited to rabbit reticulocyte lysates and wheat germ expression systems.


Computational methods are used to identify short peptide sequences from MxA mutant proteins that uniquely distinguish these proteins from reference MxA proteins. Various computational methods and commercially available software packages can be used for peptide selection. These computationally selected peptide sequences can be manufactured using the FMOC peptide synthesis chemistry or similar method. One skilled in the art will recognize that there are numerous chemical methods for synthesizing short polypeptides according to a supplied sequence.


Peptide fragments and the recombinant protein from the mutant or reference MxA gene can be used to develop antibodies specific to this gene product. As one skilled in the art will recognize, there are numerous methods for antibody development involving the use of multiple different host organisms, adjuvants, etc. In one classic embodiment, a small amount (150 micrograms) of purified recombinant protein is injected subcutaneously into the backs of New Zealand White Rabbits with subsequent similar quantities injected every several months as boosters. Rabbit serum is then collected by venipuncture and the serum, purified IgG, or affinity purified antibody specific to the immunizing protein can be collected. As one skilled in the art will recognize, similar methods can be used to develop antibodies in rat, mouse, goat, and other organisms. Peptide fragments as described above can also be used to develop antibodies specific to the mutant MxA protein. The development of both monoclonal and polyclonal antibodies is suitable for practicing the invention. The generation of mouse hybridoma cell lines secreting specific monoclonal antibodies to the mutant or reference MxA proteins can be carried out by standard molecular techniques.


Antibodies prepared as described above can be used to develop diagnostic methods for evaluating the presence or absence of the mutant MxA proteins in cells, tissues, and organisms. In one embodiment of this approach, antibodies specific to mutant MxA proteins are used to detect these proteins in human cells and tissues by Western Blotting. These diagnostic methods can be used to validate the presence or absence of mutant MxA proteins in the tissues of carriers and non-carriers of the above-described genetic mutations.


Antibodies prepared as described above can also be used to purify native mutant MxA proteins from those patients who carry these mutations. Numerous methods are available for using antibodies to purify native proteins from human cells and tissues. In one embodiment, antibodies can be used in immunoprecipitation experiments involving homogenized human tissues and antibody capture using protein A. This method enables the concentration and further evaluation of mutant MxA proteins. Numerous other methods for isolating the native forms of mutant MxA are available including column chromatography, affinity chromatography, high pressure liquid chromatography, salting-out, dialysis, electrophoresis, isoelectric focusing, differential centrifugation, and others.


Proteomic methods are used to evaluate the effect of MxA mutations on secondary, tertiary, and quaternary protein structure. Proteomic methods are also used to evaluate the impact of MxA mutations on the post-translational modification of the MxA protein. There are many known possible post-translational modifications to a protein including protease cleavage, glycosylation, phosphorylation, sulfation, the addition of chemical groups or complex molecules, and the like. A common method for evaluating secondary and tertiary protein structure is nuclear magnetic resonance (NMR) spectroscopy. NMR is used to probe differences in secondary and tertiary structure between wild-type MxA proteins and mutant MxA proteins. Modifications to traditional NMR are also suitable, including methods for evaluating the activity of functional sites including Transfer Nuclear Overhauser Spectroscopy (TrNOESY) and others. As one skilled in the art will recognize, numerous minor modifications to this approach and methods for data interpretation of results can be employed. All of these methods are intended to be included in practicing this invention. Other methods for determining protein structure by crystallization and X-ray diffraction are employed.


Mass spectroscopy can also be used to evaluate differences between mutant and wild-type MxA proteins. This method can be used to evaluate structural differences as well as differences in the post-translational modifications of proteins. In one typical embodiment of this approach, the wild-type MxA protein and mutant MxA proteins are purified from human peripheral blood mononuclear cells using one of the methods described above. Purified proteins are digested with specific proteases (e.g. trypsin) and evaluated using mass spectrometry. As one skilled in the art will recognize, many alternative methods can also be used. This invention contemplates these additional alternative methods. For instance, either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) mass spectrometric methods can be used. Furthermore, mass spectroscopy can be coupled with the use of two-dimensional gel electrophoretic separation of cellular proteins as an alternative to comprehensive pre-purification. Mass spectrometry can also be coupled with the use of peptide fingerprint database and various searching algorithms. Differences in post-translational modification, such as phosphorylation or glycosylation, can also be probed by coupling mass spectrometry with the use of various pretreatments such as with glycosylases and phosphatases. All of these methods are to be considered as part of this application.


MxA may confer viral resistance by interaction with other proteins. According to the invention, MxA-specific antibodies can be used to isolate protein complexes involving the MxA proteins from a variety of sources as discussed above. As one skilled in the art will recognize, antibodies can be used with various cross-linking reagents to permit stabilization and enhanced purification of interacting protein complexes. These complexes can then be evaluated by gel electrophoresis to separate members of the interacting complex. Gels can be probed using numerous methods including Western blotting, and novel interacting proteins can be isolated and identified using peptide sequencing. Differences in the content of MxA complexes in wild-type and mutant MxA extracts will also be evaluated. As one skilled in the art will recognize, the described methods are only a few of numerous different approaches that can be used to purify, identify, and evaluate interacting proteins in the MxA complex. Additional methods include, but are not limited to, phage display and the use of yeast two-hybrid methods.


MxA is known to interact with particular virus proteins (Haller, Q, and Kochs, G, Traffic, 3: 710-717, 2002). Without being bound by a mechanism, the invention therefore relates to MxA proteins that do not interact with virus proteins, wherein the proteins are expressed by mRNA encoded by splice variants of MxA, by MxA polynucleotides having at least one mutation in the coding region, and or by MxA polynucleotides having at least one base substitution, deletion or addition wherein binding to the virus protein is altered or prevented.


Biological studies are performed to evaluate the degree to which MxA mutant genes protect from viral infection. These biological studies generally take the form of introducing the mutant MxA genes or proteins into cells or whole organisms, and evaluating their biological and antiviral activities relative to wild-type controls. In one typical embodiment of this approach, the mutant MxA genes are introduced into African Green monkey kidney (Vero) cells in culture by cloning the cDNAs isolated as described herein into a mammalian expression vector that drives expression of the cloned cDNA from an SV40 promoter sequence. This vector will also contain SV40 and cytomegalovirus enhancer elements that permit efficient expression of the mutant MxA genes, and a neomycin resistance gene for selection in culture. The biological effects of mutant MxA expression can then be evaluated in Vero cells infected with a virus such as the dengue virus. In the event that mutant MxA confers broad resistance to multiple flaviviruses, one would expect an attenuation of viral propagation in cell lines expressing these mutant forms of MxA relative to wild-type. As one skilled in the art will recognize, there are multiple different experimental approaches that can be used to evaluate the biological effects of mutant MxA genes and proteins in cells and organisms and in response to different infectious agents. For instance, in the above example, different expression vectors, cell types, and viral species may be used to evaluate the effects of mutant MxA. Primary human cells in culture may be evaluated as opposed to cell lines. Cell lines deficient for expression of normal MxA may be used. Expression vectors containing alternative promoter and enhancer sequences may be evaluated. Viruses other than the flaviviruses (e.g. respiratory syncytial virus and picornavirus) are also evaluated.


Transgenic animal models are developed to assess the usefulness of mutant forms of MxA in protecting against whole-organism viral infection. In one embodiment, MxA genes are introduced into the genomes of mice susceptible to flavivirus infection (e.g. the C3H/He inbred laboratory strain). Positive-negative selection-based methods can be used to knock-out the native MxA gene in mice with the transgene in order to assess MxA mutant function in the absence of wild-type protein. These mutant MxA genes are evaluated for their ability to modify infection or confer resistance to infection in susceptible mice. As one skilled in the art will appreciate, numerous standard methods can be used to introduce transgenic human mutant MxA genes into mice. These methods can be combined with other methods that affect tissue specific expression patterns or that permit regulation of the transgene through the introduction of endogenous chemicals, the use of inducible or tissue specific promoters, etc.


As a model for hepatitis C infection, cell lines expressing mutant MxA genes can be evaluated for susceptibility, resistance, or modification of infection with the bovine diarrheal virus (BVDV) or the GB virus C (GBV-C). BVDV and GBV-C are commonly used models for testing the efficacy of potential anti-HCV antiviral drugs. In one embodiment, the mutant MxA genes can be introduced into BT (bovine turbinate) cells using expression vectors essentially as described above and tested for their ability to modify BVDV infection in this cell line. In a still further embodiment, HCV replicon (Randall, G, and Rice, C, Curr. Opin. Infect. Dis. 14(6): 743-747, 2001) or fulminant hepatitis virus-derived cell culture models (Lindenbach, B, et al., Science, 309(5734):623-6, 2005) can be used. Furthermore, mouse models of HCV infection (e.g. the transplantation of human livers into mice, the infusion of human hepatocyte into mouse liver, etc.) may also be evaluated for modification of HCV infection in the transgenic setting of mutant MxA genes. Experiments can be performed whereby the effects of expression of mutant MxA genes are assessed in HCV viral culture and replicon systems. As one skilled in the art will appreciate, other viral models may be used, as for example the GB virus B. Furthermore, the ability of defective interfering viruses to potentiate the effects of mutant MxA forms can be tested in cell culture and in small animal models.


The degree to which the presence or absence of mutant MxA genotypes affects other human phenotypes can also be examined. For instance, MxA mutations are evaluated for their association with viral titer and spontaneous viral clearance in HCV infected subjects. Similar methods of correlating host MxA genotype with the course of other virus or flavivirus infections can also be undertaken. The impact of MxA mutations on promoting successful outcomes during interferon or interferon with ribavirin treatment in HCV infected patients is also examined. These mutations may not only confer a level of infection resistance, but also promote spontaneous viral clearance in infected subjects with or without interferon-ribavirin treatment. Furthermore, it has been reported that schizophrenia occurs at a higher frequency in geographic areas that are endemic for flavivirus infection, suggesting an association between flavivirus resistance alleles and predisposition to schizophrenia. This link is evaluated by performing additional genetic association studies involving the schizophrenia phenotype and the MxA mutations. Additionally, the effects of MxA mutations on neoplasm, cancer progression, metastasis, and apoptosis will be evaluated.


Polynucleotide Analysis


The MxA gene is a nucleic acid whose nucleotide sequence codes for the MxA protein, mutant MxA protein, or an MxA pseudogene. It can be in the form of genomic DNA, an mRNA or cDNA, and in single or double stranded form. Preferably, genomic DNA is used because of its relative stability in biological samples compared to mRNA. The sequence of a polynucleotide consisting of consecutive nucleotides 28,459,861-28,493,160 of the complete genomic sequence of the reference MxA gene is provided in the FIG. 1 as SEQUENCE:1, and corresponds to Genbank Accession No. NT011512.10. The present invention specifically envisions and includes a combined mutant genomic sequence derived from SEQUENCE:1 and including all combinations of the mutations of the present invention as disclosed in FIG. 3. The present invention also specifically envisions and includes a mutant genomic sequence derived from SEQUENCE:1 and at least one of the mutations of the present invention (as further described in FIG. 3) from the group of Mutation:5589, Mutation:5590, Mutation:5591, Mutation:13648, Mutation:5594, Mutation:13647, Mutation:5596, Mutation:13594, Mutation:5597, Mutation:5598, Mutation:5599, Mutation:14433, Mutation:5600, Mutation:14429, Mutation:13904, Mutation:13994, Mutation:5603, Mutation:8268, Mutation:5607, Mutation:5608, Mutation:5609, Mutation:5611, Mutation:5612, Mutation:5613, Mutation:13595, Mutation:13644, Mutation:8269, Mutation:5614, Mutation:13645, Mutation:5615, Mutation:13903, Mutation:13649, Mutation:13652, Mutation:13646, Mutation:8271, Mutation:5668, Mutation:13996, or Mutation:13921. The present invention includes a combined mutant mRNA sequence of the MxA gene is provided in SEQUENCE:2 of FIG. 2. The present invention also envisions all polynucleotides encoding each of the polypeptide fragments of the MxA protein comprising the GTP binding domain, central interacting domain, leucine zipper domain, and virus binding domains of MxA as provided in SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, and SEQUENCE:13 of FIG. 2 respectively. All of the foregoing polynucleotides are polynucleotides of the present invention.


The nucleic acid sample is obtained from cells, typically peripheral blood leukocytes. Where mRNA is used, the cells are lysed under RNase inhibiting conditions. In one embodiment, the first step is to isolate the total cellular mRNA. Poly A+ mRNA can then be selected by hybridization to an oligo-dT cellulose column.


In preferred embodiments, the nucleic acid sample is enriched for the presence of MxA allelic material. Enrichment is typically accomplished by subjecting the genomic DNA or mRNA to a primer extension reaction employing a polynucleotide synthesis primer as described herein. Particularly preferred methods for producing a sample to be assayed use preselected polynucleotides as primers in a polymerase chain reaction (PCR) to form an amplified (PCR) product.


Preparation of Polynucleotide Primers


The term “polynucleotide” as used herein in reference to primers, probes and nucleic acid fragments or segments to be synthesized by primer extension is defined as a molecule comprised of two or more deoxyribonucleotides or ribonucleotides, preferably more than three. Its exact size will depend on many factors, which in turn depends on the ultimate conditions of use.


