Embodiments of the disclosure relate to the field of cyber security. More specifically, embodiments of the disclosure relate to a system for detecting phishing attacks.
Phishing is a growing problem on the Internet. Phishing is the attempt to obtain sensitive information from targets by disguising requests as legitimate. A phishing attack can entail the transmission of an electronic communication, such as an email, to one or more recipients that purports to be from a known institution, such as a bank or credit card company, and seems to have a legitimate intention; however, the email is actually intended to deceive the recipient into sharing its sensitive information. Often the email draws the recipient to a counterfeit version of the institution's webpage designed to elicit the sensitive information, such as the recipient's username, password, etc.
For example, a malware author may transmit an email to a recipient purporting to be from a financial institution and asserting that a password change is required to maintain access to the recipient's account. The email includes a Uniform Resource Locator (URL) that directs the recipients to a counterfeit version of the institution's website requesting the recipient to enter sensitive information in a displayed form in order to change the recipient's password. Neither the email nor the URL are associated with the actual financial institution or its genuine website, although the email and the counterfeit website may have an official “look and feel” and imitate a genuine email and website of the institution. The phishing attack is completed when the recipient of the email enters and submits sensitive information to the website, which is then delivered to the malware author.
Current solutions for phishing detection include textual search and analysis of emails and image similarity analysis of the entirety of a displayed webpage. These solutions can be highly compute resource intensive and too often fail to detect phishing attacks. A new phishing detection technique is needed to more efficiently, efficaciously, and reliably detect phishing cyber-security attacks of this type.
Embodiments of this disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
A phishing attack detection technique is provided to enhance the detection of a cyber-attack initiated via an electronic message (e.g. email, Short Message Service “SMS”, etc.) with a displayable hyperlink, e.g., a Uniform Resource Locator (“URL”). The enhanced phishing detection technique is configured to: (i) receive an object such as a webpage indicated (referenced) by a URL extracted from an email, (ii) statically and/or dynamically analyze the object to determine whether the object exhibits features (e.g., existence of any displayable images such as a user form or other user input prompt contained in the object) that are of a suspicious nature in that they are associated with known phishing attacks, (iii) extract each of the images included in the suspicious object which may be associated with phishing attacks, and generate properties (e.g., image pixel height and width or aspect ratio) associated with each such image, (iv) correlate the extracted image properties with image properties of known phishing and/or known benign webpages to classify the object, and (v) generate and issue an alert to a network administrator to indicate a classification of the object as part of a phishing attack.
More specifically, the enhanced detection technique embodied in the phishing detection analysis system receives an object for processing to determine whether the object is part of a phishing attack. The received object may include the webpage content or reference the webpage with a URL. The webpage content associated with the URL (i.e. the source code and associated data) is retrieved (e.g., downloaded) directly or indirectly from a remote webserver indicated by the URL. The webpage content comprises source code, which can be, for example, static source code, e.g. HTML code of the downloaded webpage, and/or dynamic source code, that is, HTML code generated from JavaScript code and the like during run-time.
The phishing detection and analysis system (“PDAS”) employs static analysis to scan (inspect) the source code of the received webpage content to detect whether any input prompt (