The term “primer” as used herein refers to a polynucleotide whether purified from a nucleic acid restriction digest or produced synthetically, which is capable of acting as a point of initiation of nucleic acid synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced, i.e., in the presence of nucleotides and an agent for polymerization such as DNA polymerase, reverse transcriptase and the like, and at a suitable temperature and pH. The primer is preferably single stranded for maximum efficiency, but may alternatively be in double stranded form. If double stranded, the primer is first treated to separate it from its complementary strand before being used to prepare extension products. Preferably, the primer is a polydeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the agents for polymerization. The exact lengths of the primers will depend on many factors, including temperature and the source of primer. For example, depending on the complexity of the target sequence, a polynucleotide primer typically contains 15 to 25 or more nucleotides, although it can contain fewer nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with template.


The primers used herein are selected to be “substantially” complementary to the different strands of each specific sequence to be synthesized or amplified. This means that the primer must be sufficiently complementary to non-randomly hybridize with its respective template strand. Therefore, the primer sequence may or may not reflect the exact sequence of the template. For example, a non-complementary nucleotide fragment can be attached to the 5′ end of the primer, with the remainder of the primer sequence being substantially complementary to the strand. Such non-complementary fragments typically code for an endonuclease restriction site. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided the primer sequence has sufficient complementarity with the sequence of the strand to be synthesized or amplified to non-randomly hybridize therewith and thereby form an extension product under polynucleotide synthesizing conditions.


Primers of the present invention may also contain a DNA-dependent RNA polymerase promoter sequence or its complement. See for example, Krieg, et al., Nucl. Acids Res., 12:7057-70 (1984); Studier, et al., J. Mol. Biol., 189:113-130 (1986); and Molecular Cloning: A Laboratory Manual, Second Edition, Maniatis, et al., eds., Cold Spring Harbor, N.Y. (1989).


When a primer containing a DNA-dependent RNA polymerase promoter is used, the primer is hybridized to the polynucleotide strand to be amplified and the second polynucleotide strand of the DNA-dependent RNA polymerase promoter is completed using an inducing agent such as E. coli DNA polymerase I, or the Klenow fragment of E. coli DNA polymerase. The starting polynucleotide is amplified by alternating between the production of an RNA polynucleotide and DNA polynucleotide.


Primers may also contain a template sequence or replication initiation site for a RNA-directed RNA polymerase. Typical RNA-directed RNA polymerase includes the QB replicase described by Lizardi, et al., Biotechnology, 6:1197-1202 (1988). RNA-directed polymerases produce large numbers of RNA strands from a small number of template RNA strands that contain a template sequence or replication initiation site. These polymerases typically give a one million-fold amplification of the template strand as has been described by Kramer, et al., J. Mol. Biol., 89:719-736 (1974).


The polynucleotide primers can be prepared using any suitable method, such as, for example, the phosphotriester or phosphodiester methods see Narang, et al., Meth. Enzymol., 68:90, (1979); U.S. Pat. Nos. 4,356,270, 4,458,066, 4,416,988, 4,293,652; and Brown, et al., Meth. Enzymol., 68:109 (1979).


The choice of a primer's nucleotide sequence depends on factors such as the distance on the nucleic acid from the hybridization point to the region coding for the mutation to be detected, its hybridization site on the nucleic acid relative to any second primer to be used, and the like.


If the nucleic acid sample is to be enriched for MxA gene material by PCR amplification, two primers, i.e., a PCR primer pair, must be used for each coding strand of nucleic acid to be amplified. The first primer becomes part of the non-coding (anti-sense or minus or complementary) strand and hybridizes to a nucleotide sequence on the plus or coding strand. Second primers become part of the coding (sense or plus) strand and hybridize to a nucleotide sequence on the minus or non-coding strand. One or both of the first and second primers can contain a nucleotide sequence defining an endonuclease recognition site. The site can be heterologous to the MxA gene being amplified.


In one embodiment, the present invention utilizes a set of polynucleotides that form primers having a priming region located at the 3′-terminus of the primer. The priming region is typically the 3′-most (3′-terminal) 15 to 30 nucleotide bases. The 3′-terminal priming portion of each primer is capable of acting as a primer to catalyze nucleic acid synthesis, i.e., initiate a primer extension reaction off its 3′ terminus. One or both of the primers can additionally contain a 5′-terminal (5′-most) non-priming portion, i.e., a region that does not participate in hybridization to the preferred template.


In PCR, each primer works in combination with a second primer to amplify a target nucleic acid sequence. The choice of PCR primer pairs for use in PCR is governed by considerations as discussed herein for producing MxA gene regions. When a primer sequence is chosen to hybridize (anneal) to a target sequence within the MxA gene allele intron, the target sequence should be conserved among the alleles in order to insure generation of target sequence to be assayed.


Polymerase Chain Reaction


MxA genes are comprised of polynucleotide coding strands, such as mRNA and/or the sense strand of genomic DNA. If the genetic material to be assayed is in the form of double stranded genomic DNA, it is usually first denatured, typically by melting, into single strands. The nucleic acid is subjected to a PCR reaction by treating (contacting) the sample with a PCR primer pair, each member of the pair having a preselected nucleotide sequence. The PCR primer pair is capable of initiating primer extension reactions by hybridizing to nucleotide sequences, preferably at least about 10 nucleotides in length, more preferably at least about 20 nucleotides in length, conserved within the MxA alleles. The first primer of a PCR primer pair is sometimes referred to herein as the “anti-sense primer” because it hybridizes to a non-coding or anti-sense strand of a nucleic acid, i.e., a strand complementary to a coding strand. The second primer of a PCR primer pair is sometimes referred to herein as the “sense primer” because it hybridizes to the coding or sense strand of a nucleic acid.


The PCR reaction is performed by mixing the PCR primer pair, preferably a predetermined amount thereof, with the nucleic acids of the sample, preferably a predetermined amount thereof, in a PCR buffer to form a PCR reaction admixture. The admixture is thermocycled for a number of cycles, which is typically predetermined, sufficient for the formation of a PCR reaction product, thereby enriching the sample to be assayed for MxA genetic material.


PCR is typically carried out by thermocycling i.e., repeatedly increasing and decreasing the temperature of a PCR reaction admixture within a temperature range whose lower limit is about 30 degrees Celsius (30° C.) to about 55° C. and whose upper limit is about 90° C. to about 100° C. The increasing and decreasing can be continuous, but is preferably phasic with time periods of relative temperature stability at each of temperatures favoring polynucleotide synthesis, denaturation and hybridization.


A plurality of first primer and/or a plurality of second primers can be used in each amplification, e.g., one species of first primer can be paired with a number of different second primers to form several different primer pairs. Alternatively, an individual pair of first and second primers can be used. In any case, the amplification products of amplifications using the same or different combinations of first and second primers can be combined for assaying for mutations.


The PCR reaction is performed using any suitable method. Generally it occurs in a buffered aqueous solution, i.e., a PCR buffer, preferably at a pH of 7-9, most preferably about 8. Preferably, a molar excess (for genomic nucleic acid, usually about 106:1 primer:template) of the primer is admixed to the buffer containing the template strand. A large molar excess is preferred to improve the efficiency of the process.


The PCR buffer also contains the deoxyribonucleotide triphosphates (polynucleotide synthesis substrates) dATP, dCTP, dGTP, and dTTP and a polymerase, typically thermostable, all in adequate amounts for primer extension (polynucleotide synthesis) reaction. The resulting solution (PCR admixture) is heated to about 90° C.-100° C. for about 1 to 10 minutes, preferably from 1 to 4 minutes. After this heating period the solution is allowed to cool to 54° C., which is preferable for primer hybridization. The synthesis reaction may occur at from room temperature up to a temperature above which the polymerase (inducing agent) no longer functions efficiently. The thermocycling is repeated until the desired amount of PCR product is produced. An exemplary PCR buffer comprises the following: 50 mM KCl; 10 mM Tris-HCl at pH 8.3; 1.5 mM MgCl.; 0.001% (wt/vol) gelatin, 200 μM dATP; 200 μM dTTP; 200 μM dCTP; 2002 μM dGTP; and 2.5 units Thermus aquaticus (Taq) DNA polymerase I (U.S. Pat. No. 4,889,818) per 100 microliters of buffer.


The inducing agent may be any compound or system which will function to accomplish the synthesis of primer extension products, including enzymes. Suitable enzymes for this purpose include, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, other available DNA polymerases, reverse transcriptase, and other enzymes, including heat-stable enzymes, which will facilitate combination of the nucleotides in the proper manner to form the primer extension products which are complementary to each nucleic acid strand. Generally, the synthesis will be initiated at the 3′ end of each primer and proceed in the 5′ direction along the template strand, until synthesis terminates, producing molecules of different lengths. There may be inducing agents, however, which initiate synthesis at the 5′ end and proceed in the above direction, using the same process as described above.


The inducing agent also may be a compound or system which will function to accomplish the synthesis of RNA primer extension products, including enzymes. In preferred embodiments, the inducing agent may be a DNA-dependent RNA polymerase such as T7 RNA polymerase, T3 RNA polymerase or SP6 RNA polymerase. These polymerases produce a complementary RNA polynucleotide. The high turn-over rate of the RNA polymerase amplifies the starting polynucleotide as has been described by Chamberlin, et al., The Enzymes, ed. P. Boyer, pp. 87-108, Academic Press, New York (1982). Amplification systems based on transcription have been described by Gingeras, et al., in PCR Protocols, A Guide to Methods and Applications, pp. 245-252, Innis, et al., eds, Academic Press, Inc., San Diego, Calif. (1990).


If the inducing agent is a DNA-dependent RNA polymerase and, therefore incorporates ribonucleotide triphosphates, sufficient amounts of ATP, CTP, GTP and UTP are admixed to the primer extension reaction admixture and the resulting solution is treated as described above.


The newly synthesized strand and its complementary nucleic acid strand form a double-stranded molecule which can be used in the succeeding steps of the process.


The PCR reaction can advantageously be used to incorporate into the product a preselected restriction site useful in detecting a mutation in the MxA gene.


PCR amplification methods are described in detail in U.S. Pat. Nos. 4,683,192, 4,683,202, 4,800,159, and 4,965,188, and at least in several texts including PCR Technology: Principles and Applications for DNA Amplification, H. Erlich, ed., Stockton Press, New York (1989); and PCR Protocols: A Guide to Methods and Applications, Innis, et al., eds., Academic Press, San Diego, Calif. (1990).


In some embodiments, two pairs of first and second primers are used per amplification reaction. The amplification reaction products obtained from a plurality of different amplifications, each using a plurality of different primer pairs, can be combined or assayed separately.


However, the present invention contemplates amplification using only one pair of first and second primers. Exemplary primers for amplifying the sections of DNA containing the mutations disclosed herein are shown below in Table 1. Table 2 shows the position of each mutation of the present invention within its respective containing Amplicon.











TABLE 1





Amplicon
PrimerA
PrimerB


















Amplicon01
5′-ATCTGATTCAGCAGGCCTGG-3′
5′-TACTAGCAGCCGAGAAGGTG-3′




(SEQUENCE:51)
(SEQUENCE:52)





Amplicon02
5′-AGAGTCCAGTGATGCTAACC-3′
5′-GAATTCCTGCAGTGAGGGTA-3′



(SEQUENCE:53)
(SEQUENCE:54)





Amplicon05
5′-TGTCCCAGGCACTCTTCTAC-3′
5′-TGTCAGCTGGCAAGTAGAGG-3′



(SEQUENCE:55)
(SEQUENCE:56)





Amplicon06
5′-TCCCTTGACACGTAGGGATT-3′
5′-TCAGGAGAAGCTAAACCCTG-3′



(SEQUENCE:57)
(SEQUENCE:58)





Amplicon07
5′-TGCATGTTCTTGAGGTCACC-3′
5′-GAAAGGTGTCCTGACAGCAC-3′



(SEQUENCE:59)
(SEQUENCE:60)





Amplicon19
5′-AATTCCAGCTTGGTACCTCC-3′
5′-CTCCCTTAGCAGGTCTTAGT-3′



(SEQUENCE:61)
(SEQUENCE:62)





Amplicon10
5′-CTGTCCTCAAGCAAGGATGG-3′
5′-GTCCTTGTTGGGGAACAAGC-3′



(SEQUENCE:63)
(SEQUENCE:64)





Amplicon12
5′-ACAACTCCTCTGCAGAGGGA-3′
5′-TCCACCCTTTGAGTGCTACG-3′



(SEQUENCE:65)
(SEQUENCE:66)





Amplicon13
5′-CTTTCCCCTGATCCACAGTG-3′
5′-TCACCTCCAGAACAATGAGC-3′



(SEQUENCE:67)
(SEQUENCE:68)





Amplicon14
5′-GTGTGTGTGTAATCCCTGGA-3′
5′-TACCAACTTGGCATCTGGAG-3′



(SEQUENCE:69)
(SEQUENCE:70)





Amplicon16
5′-GCTGTTCCAGGAAACGTGCT-3′
5′-ATTGCCCAGTCTCAGGTATG-3′



(SEQUENCE:71)
(SEQUENCE:72)





Amplicon17
5′-GCACTGTGCATAGTTCCTCT-3′
5′-ACGGCACTCATGCTCCTAAA-3′



(SEQUENCE:73)
(SEQUENCE:74)





Amplicon18
5′-ACGACTTGAGTGCTCAGTAG-3′
5′-AGGGCAGCTTTACGTCCACT-3′



(SEQUENCE:75)
(SEQUENCE:76)










Table 2 discloses the position of mutations of the present invention in their respective Amplicons.











TABLE 2







Position in Amplicon (relative to 5′


Mutation
Amplicon
end of PrimerA side of Amplicon)

















Mutation: 5589
Amplicon01
73


Mutation: 5590
Amplicon01
108


Mutation: 5591
Amplicon01
216


Mutation: 13648
Amplicon02
413


Mutation: 5594
Amplicon02
467


Mutation: 13647
Amplicon02
600


Mutation: 5596
Amplicon05
38


Mutation: 13594
Amplicon06
104


Mutation: 5597
Amplicon06
379


Mutation: 5598
Amplicon06
418


Mutation: 5599
Amplicon06
437


Mutation: 14433
Amplicon07
33


Mutation: 5600
Amplicon07
118


Mutation: 14429
Amplicon07
290


Mutation: 13904
Amplicon19
256


Mutation: 13994
Amplicon19
373-401


Mutation: 5603
Amplicon10
409-426


Mutation: 8268
Amplicon12
71


Mutation: 5607
Amplicon12
299


Mutation: 5608
Amplicon12
329


Mutation: 5609
Amplicon13
140


Mutation: 5611
Amplicon13
316


Mutation: 5612
Amplicon13
342


Mutation: 5613
Amplicon14
217


Mutation: 13595
Amplicon14
369


Mutation: 13644
Amplicon16
31


Mutation: 8269
Amplicon16
243


Mutation: 5614
Amplicon16
315


Mutation: 13645
Amplicon16
434


Mutation: 5615
Amplicon16
456


Mutation: 13903
Amplicon17
80


Mutation: 13649
Amplicon17
146-161


Mutation: 13652
Amplicon17
266


Mutation: 13646
Amplicon17
427


Mutation: 8271
Amplicon18
145


Mutation: 5668
Amplicon18
322


Mutation: 13996
Amplicon19
376


Mutation: 13921
Amplicon19
394









Nucleic Acid Sequence Analysis


Nucleic acid sequence analysis is approached by a combination of (a) physiochemical techniques, based on the hybridization or denaturation of a probe strand plus its complementary target, and (b) enzymatic reactions with endonucleases, ligases, and polymerases. Nucleic acid can be assayed at the DNA or RNA level. The former analyzes the genetic potential of individual humans and the latter the expressed information of particular cells.


In assays using nucleic acid hybridization, detecting the presence of a DNA duplex in a process of the present invention can be accomplished by a variety of means.


In one approach for detecting the presence of a DNA duplex, an oligonucleotide that is hybridized in the DNA duplex includes a label or indicating group that will render the duplex detectable. Typically such labels include radioactive atoms, chemically modified nucleotide bases, and the like.


The oligonucleotide can be labeled, i.e., operatively linked to an indicating means or group, and used to detect the presence of a specific nucleotide sequence in a target template.


Radioactive elements operatively linked to or present as part of an oligonucleotide probe (labeled oligonucleotide) provide a useful means to facilitate the detection of a DNA duplex. A typical radioactive element is one that produces beta ray emissions. Elements that emit beta rays, such as 3H, 12C, 32P and 35S represent a class of beta ray emission-producing radioactive element labels. A radioactive polynucleotide probe is typically prepared by enzymatic incorporation of radioactively labeled nucleotides into a nucleic acid using DNA kinase.


Alternatives to radioactively labeled oligonucleotides are oligonucleotides that are chemically modified to contain metal complexing agents, biotin-containing groups, fluorescent compounds, and the like.


One useful metal complexing agent is a lanthanide chelate formed by a lanthanide and an aromatic beta-dilcetone, the lanthanide being bound to the nucleic acid or oligonucleotide via a chelate-forming compound such as an EDTA-analogue so that a fluorescent lanthanide complex is formed. See U.S. Pat. Nos. 4,374,120, 4,569,790 and published Patent Application EP0139675 and WO87/02708.


Biotin or acridine ester-labeled oligonucleotides and their use to label polynucleotides have been described. See U.S. Pat. No. 4,707,404, published Patent Application EP0212951 and European Patent No. 0087636. Useful fluorescent marker compounds include fluorescein, rhodamine, Texas Red, NBD and the like.


A labeled oligonucleotide present in a DNA duplex renders the duplex itself labeled and therefore distinguishable over other nucleic acids present in a sample to be assayed. Detecting the presence of the label in the duplex and thereby the presence of the duplex, typically involves separating the DNA duplex from any labeled oligonucleotide probe that is not hybridized to a DNA duplex.


Techniques for the separation of single stranded oligonucleotide, such as non-hybridized labeled oligonucleotide probe, from DNA duplex are well known, and typically involve the separation of single stranded from double stranded nucleic acids on the basis of their chemical properties. More often separation techniques involve the use of a heterogeneous hybridization format in which the non-hybridized probe is separated, typically by washing, from the DNA duplex that is bound to an insoluble matrix. Exemplary is the Southern blot technique, in which the matrix is a nitrocellulose sheet and the label is 32P Southern, J. Mol. Biol., 98:503 (1975).


The oligonucleotides can also be advantageously linked, typically at or near their 5′-terminus, to a solid matrix, i.e., aqueous insoluble solid support. Useful solid matrices are well known in the art and include cross-linked dextran such as that available under the tradename SEPHADEX from Pharmacia Fine Chemicals (Piscataway, N.J.); agarose, polystyrene or latex beads about 1 micron to about 5 millimeters in diameter, polyvinyl chloride, polystyrene, cross-linked polyacrylamide, nitrocellulose or nylon-based webs such as sheets, strips, paddles, plates microtiter plate wells and the like.


It is also possible to add “linking” nucleotides to the 5′ or 3′ end of the member oligonucleotide, and use the linking oligonucleotide to operatively link the member to the solid support.


In nucleotide hybridizing assays, the hybridization reaction mixture is maintained in the contemplated method under hybridizing conditions for a time period sufficient for the oligonucleotides having complementarity to the predetermined sequence on the template to hybridize to complementary nucleic acid sequences present in the template to form a hybridization product, i.e., a complex containing oligonucleotide and target nucleic acid.


The phrase “hybridizing conditions” and its grammatical equivalents, when used with a maintenance time period, indicates subjecting the hybridization reaction admixture, in the context of the concentrations of reactants and accompanying reagents in the admixture, to time, temperature and pH conditions sufficient to allow one or more oligonucleotides to anneal with the target sequence, to form a nucleic acid duplex. Such time, temperature and pH conditions required to accomplish hybridization depend, as is well known in the art, on the length of the oligonucleotide to be hybridized, the degree of complementarity between the oligonucleotide and the target, the guanine and cytosine content of the oligonucleotide, the stringency of hybridization desired, and the presence of salts or additional reagents in the hybridization reaction admixture as may affect the kinetics of hybridization. Methods for optimizing hybridization conditions for a given hybridization reaction admixture are well known in the art.


Typical hybridizing conditions include the use of solutions buffered to pH values between 4 and 9, and are carried out at temperatures from 4° C. to 37° C., preferably about 12° C. to about 30° C., more preferably about 22° C., and for time periods from 0.5 seconds to 24 hours, preferably 2 minutes (min) to 1 hour.


Hybridization can be carried out in a homogeneous or heterogeneous format as is well known. The homogeneous hybridization reaction occurs entirely in solution, in which both the oligonucleotide and the nucleic acid sequences to be hybridized (target) are present in soluble forms in solution. A heterogeneous reaction involves the use of a matrix that is insoluble in the reaction medium to which either the oligonucleotide, polynucleotide probe or target nucleic acid is bound.


Where the nucleic acid containing a target sequence is in a double stranded (ds) form, it is preferred to first denature the dsDNA, as by heating or alkali treatment, prior to conducting the hybridization reaction. The denaturation of the dsDNA can be carried out prior to admixture with an oligonucleotide to be hybridized, or can be carried out after the admixture of the dsDNA with the oligonucleotide.


Predetermined complementarity between the oligonucleotide and the template is achieved in two alternative manners. A sequence in the template DNA may be known, such as where the primer to be formed can hybridize to known MxA sequences and can initiate primer extension into a region of DNA for sequencing purposes, as well as subsequent assaying purposes as described herein, or where previous sequencing has determined a region of nucleotide sequence and the primer is designed to extend from the recently sequenced region into a region of unknown sequence. This latter process has been referred to a “directed sequencing” because each round of sequencing is directed by a primer designed based on the previously determined sequence.


Effective amounts of the oligonucleotide present in the hybridization reaction admixture are generally well known and are typically expressed in terms of molar ratios between the oligonucleotide to be hybridized and the template. Preferred ratios are hybridization reaction mixtures containing equimolar amounts of the target sequence and the oligonucleotide. As is well known, deviations from equal molarity will produce hybridization reaction products, although at lower efficiency. Thus, although ratios where one component can be in as much as 100 fold molar excess relative to the other component, excesses of less than 50 fold, preferably less than 10 fold, and more preferably less than two fold are desirable in practicing the invention.


Detection of Membrane-Immobilized Target Sequences


In the DNA (Southern) blot technique, DNA is prepared by PCR amplification as previously discussed. The PCR products (DNA fragments) are separated according to size in an agarose gel and transferred (blotted) onto a nitrocellulose or nylon membrane. Conventional electrophoresis separates fragments ranging from 100 to 30,000 base pairs while pulsed field gel electrophoresis resolves fragments up to 20 million base pairs in length. The location on the membrane containing a particular PCR product is determined by hybridization with a specific, labeled nucleic acid probe.


In preferred embodiments, PCR products are directly immobilized onto a solid-matrix (nitrocellulose membrane) using a dot-blot (slot-blot) apparatus, and analyzed by probe-hybridization. See U.S. Pat. Nos. 4,582,789 and 4,617,261.


Immobilized DNA sequences may be analyzed by probing with allele-specific oligonucleotide (ASO) probes, which are synthetic DNA oligomers of approximately 15, 17, 20, 25 or up to about 30 nucleotides in length. These probes are long enough to represent unique sequences in the genome, but sufficiently short to be destabilized by an internal mismatch in their hybridization to a target molecule. Thus, any sequences differing at single nucleotides may be distinguished by the different denaturation behaviors of hybrids between the ASO probe and normal or mutant targets under carefully controlled hybridization conditions. Probes are suitable as long as they hybridize specifically to the region of the MxA gene carrying the mutation of choice, and are capable of specifically distinguishing between a polynucleotide carrying the point mutation and a wild type polynucleotide.


Detection of Target Sequences in Solution


Several rapid techniques that do not require nucleic acid purification or immobilization have been developed. For example, probe/target hybrids may be selectively isolated on a solid matrix, such as hydroxylapatite, which preferentially binds double-stranded nucleic acids. Alternatively, probe nucleic acids may be immobilized on a solid support and used to capture target sequences from solution. Detection of the target sequences can be accomplished with the aid of a second, labeled probe that is either displaced from the support by the target sequence in a competition-type assay or joined to the support via the bridging action of the target sequence in a sandwich-type format.


In the oligonucleotide ligation assay (OLA), the enzyme DNA ligase is used to covalently join two synthetic oligonucleotide sequences selected so that they can base pair with a target sequence in exact head-to-tail juxtaposition. Ligation of the two oligomers is prevented by the presence of mismatched nucleotides at the junction region. This procedure allows for the distinction between known sequence variants in samples of cells without the need for DNA purification. The joining of the two oligonucleotides may be monitored by immobilizing one of the two oligonucleotides and observing whether the second, labeled oligonucleotide is also captured.


Scanning Techniques for Detection of Base Substitutions


Three techniques permit the analysis of probe/target duplexes several hundred base pairs in length for unknown single-nucleotide substitutions or other sequence differences. In the ribonuclease (RNase) A technique, the enzyme cleaves a labeled RNA probe at positions where it is mismatched to a target RNA or DNA sequence. The fragments may be separated according to size allowing for the determination of the approximate position of the mutation. See U.S. Pat. No. 4,946,773.


In the denaturing gradient gel technique, a probe-target DNA duplex is analyzed by electrophoresis in a denaturing gradient of increasing strength. Denaturation is accompanied by a decrease in migration rate. A duplex with a mismatched base pair denatures more rapidly than a perfectly matched duplex.


A third method relies on chemical cleavage of mismatched base pairs. A mismatch between T and C, G, or T, as well as mismatches between C and T, A, or C, can be detected in heteroduplexes. Reaction with osmium tetroxide (T and C mismatches) or hydroxylamine (C mismatches) followed by treatment with piperidine cleaves the probe at the appropriate mismatch.


Therapeutic Agents for Restoring and/or Enhancing MxA Function


Where a mutation in the MxA gene leads to defective MxA function and this defective function is associated with increased susceptibility of a patient to pathogenic infection, whether through lower levels of MxA protein, mutation in the protein affecting its function, or other mechanisms, it may be advantageous to treat the patient with wild type MxA protein. Furthermore, if the mutation gives rise in infection-resistant carriers to a form of the protein that differs from the reference protein, and that has an advantage in terms of inhibiting HCV infection, it may be advantageous to administer a protein encoded by the mutated gene. In the case of MxA, mutation may reduce binding of virus proteins to the MxA protein and thereby interrupt virus-induced inhibition of the innate immune response. Therefore, it can be envisioned that any therapeutic strategy that inhibits this essential interaction between the virus and MxA would succeed in attenuating infection. One preferred strategy would involve the administration of wild-type MxA, or fragments thereof, in excess in order to effectively compete for HCV protein binding to native MxA protein. Furthermore, the present invention envisions polypeptides composed of or derived from the natural ligands of MxA that competitively inhibit virus protein binding and inhibition of native MxA protein. Natural ligands of MxA include MxA itself, given the ability of the protein to homo-oligomerize. Components of the MxA protein defined by the proteins of sequence: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, and SEQUENCE:13 are envisioned as possible inhibitors of virus-host interaction, virus infection, and virus replication. The discussion below pertains to administration of any of the foregoing proteins or polypeptides.


The polypeptides of the present invention, including those encoded by mutant or wild-type MxA, may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture) of a polynucleotide sequence of the present invention. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated with mammalian or other eukaryotic carbohydrates or may be non-glycosylated. The polypeptides of the current invention may also be myristylated or have other post-translational modifications. Polypeptides of the invention may also include an initial methionine amino acid residue (at position minus 1) which may be formulated to contain a Kozak consensus sequence. Furthermore, the nucleic acid sequences of the polypeptides can be engineered to contain poly-histidine poly-amino acid sequences for ease of purification or cell penetrating peptide or protein transduction domains to facilitate cell entry. Embodiments of protein transduction domains include but are not limited to poly-arginine and the HIV TAT protein transduction domains. The cell transduction properties of basic, positively charged proteins has been previously described and is well known to those skilled in the art (Ryser and Hancock, Science. 1965 Oct. 22; 150(695):501-3). The present invention is not limited to the cell transduction domain employed to facilitate cell entry. Polypeptides sequences can be engineered to contain hemagglutinin or a related sequence to facilitate endosomal escape. Inventive polypeptides can also be derivatized to contain bioconjugates that mediate pH controlled release of the polypeptide from the endosome.


The polypeptides of the present invention also include the protein sequences defined in SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, SEQUENCE:13, and derivatives thereof. The polypeptides of the present invention also include protein sequences that are greater than either 95%, 96%, 97%, 98%, or 99% similar in amino acid composition to any one of the group consisting of: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, and SEQUENCE:13. Standard methods for determining amino acid similarity of two proteins, such the BLAST algorithm (Tatusova and Madden, FEMS Microbiol Lett. 174:247-250, 1999), are known in the art. The polypeptides of the present invention also include any one of the group of: SEQUENCE:3, SEQUENCE:7, SEQUENCE:10, SEQUENCE:11, SEQUENCE:12, and SEQUENCE:13 modified by those amino acid mutations identified in non-human primates and as more fully described in Example 9 and its referenced figures.


In addition to naturally occurring allelic forms of the polypeptide(s), the present invention also embraces analogs and fragments thereof, which function similarly to the naturally occurring allelic forms. Thus, for example, one or more of the amino acid residues of the polypeptide may be replaced by conserved amino acid residues, as long as the function of the mutant or wild-type MxA protein is maintained.


The polypeptides may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as gene therapy. Thus, for example, cells may be transduced with a polynucleotide (DNA or RNA) encoding the polypeptides ex vivo with those transduced cells then being provided to a patient to be treated with the polypeptide. Such methods are well known in the art. For example, cells may be transduced by procedures known in the art by use of a retroviral particle containing RNA encoding the polypeptide of the present invention. Additional examples involve the use of lentivirus and adenovirus-derived vectors and genetically engineered stem cells.


Similarly, transduction of cells may be accomplished in vivo for expression of the polypeptide in vivo, for example, by procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptides of the present invention may be administered to a patient for transduction in vivo and expression of the polypeptides in vivo.


These and other methods for administering the polypeptides of the present invention by such methods should be apparent to those skilled in the art from the teachings of the present invention. For example, the expression vehicle for transducing cells may be other than a retrovirus, for example, an adenovirus which may be used to transduce cells in vivo after combination with a suitable delivery vehicle. Transduction of gene therapy vectors may also be accomplished by formulation into liposomes or a similar carrier. Conjugation to copolymers such as N-(2-hydroxypropyl)methacrylamide (HPMA) or polyethylene glycol (PEG) for the purposes of vector delivery or to improve the pharmacokinetics or pharmacodynamics of gene therapy reagents is also envisioned by the present invention. Peptide nucleic acids are also envisioned, including conjugation to cell penetrating peptides or protein transduction domains such as the HIV TAT protein transduction domain, or encapsulation in liposomes. As one skilled in the art will recognize, many such derivatizations are possible.


Furthermore, as is known in the art, both the polypeptides and gene therapy vectors of the present invention can be conjugated to polybasic polypeptide transduction domains to facilitate delivery to the target organ or target subcellular location. Such polybasic polypeptide transduction domains include but are not limited to the HIV transactivator of transcription (TAT) protein transduction domain, VP22, polyarginine, polylysine, penetratin, and others.


In the case where the polypeptides are prepared as a liquid formulation and administered by injection, preferably the solution is an isotonic salt solution containing 140 millimolar sodium chloride and 10 millimolar calcium at pH 7.4. The injection may be administered, for example, in a therapeutically effective amount, preferably in a dose of about 1 μg/kg body weight to about 5 mg/kg body weight daily, taking into account the routes of administration, health of the patient, etc.


The polypeptide(s) of the present invention may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the protein, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.


The polypeptide(s) of the present invention can also be modified by chemically linking the polypeptide to one or more moieties or conjugates to enhance the activity, cellular distribution, or cellular uptake of the polypeptide(s). Such moieties or conjugates include lipids such as cholesterol, cholic acid, thioether, aliphatic chains, phospholipids and their derivatives, polyamines, polyethylene glycol (PEG), palmityl moieties, and others as disclosed in, for example, U.S. Pat. Nos. 5,514,758, 5,565,552, 5,567,810, 5,574,142, 5,585,481, 5,587,371, 5,597,696 and 5,958,773.


The polypeptide(s) of the present invention may also be modified to target specific cell types for a particular disease indication, including but not limited to liver cells in the case of hepatitis C infection. As can be appreciated by those skilled in the art, suitable methods have been described that achieve the described targeting goals and include, without limitation, liposomal targeting, receptor-mediated endocytosis, and antibody-antigen binding. In one embodiment, the asiaglycoprotein receptor may be used to target liver cells by the addition of a galactose moiety to the polypeptide(s). In another embodiment, mannose moieties may be conjugated to the polypeptide(s) in order to target the mannose receptor found on macrophages and liver cells. The polypeptide(s) of the present invention may also be modified for cytosolic delivery by methods known to those skilled in the art, including, but not limited to, endosome escape mechanisms or protein transduction domain (PTD) systems. Known endosome escape systems include the use of ph-responsive polymeric carriers such as poly(propylacrylic acid). Known PTD systems range from natural peptides such as HIV-1 TAT or HSV-1 VP22, to synthetic peptide carriers. As one skilled in the art will recognize, multiple delivery and targeting methods may be combined. For example, the polypeptide(s) of the present invention may be targeted to liver cells by encapsulation within liposomes, such liposomes being conjugated to galactose for targeting to the asialoglycoprotein receptor.


The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptide of the present invention may be employed in conjunction with other therapeutic compounds.


When the MxA reference protein or variant proteins of the present invention are used as a pharmaceutical, they can be given to mammals, in a suitable vehicle. When the polypeptides of the present invention are used as a pharmaceutical as described above, they are given, for example, in therapeutically effective doses of about 10 μg/kg body weight to about 100 mg/kg body weight daily, taking into account the routes of administration, health of the patient, etc. The amount given is preferably adequate to achieve prevention or inhibition of infection by a virus, preferably an RNA virus, preferably a positive stand RNA virus, preferably a flavivirus, preferably HCV, thus replicating the natural resistance found in humans carrying a mutant MxA allele as disclosed herein. The composition may be further given to treat cancer or to prevent angiogenesis.


Inhibitor-based drug therapies that mimic the beneficial effects (i.e. resistance to infection) of at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10 are also envisioned, as discussed in detail below. These inhibitor-based therapies can take the form of chemical entities, peptides or proteins, antisense oligonucleotides, small interference RNAs, and antibodies.


The proteins, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal, monoclonal, chimeric, single chain, Fab fragments, or the product of a Fab expression library. Various procedures known in the art may be used for the production of polyclonal antibodies.


Antibodies generated against the polypeptide encoded by mutant or reference MxA of the present invention can be obtained by direct injection of the polypeptide into an animal or by administering the polypeptide to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies binding the whole native polypeptide. Moreover, a panel of such antibodies, specific to a large number of polypeptides, can be used to identify and differentiate such tissue.


For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-597), the trioma technique, the human B-cell hybridoma technique (Kozbor, et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Coe, et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96).


Techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.


The antibodies can be used in methods relating to the localization and activity of the protein sequences of the invention, e.g., for imaging these proteins, measuring levels thereof in appropriate physiological samples, and the like. Antibodies can also be used therapeutically to inhibit viral infection by inhibiting the interaction between the virus and MxA. As one skilled in the art will recognize, therapeutic antibodies can be humanized by a number of well known methods in order to reduce their inflammatory potential.


The present invention provides detectably labeled oligonucleotides for imaging MxA polynucleotides within a cell. Such oligonucleotides are useful for determining if gene amplification has occurred, and for assaying the expression levels in a cell or tissue using, for example, in situ hybridization as is known in the art.


Therapeutic Agents for Inhibition of MxA Function


The present invention also relates to antisense oligonucleotides designed to interfere with the normal function of MxA polynucleotides. Any modifications or variations of the antisense molecule which are known in the art to be broadly applicable to antisense technology are included within the scope of the invention. Such modifications include preparation of phosphorus-containing linkages as disclosed in U.S. Pat. Nos. 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361, 5,625,050 and 5,958,773.


The antisense compounds of the invention can include modified bases as disclosed in U.S. Pat. No. 5,958,773 and patents disclosed therein. The antisense oligonucleotides of the invention can also be modified by chemically linking the oligonucleotide to one or more moieties or conjugates to enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide. Such moieties or conjugates include lipids such as cholesterol, cholic acid, thioether, aliphatic chains, phospholipids, polyamines, polyethylene glycol (PEG), palmityl moieties, and others as disclosed in, for example, U.S. Pat. Nos. 5,514,758, 5,565,552, 5,567,810, 5,574,142, 5,585,481, 5,587,371, 5,597,696 and 5,958,773.


Chimeric antisense oligonucleotides are also within the scope of the invention, and can be prepared from the present inventive oligonucleotides using the methods described in, for example, U.S. Pat. Nos. 5,013,830, 5,149,797, 5,403,711, 5,491,133, 5,565,350, 5,652,355, 5,700,922 and 5,958,773.


Preferred antisense oligonucleotides can be selected by routine experimentation using, for example, assays described in the Examples. Although the inventors are not bound by a particular mechanism of action, it is believed that the antisense oligonucleotides achieve an inhibitory effect by binding to a complementary region of the target polynucleotide within the cell using Watson-Crick base pairing. Where the target polynucleotide is RNA, experimental evidence indicates that the RNA component of the hybrid is cleaved by RNase H (Giles et al., Nuc. Acids Res. 23:954-61, 1995; U.S. Pat. No. 6,001,653). Generally, a hybrid containing 10 base pairs is of sufficient length to serve as a substrate for RNase H. However, to achieve specificity of binding, it is preferable to use an antisense molecule of at least 17 nucleotides, as a sequence of this length is likely to be unique among human genes.


As disclosed in U.S. Pat. No. 5,998,383, incorporated herein by reference, the oligonucleotide is selected such that the sequence exhibits suitable energy related characteristics important for oligonucleotide duplex formation with their complementary templates, and shows a low potential for self-dimerization or self-complementation (Anazodo et al., Biochem. Biophys. Res. Commun. 229:305-09, 1996). The computer program OLIGO (Primer Analysis Software, Version 3.4), is used to determined antisense sequence melting temperature, free energy properties, and to estimate potential self-dimer formation and self-complimentarity properties. The program allows the determination of a qualitative estimation of these two parameters (potential self-dimer formation and self-complimentary) and provides an indication of “no potential” or “some potential” or “essentially complete potential.” Segments of MxA polynucleotides are generally selected that have estimates of no potential in these parameters. However, segments can be used that have “some potential” in one of the categories. A balance of the parameters is used in the selection.


In the antisense art, a certain degree of routine experimentation is required to select optimal antisense molecules for particular targets. To be effective, the antisense molecule preferably is targeted to an accessible, or exposed, portion of the target RNA molecule. Although in some cases information is available about the structure of target mRNA molecules, the current approach to inhibition using antisense is via experimentation. According to the invention, this experimentation can be performed routinely by transfecting cells with an antisense oligonucleotide using methods described in the Examples. mRNA levels in the cell can be measured routinely in treated and control cells by reverse transcription of the mRNA and assaying the cDNA levels. The biological effect can be determined routinely by measuring cell growth or viability as is known in the art.


Measuring the specificity of antisense activity by assaying and analyzing cDNA levels is an art-recognized method of validating antisense results. It has been suggested that RNA from treated and control cells should be reverse-transcribed and the resulting cDNA populations analyzed. (Branch, A. D., T.I.B.S. 23:45-50, 1998.) According to the present invention, cultures of cells are transfected with two different antisense oligonucleotides designed to target MxA. The levels of mRNA corresponding to MxA are measured in treated and control cells.


Additional inhibitors include ribozymes, proteins or polypeptides, antibodies or fragments thereof as well as small molecules. Each of these MxA inhibitors share the common feature in that they reduce the expression and/or biological activity of MxA or specifically inhibit the interaction of virus with MxA thereby preventing, attenuating or curing infection. In addition to the exemplary MxA inhibitors disclosed herein, alternative inhibitors may be obtained through routine experimentation utilizing methodology either specifically disclosed herein or as otherwise readily available to and within the expertise of the skilled artisan.


Ribozymes


MxA inhibitors may be ribozymes. A ribozyme is an RNA molecule that specifically cleaves RNA substrates, such as mRNA, resulting in specific inhibition or interference with cellular gene expression. As used herein, the term ribozymes includes RNA molecules that contain antisense sequences for specific recognition, and an RNA-cleaving enzymatic activity. The catalytic strand cleaves a specific site in a target RNA at greater than stoichiometric concentration.


A wide variety of ribozymes may be utilized within the context of the present invention, including for example, the hammerhead ribozyme (for example, as described by Forster and Symons, Cell 48:211-20, 1987; Haseloff and Gerlach, Nature 328:596-600, 1988; Walbot and Bruening, Nature 334:196, 1988; Haseloff and Gerlach, Nature 334:585, 1988); the hairpin ribozyme (for example, as described by Haseloff et al., U.S. Pat. No. 5,254,678, issued Oct. 19, 1993 and Hempel et al., European Patent Publication No. 0 360 257, published Mar. 26, 1990); and Tetrahymena ribosomal RNA-based ribozymes (see Cech et al., U.S. Pat. No. 4,987,071). Ribozymes of the present invention typically consist of RNA, but may also be composed of DNA, nucleic acid analogs (e.g., phosphorothioates), or chimerics thereof (e.g., DNA/RNA/RNA).


Ribozymes can be targeted to any RNA transcript and can catalytically cleave such transcripts (see, e.g., U.S. Pat. No. 5,272,262; U.S. Pat. No. 5,144,019; and U.S. Pat. Nos. 5,168,053, 5,180,818, 5,116,742 and 5,093,246 to Cech et al.). According to certain embodiments of the invention, any such MxA mRNA-specific ribozyme, or a nucleic acid encoding such a ribozyme, may be delivered to a host cell to effect inhibition of MxA gene expression. Ribozymes and the like may therefore be delivered to the host cells by DNA encoding the ribozyme linked to a eukaryotic promoter, such as a eukaryotic viral promoter, such that upon introduction into the nucleus, the ribozyme will be directly transcribed.


RNAi

The invention also provides for the introduction of RNA with partial or fully double-stranded character into the cell or into the extracellular environment. Inhibition is specific to the MxA expression in that a nucleotide sequence from a portion of the target MxA gene is chosen to produce inhibitory RNA. This process is (1) effective in producing inhibition of gene expression, and (2) specific to the targeted MxA gene. The procedure may provide partial or complete loss of function for the target MxA gene. A reduction or loss of gene expression in at least 99% of targeted cells has been shown using comparable techniques with other target genes. Lower doses of injected material and longer times after administration of dsRNA may result in inhibition in a smaller fraction of cells. Quantitation of gene expression in a cell may show similar amounts of inhibition at the level of accumulation of target mRNA or translation of target protein. Methods of preparing and using RNAi are generally disclosed in U.S. Pat. No. 6,506,559, incorporated herein by reference.


The RNA may comprise one or more strands of polymerized ribonucleotide; it may include modifications to either the phosphate-sugar backbone or the nucleoside. The double-stranded structure may be formed by a single self-complementary RNA strand or two complementary RNA strands. RNA duplex formation may be initiated either inside or outside the cell. The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses of double-stranded material may yield more effective inhibition. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition. RNA containing a nucleotide sequence identical to a portion of the MxA target gene is preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Thus, sequence identity may optimized by alignment algorithms known in the art and calculating the percent difference between the nucleotide sequences. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the target gene transcript.


RNA may be synthesized either in vivo or in vitro. Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For transcription from a transgene in vivo or an expression construct, a regulatory region may be used to transcribe the RNA strand (or strands).


For RNAi, the RNA may be directly introduced into the cell (i.e., intracellularly), or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing an organism in a solution containing RNA. Methods for oral introduction include direct mixing of RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express an RNA, then fed to the organism to be affected. Physical methods of introducing nucleic acids include injection directly into the cell or extracellular injection into the organism of an RNA solution.


The advantages of the method include the ease of introducing double-stranded RNA into cells, the low concentration of RNA which can be used, the stability of double-stranded RNA, and the effectiveness of the inhibition. As one skilled in the art will recognize, all of the above methods, RNAi, ribozyme, and antisense, can be designed to bind to and inhibit the expression of one specific allele of the MxA gene by virtue of discriminating one or more of the mutations at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of NT011512.10. Such an approach can be used to modulate the relative expression of one allele over the other, favoring expression of alleles of MxA that confer resistance to HCV infection.


Inhibition of gene expression refers to the absence (or observable decrease) in the level of protein and/or mRNA product from an MxA target gene. Specificity refers to the ability to inhibit the target gene without manifest effects on other genes of the cell. The consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, and fluorescence activated cell analysis (FACS). For RNA-mediated inhibition in a cell line or whole organism, gene expression is conveniently assayed by use of a reporter or drug resistance gene whose protein product is easily assayed. Such reporter genes include acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracyclin, tetracyclin.


Depending on the assay, quantitation of the amount of gene expression allows one to determine a degree of inhibition which is greater than 10%, 33%, 50%, 90%, 95% or 99% as compared to a cell not treated according to the present invention. Lower doses of injected material and longer times after administration of dsRNA may result in inhibition in a smaller fraction of cells (e.g., at least 10%, 20%, 50%, 75%, 90%, or 95% of targeted cells). Quantitation of MxA gene expression in a cell may show similar amounts of inhibition at the level of accumulation of MxA target mRNA or translation of MxA target protein. As an example, the efficiency of inhibition may be determined by assessing the amount of gene product in the cell: mRNA may be detected with a hybridization probe having a nucleotide sequence outside the region used for the inhibitory double-stranded RNA, or translated polypeptide may be detected with an antibody raised against the polypeptide sequence of that region.


The RNA may comprise one or more strands of polymerized ribonucleotide. It may include modifications to either the phosphate-sugar backbone or the nucleoside. For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms which is generated by dsRNA. Likewise, bases may be modified to block the activity of adenosine deaminase. RNA may be produced enzymatically or by partial/total organic synthesis, any modified ribonucleotide can be introduced by in vitro enzymatic or organic synthesis.


The double-stranded structure may be formed by a single self-complementary RNA strand or two complementary RNA strands. RNA duplex formation may be initiated either inside or outside the cell. The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies per cell) of double-stranded material may yield more effective inhibition; lower doses may also be useful for specific applications. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition.


RNA containing a nucleotide sequences identical to a portion of the MxA target gene are preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence may be effective for inhibition. Thus, sequence identity may be optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Greater than 90% sequence identity, or even 100% sequence identity, between the inhibitory RNA and the portion of the MxA target gene is preferred. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the MxA target gene transcript (e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. hybridization for 12-16 hours; followed by washing). The length of the identical nucleotide sequences may be at least 25, 50, 100, 200, 300 or 400 bases.


100% sequence identity between the RNA and the MxA target gene is not required to practice the present invention. Thus the methods have the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.


MxA RNA may be synthesized either in vivo or in vitro. Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For transcription from a transgene in vivo or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus. RNA may be chemically or enzymatically synthesized by manual or automated reactions. The RNA may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (see WO 97/32016; U.S. Pat. Nos. 5,593,874, 5,698,425, 5,712,135, 5,789,214, and 5,804,693; and the references cited therein). If synthesized chemically or by in vitro enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, the RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The RNA may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.


RNA may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, by subcutaneous, intramuscular, intravenous, or intraperitoneal injection, transdermally, or may be introduced by bathing an organism in a solution containing the RNA. Methods for oral introduction include direct mixing of the RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express the RNA, then fed to the organism to be affected. For example, the RNA may be sprayed onto a plant or a plant may be genetically engineered to express the RNA in an amount sufficient to kill some or all of a pathogen known to infect the plant. Physical methods of introducing nucleic acids, for example, injection directly into the cell or extracellular injection into the organism, may also be used. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the RNA may be introduced. A transgenic organism that expresses RNA from a recombinant construct may be produced by introducing the construct into a zygote, an embryonic stem cell, or another multipotent cell derived from the appropriate organism.


Physical methods of introducing nucleic acids include injection of a solution containing the RNA, bombardment by particles covered by the RNA, soaking the cell or organism in a solution of the RNA, or electroporation of cell membranes in the presence of the RNA. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of RNA encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus the RNA may be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, promote annealing of the duplex strands, stabilize the annealed strands, or other-wise increase inhibition of the target gene.


The present invention may be used alone or as a component of a kit having at least one of the reagents necessary to carry out the in vitro or in vivo introduction of RNA to test samples or subjects. Preferred components are the dsRNA and a vehicle that promotes introduction of the dsRNA. Such a kit may also include instructions to allow a user of the kit to practice the invention.


Suitable injection mixes are constructed so animals receive an average of 0.5×106 to 1.0×106 molecules of RNA. For comparisons of sense, antisense, and dsRNA activities, injections are compared with equal masses of RNA (i.e., dsRNA at half the molar concentration of the single strands). Numbers of molecules injected per adult are given as rough approximations based on concentration of RNA in the injected material (estimated from ethidium bromide staining) and injection volume (estimated from visible displacement at the site of injection). A variability of several-fold in injection volume between individual animals is possible.


Proteins and Polypeptides

In addition to the antisense molecules and ribozymes disclosed herein, MxA inhibitors of the present invention also include proteins or polypeptides that are effective in either reducing MxA gene expression or in decreasing one or more of MxA's biological activities, including but not limited to its ability to homo-oligomerize, form vesicular structures, remodel cellular lipids, bind and hydrolyze GTP, or bind viral proteins and structures. A variety of methods are readily available in the art by which the skilled artisan may, through routine experimentation, rapidly identify such MxA inhibitors. The present invention is not limited by the following exemplary methodologies.


Literature is available to the skilled artisan that describes methods for detecting and analyzing protein-protein interactions. Reviewed in Phizicky et al., Microbiological Reviews 59:94-123, 1995, incorporated herein by reference. Such methods include, but are not limited to physical methods such as, e.g., protein affinity chromatography, affinity blotting, immunoprecipitation and cross-linking as well as library-based methods such as, e.g., protein probing, phage display and two-hybrid screening. Other methods that may be employed to identify protein-protein interactions include genetic methods such as use of extragenic or second-site suppressors, synthetic lethal effects and unlinked noncomplementation. Exemplary methods are described in further detail below.


Inventive MxA inhibitors may be identified through biological screening assays that rely on the direct interaction between the MxA protein and/or the polypeptides of SEQUENCE: 3, 10, 11, 12, or 13 and a panel or library of potential inhibitor proteins. Biological screening methodologies, including the various “n-hybrid technologies,” are described in, for example, Vidal et al., Nucl. Acids Res. 27(4):919-29, 1999; Frederickson, R. M., Curr. Opin. Biotechnol. 9(1):90-96, 1998; Brachmann et al., Curr. Opin. Biotechnol. 8(5):561-68, 1997; and White, M. A., Proc. Natl. Acad. Sci. U.S.A. 93:10001-03, 1996, each of which is incorporated herein by reference.


The two-hybrid screening methodology may be employed to search new or existing target cDNA libraries for MxA binding proteins that have inhibitory properties. The two-hybrid system is a genetic method that detects protein-protein interactions by virtue of increases in transcription of reporter genes. The system relies on the fact that site-specific transcriptional activators have a DNA-binding domain and a transcriptional activation domain. The DNA-binding domain targets the activation domain to the specific genes to be expressed. Because of the modular nature of transcriptional activators, the DNA-binding domain may be severed covalently from the transcriptional activation domain without loss of activity of either domain. Furthermore, these two domains may be brought into juxtaposition by protein-protein contacts between two proteins unrelated to the transcriptional machinery. Thus, two hybrids are constructed to create a functional system. The first hybrid, i.e., the bait, consists of a transcriptional activator DNA-binding domain fused to a protein of interest. The second hybrid, the target, is created by the fusion of a transcriptional activation domain with a library of proteins or polypeptides. Interaction between the bait protein and a member of the target library results in the juxtaposition of the DNA-binding domain and the transcriptional activation domain and the consequent up-regulation of reporter gene expression.


A variety of two-hybrid based systems are available to the skilled artisan that most commonly employ either the yeast Gal4 or E. coli LexA DNA-binding domain (BD) and the yeast Gal4 or herpes simplex virus VP16 transcriptional activation domain. Chien et al., Proc. Natl. Acad. Sci. USA. 88:9578-82, 1991; Dalton et al., Cell 68:597-612, 1992; Durfee et al., Genes Dev. 7:555-69, 1993; Vojtek et al., Cell 74:205-14, 1993; and Zervos et al., Cell 72:223-32, 1993. Commonly used reporter genes include the E. coli lacZ gene as well as selectable yeast genes such as HIS3 and LEU2. Fields et al., Nature (London) 340:245-46, 1989, Durfee, T. K., supra; and Zervos, A. S., supra. A wide variety of activation domain libraries is readily available in the art such that the screening for interacting proteins may be performed through routine experimentation.


Suitable bait proteins for the identification of MxA interacting proteins may be designed based on proteins encoded by the MxA DNA sequence presented herein as SEQUENCE:1, and in a preferred embodiment, the polypeptides of SEQUENCE: 3, 10, 11, 12 or 13. Such bait proteins include either the full-length MxA protein or fragments thereof.


Plasmid vectors, such as, e.g., pBTM116 and pAS2-1, for preparing MxA bait constructs and target libraries are readily available to the artisan and may be obtained from such commercial sources as, e.g., Clontech (Palo Alto, Calif.), Invitrogen (Carlsbad, Calif.) and Stratagene (La Jolla, Calif.). These plasmid vectors permit the in-frame fusion of cDNAs with the DNA-binding domains as LexA or Gal4BD, respectively.


MxA inhibitors of the present invention may alternatively be identified through one of the physical or biochemical methods available in the art for detecting protein-protein interactions.


Through the protein affinity chromatography methodology, lead compounds to be tested as potential MxA inhibitors may be identified by virtue of their specific retention to MxA or polypeptide derivatives of MxA when either covalently or non-covalently coupled to a solid matrix such as, e.g., Sepharose beads. The preparation of protein affinity columns is described in, for example, Beeckmans et al., Eur. J. Biochem. 117:527-35, 1981, and Formosa et al., Methods Enzymol. 208:24-45, 1991. Cell lysates containing the full complement of cellular proteins may be passed through the MxA affinity column. Proteins having a high affinity for MxA will be specifically retained under low-salt conditions while the majority of cellular proteins will pass through the column. Such high affinity proteins may be eluted from the immobilized MxA under conditions of high-salt, with chaotropic solvents or with sodium dodecyl sulfate (SDS). In some embodiments, it may be preferred to radiolabel the cells prior to preparing the lysate as an aid in identifying the MxA specific binding proteins. Methods for radiolabeling mammalian cells are well known in the art and are provided, e.g., in Sopta et al., J. Biol. Chem. 260:10353-60, 1985.


Suitable MxA proteins for affinity chromatography may be fused to a protein or polypeptide to permit rapid purification on an appropriate affinity resin. For example, the MxA cDNA may be fused to the coding region for glutathione S-transferase (GST) which facilitates the adsorption of fusion proteins to glutathione-agarose columns. Smith et al., Gene 67:31-40, 1988. Alternatively, fusion proteins may include protein A, which can be purified on columns bearing immunoglobulin G; oligohistidine-containing peptides, which can be purified on columns bearing Ni2+; the maltose-binding protein, which can be purified on resins containing amylose; and dihydrofolate reductase, which can be purified on methotrexate columns. One exemplary tag suitable for the preparation of MxA fusion proteins that is presented herein is the epitope for the influenza virus hemagglutinin (HA) against which monoclonal antibodies are readily available and from which antibodies an affinity column may be prepared.


Proteins that are specifically retained on a MxA affinity column may be identified after subjecting to SDS polyacrylamide gel electrophoresis (SDS-PAGE). Thus, where cells are radiolabeled prior to the preparation of cell lysates and passage through the MxA affinity column, proteins having high affinity for MxA may be detected by autoradiography. The identity of MxA specific binding proteins may be determined by protein sequencing techniques that are readily available to the skilled artisan, such as Mathews, C. K. et al., Biochemistry, The Benjamin/Cummings Publishing Company, Inc., 1990, pp. 166-70. As one skilled in the art will recognize, numerous techniques of protein identification exist including various forms of mass spectroscopic analysis.


Small Molecules

The present invention also provides small molecule MxA inhibitors that may be readily identified through routine application of high-throughput screening (HTS) methodologies. Reviewed by Persidis, A., Nature Biotechnology 16:488-89, 1998. HTS methods generally refer to those technologies that permit the rapid assaying of lead compounds, such as small molecules, for therapeutic potential. HTS methodology employs robotic handling of test materials, detection of positive signals and interpretation of data. Such methodologies include, e.g., robotic screening technology using soluble molecules as well as cell-based systems such as the two-hybrid system described in detail above.


A variety of cell line-based HTS methods are available that benefit from their ease of manipulation and clinical relevance of interactions that occur within a cellular context as opposed to in solution. Lead compounds may be identified via incorporation of radioactivity or through optical assays that rely on absorbance, fluorescence or luminescence as read-outs. See, e.g., Gonzalez et al., Cur. Opin. Biotechnol. 9(6):624-31, 1998, incorporated herein by reference.


HTS methodology may be employed, e.g., to screen for lead compounds that block one of MxA's biological activities or that simply bind with high affinity to MxA or specific regions of the MxA protein. By this method, MxA protein may be immunoprecipitated or otherwise purified from cells expressing the protein and applied to wells on an assay plate suitable for robotic screening. MxA or fragments thereof may also be expressed and purified using recombinant DNA technologies. Individual test compounds may then be contacted with the immunoprecipitated or purified protein and the effect of each test compound on MxA measured.


Methods for Assessing the Efficacy of MxA Inhibitors


Lead molecules or compounds, whether antisense molecules or ribozymes, proteins and/or peptides, antibodies and/or antibody fragments, small molecules, or derivatives of native MxA ligand proteins that are identified either by one of the methods described herein or via techniques that are otherwise available in the art, may be further characterized in a variety of in vitro, ex vivo and in vivo animal model assay systems for their ability to inhibit MxA gene expression or biological activity. As discussed in further detail in the Examples provided below, MxA inhibitors of the present invention are effective in reducing MxA expression levels. Thus, the present invention further discloses methods that permit the skilled artisan to assess the effect of candidate inhibitors.


In other preferred embodiments, MxA inhibitors are assessed for their ability to inhibit binding of HCV, HCV proteins, or the natural MxA ligands to MxA. As one skilled in the art will recognize, a variety of cell based and cell free methods can be used to assess the ability of inhibitors to bind to and inhibit the biological functions of MxA.


Candidate MxA inhibitors may be tested by administration to cells that either express endogenous MxA or that are made to express MxA by transfection of a mammalian cell with a recombinant MxA plasmid construct.


The effectiveness of a given candidate antisense molecule or inhibitor may be assessed by comparison with a control “antisense” molecule or inhibitor known to have no substantial effect on MxA expression or function when administered to a mammalian cell.


MxA inhibitors effective in reducing MxA gene expression or function by one or more of the methods discussed above may be further characterized in vitro for efficacy in one of the readily available established cell culture or primary cell culture model systems as described herein, in reference to use of Vero cells challenged by infection with a flavivirus, such as dengue virus.


Pharmaceutical Compositions

The antisense molecules and inhibitors of the present invention can be synthesized by any method known in the art, and final purity of the compositions is determined as is known in the art.


Therefore, pharmaceutical compositions and methods are provided for interfering with virus infection, preferably RNA virus infection, preferably positive strand RNA virus infection, preferably flavivirus, most preferably HCV infection, comprising contacting tissues or cells with one or more of the antisense or inhibitor compositions identified using the methods of the invention.


The invention provides pharmaceutical compositions of antisense oligonucleotides and ribozymes complementary to the MxA mRNA gene sequence as active ingredients for therapeutic application. These compositions can also be used in the method of the present invention. When required, the compounds are nuclease resistant. In general the pharmaceutical composition for inhibiting virus infection in a mammal includes an effective amount of at least one antisense oligonucleotide as described above needed for the practice of the invention, or a fragment thereof shown to have the same effect, and a pharmaceutically physiologically acceptable carrier or diluent.


The compositions (MxA inhibitors) can be administered orally, subcutaneously, transdermally, or parenterally including intravenous, intraarterial, intramuscular, intraperitoneally, and intranasal administration, as well as by intrathecal and infusion techniques as required. The pharmaceutically acceptable carriers, diluents, adjuvants and vehicles as well as implant carriers generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention. Cationic lipids may also be included in the composition to facilitate inhibitor uptake. Implants of the compounds are also useful. In general, the pharmaceutical compositions are sterile.


By bioactive (expressible) is meant that the antisense molecule or inhibitor is biologically active in the cell when delivered directly to the cell and/or, in the case of antisense molecules, is expressed by an appropriate promotor and active when delivered to the cell in a vector as described below. Nuclease resistance is provided by any method known in the art that does not substantially interfere with biological activity as described herein.


“Contacting the cell” refers to methods of exposing or delivering to a cell antisense oligonucleotides or inhibitors whether directly or by viral or non-viral vectors and where the antisense oligonucleotide or inhibitor is bioactive upon delivery. For the purposes of this discussion, inhibitor includes any of the various therapeutic compounds discussed in this application, including but not limited to, the MxA nucleic acid or protein and fragments thereof.


The nucleotide sequences of the present invention can be delivered either directly or with viral or non-viral vectors. When delivered directly the sequences are generally rendered nuclease resistant. Alternatively, the sequences can be incorporated into expression cassettes or constructs such that the sequence is expressed in the cell. Generally, the construct contains the proper regulatory sequence or promotor to allow the sequence to be expressed in the targeted cell.


Once the oligonucleotide sequences are ready for delivery they can be introduced into cells as is known in the art. Transfection, electroporation, fusion, liposomes, colloidal polymeric particles, protein transduction technologies, and viral vectors as well as other means known in the art may be used to deliver the oligonucleotide sequences to the cell. The method selected will depend at least on the cells to be treated and the location of the cells and will be known to those skilled in the art. Localization can be achieved by liposomes, having specific markers on the surface for directing the liposome, by having injection directly into the tissue containing the target cells (e.g. by injection into the portal vein), by having depot associated in spatial proximity with the target cells, specific receptor mediated uptake, viral vectors, or the like.


The present invention provides vectors comprising an expression control sequence operatively linked to the oligonucleotide sequences of the invention. The present invention further provides host cells, selected from suitable eukaryotic and prokaryotic cells, which are transformed with these vectors as necessary.


Vectors are known or can be constructed by those skilled in the art and should contain all expression elements necessary to achieve the desired transcription of the sequences. Other beneficial characteristics can also be contained within the vectors such as mechanisms for recovery of the oligonucleotides in a different form. Phagemids are a specific example of such beneficial vectors because they can be used either as plasmids or as bacteriophage vectors. Examples of other vectors include viruses such as bacteriophages, baculoviruses and retroviruses, DNA viruses, liposomes and other recombination vectors. The vectors can also contain elements for use in either prokaryotic or eukaryotic host systems. Vectors can be used to transform or genetically engineer stem cells for implant into an organism. One of ordinary skill in the art will know which host systems are compatible with a particular vector.


The vectors can be introduced into cells or tissues by any one of a variety of known methods within the art. Such methods can be found generally described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, New York, 1989, 1992; in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md., 1989; Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor, Mich., 1995; Vega et al., Gene Targeting, CRC Press, Ann Arbor, Mich., 1995; Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston, Mass., 1988; and Gilboa et al., BioTechniques 4:504-12, 1986, and include, for example, stable or transient transfection, lipofection, electroporation and infection with recombinant viral vectors.


Recombinant methods known in the art can also be used to achieve the antisense inhibition of a target nucleic acid. For example, vectors containing antisense nucleic acids can be employed to express an antisense message to reduce the expression of the target nucleic acid and therefore its activity.


The present invention also provides a method of evaluating if a compound inhibits transcription or translation of an MxA gene and thereby modulates (i.e., reduces) the ability of the cell to express MxA, comprising transfecting a cell with an expression vector comprising a nucleic acid sequence encoding MxA, the necessary elements for the transcription or translation of the nucleic acid; administering a test compound; and comparing the level of expression of the MxA with the level obtained with a control in the absence of the test compound.


Methods for Screening Antiviral Compounds


The present invention provides for screening methods to identify antiviral compounds for the treatment of virus infection, preferably RNA virus infection, preferable positive strand RNA virus infection, preferably flavivirus infection, most preferably HCV infection. The method provides for screening methods to identify antiviral compounds including but not limited to the following types: derivatives of natural MxA ligands, MxA polypeptide fragments, antibodies and antibody fragments, small molecules, polypeptides, and proteins.


The invention provides for methods that assess the ability of potential antiviral compounds to bind specifically and with high affinity to MxA or polypeptide fragments thereof.


As one skilled in the art will recognize, numerous such methods of compound screening are available and well known in the art. In one preferred embodiment fragments of the MxA protein (e.g. the polypeptides of SEQUENCE:10, 11, 12, or 13) are expressed in E. coli, yeast, baculovirus, or other recombinant protein expression system using vectors constructed from all or part of any one of the nucleic acid sequences of SEQUENCE:1 or 2. Recombinantly expressed and purified MxA polypeptides are immobilized on the surface of microtiter plates by any of a number of well known covalent or non-covalent methods. Test antiviral compounds are bound to the protein-coated surface, and the kinetics and thermodynamics of test compound binding measured using any of a number of well known methods in the art. Various techniques are used to measure both specific and non-specific test compound binding as one skilled in the art will recognize.


Test compounds that bind with high affinity and specificity to MxA are then evaluated for their antiviral properties. In preferred embodiments, the antiviral activity of test compounds are evaluated by their ability to reduce virus titers of a test virus, by reducing virus gene or protein expression during infection, by reducing virus genome nucleic acid levels, or simply by their ability to inhibit virus particle or protein binding to the cell surface or to purified MxA protein or polypeptide derivatives thereof. As one skilled in the art will recognize, there are numerous methods for assessing the antiviral activity of a test compound, which are dependent on the particular virus and cell culture system used. Methods of measuring antiviral activity include but are not limited to the measurement of: virus replication by Taqman or RT-PCR, virus gene expression by Northern blot, virus protein expression by Western blot, virus particle release into the overlying media, and the cytotoxic effects of virus infection using cytotoxicity assays (e.g. lactate dehydrogenase release) or metabolic assays (e.g. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion assay). The antiviral effect of test compounds are also measured in whole organisms using numerous metrics and methods available in the art including: virus induced organism death, organ virus titers, tissue histopathology, organ function studies, etc.


Preferred Embodiments

Utilizing methods described above and others known in the art, the present invention contemplates a screening method comprising treating, under amplification conditions, a sample of genomic DNA, isolated from a human, with a PCR primer pair for amplifying a region of human genomic DNA containing any of nucleotide (nt) positions 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of the MxA gene (MxA, Genbank accession no. NT011512.10, also shown as SEQUENCE:1 in FIG. 1). Amplification conditions include, in an amount effective for DNA synthesis, the presence of PCR buffer and a thermocycling temperature. The PCR product thus produced is assayed for the presence of a mutation at the relevant nucleotide position(s) (as further described by any one of the mutations of the present invention provided in FIG. 3). In one embodiment, the PCR product contains a continuous nucleotide sequence Amplicon bound by two PCR primers, PrimerA and PrimerB and containing at least one of the aforementioned mutations. In another embodiment, the Amplicon, PrimerA, and PrimerB as described above in Tables 1 and 2 are exemplary of the PCR products and corresponding primers.


In one preferred embodiment, the PCR product is assayed for the corresponding mutation by treating the amplification product, under hybridization conditions, with an oligonucleotide probe specific for the corresponding mutation, and detecting the formation of any hybridization product. Preferred oligonucleotide probes comprise a nucleotide sequence indicated in Table 3 below, wherein any of the nucleotide sequences enclosed in parentheses and separated by “/” may be used in the construction of the probe. Oligonucleotide hybridization to target nucleic acid is described in U.S. Pat. No. 4,530,901.










TABLE 3





Mutation ID
Probe


















Mutation:5589
AGGCAAGTGCTG(C/A)AGGTGCGGGGCC
(SEQUENCE:77)






Mutation:5590
TTTCGTTTCTGC(G/T)CCCGGAGCCGCC
(SEQUENCE:78)





Mutation:5591
AGGCCGCACTCC(A/C)GCACTGCGCAGG
(SEQUENCE:79)





Mutation:13648
CTTATAAAAAAA(-/A)GAAAAAACTAGA
(SEQUENCE:80)





Mutation:5594
CCATCTTAGCCA(T/G)TTCCTAGAACGT
(SEQUENCE:81)





Mutation:13647
GAGAGAACCCCC(-/C)TGACAACCCTGG
(SEQUENCE:82)





Mutation:5596
GGGGACATCACC(A/G)TGAACAACTAGT
(SEQUENCE:83)





Mutation:13594
AGGCCATGAAGA(A/T)TTCTCCATTTTT
(SEQUENCE:84)





Mutation:5597
AATACCACAGAC(A/G)GGGTGGCTTATA
(SEQUENCE:85)





Mutation:5598
TTTCTCACAGTT(C/G)TGGAGACTGGAA
(SEQUENCE:86)





Mutation:5599
CTGGAAGTCCAA(A/C)ATCAGGGTTTAG
(SEQUENCE:87)





Mutation:14433
CAGACACAGTGC(G/A)ATGTCCCCGCAT
(SEQUENCE:88)





Mutation:5600
AGTTTGAGAACC(A/G)TGGGCCTAAGGC
(SEQUENCE:89)





Mutation:14429
GATTGAGATTTC(G/A)GATGCTTCAGAG
(SEQUENCE:90)





Mutation:13904
TAATGTGGACAT(C/T)GCCACCACAGAG
(SEQUENCE:91)





Mutation:13994
GCCCGCCTGTGC(TCGGTGAGAATGGGGGAGCCCACCTGTGC/
(SEQUENCE:92)



TCGGTGAGAATGGGGGAGCCCGCCTGTGC/TCGATGAGAATGG



GGGAGCCCGCCTGTGCTCGGTGAGAATGGGGGAGCCCGCCTGT



GC)TCGGTGAGAATG





Mutation:5603
AGATGTGTGGAG((TG)9/(TG)12)CGTGTGTGTGTG
(SEQUENCE:93)





Mutation:8268
ACATTTCCATTA(T/C)TTTCTCTCCATT
(SEQUENCE:94)





Mutation:5607
ACTTCCTTCTTC(A/G)CTCCCCCAAGGC
(SEQUENCE:95)





Mutation:5608
CAAAGACATCTG(G/A)CCCGTAGCACTC
(SEQUENCE:96)





Mutation:5609
TCTTGACAGAAA(G/A)TTAATGCCTTTA
(SEQUENCE:97)





Mutation:5611
GGCTGCTACAAC(C/T)GAATACCTGAGA
(SEQUENCE:98)





Mutation:5612
TGGGTCATTTAT(A/G)AACAGTAGAAAC
(SEQUENCE:99)





Mutation:5613
AAATCAGTATCG(T/C)GGTAGAGAGCTG
(SEQUENCE:100)





Mutation:13595
ATTTCTAAAGAA(A/G)GGAAAGGTTCGA
(SEQUENCE:101)





Mutation:13644
CTGTTTCACTCA(C/T)GTTGGGTAACCT
(SEQUENCE:102)





Mutation:8269
ATACAGGGGTGC(A/G)TTGCAGAAGGTC
(SEQUENCE:103)





Mutation:5614
TGGGGCTTTCCA(G/A)TCCAGCTCGGCA
(SEQUENCE:104)





Mutation:13645
TTTTCTTCTGAA(C/T)GCCTCTCTCTTT
(SEQUENCE:105)





Mutation:5615
TTTAGTCTTGCT(C/T)TCTCTGTAGGTG
(SEQUENCE:106)





Mutation:13903
GTCATTGCCCTG(C/T)GAGGGTCTCCCT
(SEQUENCE:107)





Mutation:13649
AGTGTCCCCTCC (-/TCACAGTGTCCCCTCC/
(SEQUENCE:108)



TCACAGTGTCCCCTCCTCACAGTGTCCCCTCC)



ACCCTCCCGTGA





Mutation:13652
GTACGGCCAGCA(G/T)CTTCAGAAGGCC
(SEQUENCE:109)





Mutation:13646
CCGGTTAACCAC(A/G)CTCTGTCCAGCC
(SEQUENCE:110)





Mutation:8271
TGAGCTGGCGGG(AT/GA)TGAAGGATGCTG
(SEQUENCE:111)





Mutation:5668
AGCATGAGTGCC(G/A)TGTGTGTGCGTC
(SEQUENCE:112)





Mutation:13996
CGCCTGTGCTCG(G/A)TGAGAATGGGGG
(SEQUENCE:113)





Mutation:13921
ATGGGGGAGCCC(A/G)CCTGTGCTCGGT
(SEQUENCE:114)









The PCR admixture thus formed is subjected to a plurality of PCR thermocycles to produce MxA and mutant MxA gene amplification products. The amplification products are then treated, under hybridization conditions, with an oligonucleotide probe specific for each mutation. Any hybridization products are then detected.


The following examples are intended to illustrate but are not to be construed as limiting of the specification and claims in any way.


EXAMPLES
Example 1
Preparation and Preliminary Screening of Genomic DNA

This example relates to screening of DNA from two specific populations of patients, but is equally applicable to other patient groups in which repeated exposure to HCV is documented, wherein the exposure does not result in infection. The example also relates to screening patients who have been exposed to other flaviviruses as discussed above, wherein the exposure did not result in infection.


Here, two populations are studied: (1) a hemophiliac population, chosen with the criteria of moderate to severe hemophilia, and receipt of concentrated clotting factor before January, 1987; and (2) an intravenous drug user population, with a history of injection for over 10 years, and evidence of other risk behaviors such as sharing needles. The study involves exposed but HCV negative patients, and exposed and HCV positive patients.


High molecular weight DNA is extracted from the white blood cells from IV drug users, hemophiliac patients, and other populations at risk of hepatitis C infection, or infection by other flaviviruses. For the initial screening of genomic DNA, blood is collected after informed consent from the patients of the groups described above and anticoagulated with a mixture of 0.14M citric acid, 0.2M trisodium citrate, and 0.22M dextrose. The anticoagulated blood is centrifuged at 800×g for 15 minutes at room temperature and the platelet-rich plasma supernatant is discarded. The pelleted erythrocytes, mononuclear and polynuclear cells are resuspended and diluted with a volume equal to the starting blood volume with chilled 0.14M phosphate buffered saline (PBS), pH 7.4. The peripheral blood mononuclear cells are recovered from the diluted cell suspension by centrifugation on low endotoxin Ficoll-Hypaque (Sigma Chem. Corp. St. Louis, Mo.) at 400×g for 10 minutes at 18° C. (18° C.). The pelleted white blood cells are then resuspended and used for the source of high molecular weight DNA.


The high molecular weight DNA is purified from the isolated white blood cells using methods well known to one skilled in the art and described by Maniatis, et al., Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Sections 9.16-9.23, (1989) and U.S. Pat. No. 4,683,195.


Each sample of DNA is then examined for a mutation at the corresponding position of 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 with reference to the nucleotides positions of Genbank Accession No. NT011512.10, corresponding to the MxA gene (MxA, also provided as SEQUENCE:1 in FIG. 1). Said positions of mutation each represent mutations of the present invention as further described in FIG. 3.


Example 2
Mutations in MxA Gene Examined in Study of Resistance to HCV Infection

Using methods described in Example 1, a population of unrelated hemophiliac patients and intravenous drug users was studied by genotyping each subject at sites of mutation in MxA (as disclosed in any one of the mutations of the present invention further described in FIG. 3). In this study of resistance to HCV infection, the population was grouped into 44 cases that were hepatitis C negative despite extremely high risk of having been infected and 95 controls that were hepatitis C positive. There was a statistically significant association between resistance to HCV infection and one or more mutations of the present invention. Table 4 below shows examples of particular mutations that were significantly correlated with resistance to HCV infection.












TABLE 4







Control
Yates-corrected



Case Reference
Reference Allele
Chi-Square P


Mutation ID
Allele Frequency
Frequency
value







Mutation: 8269
94.3%
81.1%
0.007


Mutation: 13595
95.5%
83.7%
0.011


Mutation: 13644
96.6%
87.4%
0.028









Example 3
Preparation and Sequencing of cDNA

Total cellular RNA is purified from cultured lymphoblasts or fibroblasts from the patients having the hepatitis C resistance phenotype. The purification procedure is performed as described by Chomczynski, et al., Anal. Biochem., 162:156-159 (1987). Briefly, the cells are prepared as described in Example 1. The cells are then homogenized in 10 milliliters (ml) of a denaturing solution containing 4.0M guanidine thiocyanate, 0.1M Tris-HCl at pH 7.5, and 0.1M beta-mercaptoethanol to form a cell lysate. Sodium lauryl sarcosinate is then admixed to a final concentration of 0.5% to the cell lysate after which the admixture was centrifuged at 5000×g for 10 minutes at room temperature. The resultant supernatant containing the total RNA is layered onto a cushion of 5.7M cesium chloride and 0.01M EDTA at pH 7.5 and is pelleted by centrifugation. The resultant RNA pellet is dissolved in a solution of 10 mM Tris-HCl at pH 7.6 and 1 mM EDTA (TE) containing 0.1% sodium docecyl sulfate (SDS). After phenolchloroform extraction and ethanol precipitation, the purified total cellular RNA concentration is estimated by measuring the optical density at 260 nm.


Total RNA prepared above is used as a template for cDNA synthesis using reverse transcriptase for first strand synthesis and PCR with oligonucleotide primers designed so as to amplify the cDNA in two overlapping fragments designated the 5′ and the 3′ fragment. The oligonucleotides used in practicing this invention are synthesized on an Applied Biosystems 381A DNA Synthesizer following the manufacturer's instructions. PCR is conducted using methods known in the art. PCR amplification methods are described in detail in U.S. Pat. Nos. 4,683,192, 4,683,202, 4,800,159, and 4,965,188, and at least in several texts including PCR Technology: Principles and Applications for DNA Amplification, H. Erlich, ed., Stockton Press, New York (1989); and PCR Protocols: A Guide to Methods and Applications, Innis, et al., eds., Academic Press, San Diego, Calif. (1990) and primers as described in Table 1 herein.


The sequences determined directly from the PCR-amplified DNAs from the patients with and without HCV infection, are analyzed. The presence of a mutation in the MxA gene can be detected in patients who are seronegative for HCV despite repeated exposures to the virus.


Example 4
Antisense Inhibition of Target RNA
A. Preparation of Oligonucleotides for Transfection

A carrier molecule, comprising either a lipitoid or cholesteroid, is prepared for transfection by diluting to 0.5 mM in water, followed by sonication to produce a uniform solution, and filtration through a 0.45 μm PVDF membrane. The lipitoid or cholesteroid is then diluted into an appropriate volume of OptiMEM™ (Gibco/BRL) such that the final concentration would be approximately 1.5-2 nmol lipitoid per μg oligonucleotide.


Antisense and control oligonucleotides are prepared by first diluting to a working concentration of 100 μM in sterile Millipore water, then diluting to 2 μM (approximately 20 mg/mL) in OptiMEM™. The diluted oligonucleotides are then immediately added to the diluted lipitoid and mixed by pipetting up and down.


B. Transfection

Human PH5CH8 hepatocytes, which are susceptible to HCV infection and supportive of HCV replication, are used (Dansako et al., Virus Res. 97:17-30, 2003; Ikeda et al., Virus Res. 56:157-167, 1998; Noguchi and Hirohashi, In Vitro Cell Dev. Biol Anim. 32:135-137, 1996.) The cells are transfected by adding the oligonucleotide/lipitoid mixture, immediately after mixing, to a final concentration of 300 nM oligonucleotide. The cells are then incubated with the transfection mixture overnight at 37° C., 5% CO2 and the transfection mixture remains on the cells for 3-4 days.


C. Total RNA Extraction and Reverse Transcription

Total RNA is extracted from the transfected cells using the RNeasy™ kit (Qiagen Corporation, Chatsworth, Calif.), following protocols provided by the manufacturer. Following extraction, the RNA is reverse-transcribed for use as a PCR template. Generally 0.2-1 μg of total extracted RNA is placed into a sterile microfuge tube, and water is added to bring the total volume to 3 μL. 7 μL of a buffer/enzyme mixture is added to each tube. The buffer/enzyme mixture is prepared by mixing, in the order listed:


4 μL 25 mM MgCl2


2 μL 10× reaction buffer


8 μL 2.5 mM dNTPs


1 μL MuLV reverse transcriptase (50 u) (Applied Biosystems)


1 μL RNase inhibitor (20 u)


1 μL oligo dT (50 μmol)


The contents of the microfuge tube are mixed by pipetting up and down, and the reaction is incubated for 1 hour at 42° C.


D. PCR Amplification and Quantification of Target Sequences

Following reverse transcription, target genes are amplified using the Roche Light Cycler™ real-time PCR machine. 20 μL aliquots of PCR amplification mixture are prepared by mixing the following components in the order listed: 2 μL 10×PCR buffer II (containing 10 mM Tris pH 8.3 and 50 mM KCl, Perkin-Elmer, Norwalk, Conn.) 3 mM MgCl2, 140 μM each dNTP, 0.175 μmol of each MxA oligo, 1:50,000 dilution of SYBR® (Green, 0.25 mg/mL BSA, 1 unit Taq polymerase, and H20 to 20 μL. SYBR® Green (Molecular Probes, Eugene, Oreg.) is a dye that fluoresces when bound to double-stranded DNA, allowing the amount of PCR product produced in each reaction to be measured directly. 2 μL of completed reverse transcription reaction is added to each 20 μL aliquot of PCR amplification mixture, and amplification is carried out according to standard protocols.


Example 5
Treatment of Cells with MxA RNAi

Using the methods of Example 5, for antisense treatment, cells are treated with an oligonucleotide based on the MxA gene sequence (SEQUENCE:1). Two complementary ribonucleotide monomers with deoxy-TT extensions at the 3′ end are synthesized and annealed. Cells of the PH3CH8 hepatocyte cell line are treated with 50-200 nM RNAi with 1:3 L2 lipitoid. Cells are harvested on day 1, 2, 3 and 4, and analyzed for MxA protein by Western analysis, as described by Dansako et al., Virus Res. 97:17-30, 2003.


Example 6
Analysis of Resistant Haplotypes in Mx1

Using the methods described herein, a study of Caucasian injecting drug users and hemophiliacs was conducted on 30 cases and 65 controls to identify Mx1 haplotypes associated with resistance to HCV infection. Cases were persistently HCV-seronegative and cases were HCV seropositive as described elsewhere. In one study of eight mutations spanning Mx1 the haplotype pattern shown in Table 5 was particularly indicated as associated with resistance to HCV infection. In the table, for each mutation, the particular nucleotide composing the haplotype is provided. The haplotype is seen to impute resistance as demonstrated by the much higher percentage of cases compared to controls that possess the haplotype. This is but one example of Mx1 haplotype mapping. This and finer mapping across the gene are used to delineate regions (of the gene, RNA, or protein) of specific import in relation to infection resistance.











TABLE 5







Inferred




Haplotype
Mutation: ID


















Effect
5596
5598
8268
5608
5613
13644
13646
8271
% Cases
% Controls
P value





Resistance
G
C
T
G
T
C
A
A
20
5
0.0018









Example 7
Identification of Alternate Splice Forms of Mx1

As discussed above, sequence data from multiply-sampled, multi-tissue human clone libraries are analyzed to identify novel splice forms of Mx1. Four hundred six cDNA sequence entries from NCBI's dBEST that were clustered with Mx1 mRNAs by Unigene analysis (Wheeler, D. L., et al., Nucl Acids Res 31:28-33; 2003) were collected for processing. Each candidate cDNA was independently aligned with the genomic reference sequence for Mx1, SEQUENCE:1 using the Spidey algorithm (Wheelan, S., http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/index.html.) The resulting alignment was automatically analyzed to identify anomalous splicing patterns. Among those sequences that were identified and determined to be high quality evidence for alternative splicing were the following NCBI Accession numbers: AU121592.1, a mammary cDNA that skips exon 2; N41337.1, a placental cDNA that prematurely splices into intron 14 ahead of exon 15; AU122500.1, a mammary cDNA that splices early into exon 5; and BF399205.1, a leiomyosarcoma cDNA that splices from exon 1 to exon 10. Accordingly, three novel mRNA transcripts (SEQUENCE:4-6) and one novel polypeptide (SEQUENCE:7) were identified.


Example 8
Measurement of Antiviral Activity of Polypeptides

Potency of purified proteins of the present invention is demonstrated using a variety of cell culture antiviral assays. One exemplary embodiment of antiviral activity is the ability of the manufactured proteins to protect cultured cells from cytotoxicity induced by the murine encephalomyocarditis virus (EMCV, ATCC strain VR-129B). Human Huh7 hepatoma cells are seeded at a density of 1×104 cells/well in 96 well culture plates and incubated overnight in complete medium (DMEM containing 10% fetal bovine serum). The following morning, the media is replaced with complete medium containing appropriate quantities of protein (e.g. 0-10 μM) or equivalent amounts of protein dilution buffer. When desired, alpha-interferon is added at a concentration of 100 IU/ml. Cells are pretreated for 2-8 hours preceding viral infection. After pretreatment, an equal volume of medium containing dilutions of EMC virus in complete medium is added to the wells. In the experiments described herein, a range of 50-250 plaque forming units (pfu) is added per well. Viral infection is allowed to proceed overnight (approximately 18 hours), and the proportion of viable cells is calculated using any available cell viability or cytotoxicity reagents. The results described herein are obtained using a cell viability assay that measures conversion of a tetrazolium compound [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] to a colored formazan compound in viable cells. The conversion of MTS to formazan is detected in a 96-well plate reader at an absorbance of 492 nm. The resulting optical densities either are plotted directly to estimate cell viability or are normalized by control-treated samples to calculate a percentage of viable cells after treatment.


Other in vitro virus infection models include but are not limited to flaviviruses such as bovine diarrheal virus, West Nile Virus, and GBV-C virus, and other RNA viruses such as respiratory syncytial virus, and the HCV replicon systems (e.g. Blight, K. J., et al. 2002. J. Virology, 76:13001-13014). Any appropriate cultured cell competent for viral replication can be utilized in the antiviral assays.


Example 9
Utility of Non-Human Primate Mutations in MX1 Therapeutic Proteins

Mx1 genes from non-human primates (NHP) were sequenced using the methods of the present invention and compared with the respective human gene to identify NHP mutations. Exemplary amino acid modifications resulting from mutations identified in gorilla, bonobo, chimpanzee, and orangutan are depicted in alignment with the respective human sequence in FIG. 4. The foregoing NHP mutations are also useful for the diagnostic and therapeutic purposes of the present invention. Such mutations provide additional insight into evolution of each of the Mx1 genes and its proteins. Evolutionarily conserved amino acids suggest sites important, or critical, for protein function or enzymatic activity. Conversely, amino acid residues that have recently mutated, for example in humans only, or show a plurality of amino acid substitutions across primates, indicate sites less critical to function or enzymatic activity. The abundance of mutated sites within a particular motif of a particular Mx1 protein is correlated with the tolerance of that functional domain to modification. Such sites and motifs are optimized to improve protein function or specific activity. Similarly, mutations in genes and proteins with immune or viral defense functions like Mx1 are hypothesized to result from historical challenge by viral infection. Mutations in non-human primate Mx1 proteins are hypothesized to improve anti-viral efficacy on this basis and are opportunities for optimization of a human therapeutic Mx1 protein, respectively. The present invention is not limited by any evidence, or the lack thereof, for or against improved protein specific activity or anti-viral efficacy caused by the NHP mutations of the present invention, but rather all such non-human primate mutations represent opportunities for optimization of human Mx1 protein isoforms.


In an exemplary embodiment, the ancestral primate amino acid for a specific site within Mx1 is restored to a human therapeutic form of the corresponding Mx1 protein to optimize protein specific activity or anti-viral efficacy. In other embodiments, alternative amino acids identified in non-human primate Mx1s, but not necessarily ancestrally conserved, are substituted into their respective human therapeutic form of Mx1 in order to improve protein specific activity or anti-viral efficacy. FIG. 2 provides isoforms of Mx1. Modifications to these base protein isoforms in order to develop optimized therapeutic isoforms (or for other purposes of the present invention) is performed using at least one amino acid modification as provided in FIG. 5. Additional modifications are made as indicated in FIG. 2. Any of the foregoing modifications described in FIG. 5 are also applied in combination with other modifications of the present invention or to alternate therapeutic Mx1 isoforms envisioned by the present invention. Such derived primate-human recombinant proteins are useful for the diagnostic and therapeutic purposes of the present invention.


DNA and mRNA sequences that code for both the native primate proteins as well as such derived primate-human recombinant forms are also novel and have utility and are expressly envisioned by the present invention. Several examples of their utility are: as agents to detect their respective DNA or mRNA counterparts; in expression vectors used in the manufacture of therapeutic proteins; and in the detection of novel compounds that bind the respective mRNA.


The foregoing specification, including the specific embodiments and examples, is intended to be illustrative of the present invention and is not to be taken as limiting. Numerous other variations and modifications can be effected without departing from the true spirit and scope of the invention. All patents, patent publications, and non-patent publications cited are incorporated by reference herein.

Claims
  • 1. A human genetic screening method comprising assaying a nucleic acid sample isolated from a human for the presence of an MxA gene mutation at nucleotide position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of SEQ ID NO:1.
  • 2. An isolated protein encoded by a gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of SEQ ID NO:1.
  • 3. A diagnostic for detecting the mutant protein of claim 2, wherein said diagnostic is a polynucleotide.
  • 4. A diagnostic for measuring resistance to viral infection.
  • 5. The diagnostic of claim 4 wherein said viral infection is RNA virus infection.
  • 6. The diagnostic of claim 4 wherein said viral infection is flaviviral infection.
  • 7. The diagnostic of claim 4 wherein said viral infection is hepatitis C infection.
  • 8. The diagnostic of claim 4 wherein said diagnostic is an antibody.
  • 9. A therapeutic compound for preventing or inhibiting infection by a virus, wherein said therapeutic compound is a protein encoded by the MxA gene.
  • 10. The therapeutic compound of claim 9 wherein said viral infection is RNA virus infection.
  • 11. The therapeutic compound of claim 9 wherein said viral infection is flaviviral infection.
  • 12. The therapeutic compound of claim 9 wherein said viral infection is hepatitis C infection.
  • 13. A therapeutic compound for preventing or inhibiting infection by a virus, wherein the therapeutic compound is a protein encoded by an MxA gene having at least one mutation at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of SEQ ID NO:1.
  • 14. The therapeutic compound of claim 13 wherein said therapeutic compound is a polynucleotide encoding said protein.
  • 15. The therapeutic compound of claim 13 wherein said viral infection is RNA virus infection.
  • 16. The therapeutic compound of claim 13 wherein said viral infection is flaviviral infection.
  • 17. The therapeutic compound of claim 13 wherein said viral infection is hepatitis C infection.
  • 18. A therapeutic compound for preventing or inhibiting infection by a virus, wherein the therapeutic compound comprises any enzymatically active fragment of the protein encoded by the MxA gene. In a still further embodiment, the enzymatically active fragment may contain one or more of the mutations at position 28459900, 28459935, 28460043, 28461329, 28461383, 28461516, 28465728, 28469610, 28469885, 28469924, 28469943, 28470658, 28470743, 28470915, 28474761, 28474878-28474906, 28475805-28475822, 28479224, 28479452, 28479482, 28479800, 28479976, 28480002, 28482983, 28483135, 28486319, 28486531, 28486603, 28486722, 28486744, 28492213, 28492295, 28492399, 28492560, 28492771-28492772, 28492948, 28474881, or 28474899 of SEQUENCE 1. In a preferred embodiment, enzymatic activity is measured by GTP binding, GTP hydrolysis, homo-oligomerization, RNA binding, or virus polyprotein binding.
  • 19. The therapeutic compound of claim 18 wherein said viral infection is RNA virus infection.
  • 20. The therapeutic compound of claim 18 wherein said viral infection is flaviviral infection.
  • 21. The therapeutic compound of claim 18 wherein said viral infection is hepatitis C infection.
  • 22. A therapeutic compound for preventing or inhibiting infection by a virus, wherein the therapeutic compound is a protein of the sequence: SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12 or SEQ ID NO:13.
  • 23-32. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US06/33413 8/25/2006 WO 00 8/12/2008
Provisional Applications (1)
Number Date Country
60712692 Aug 2005 US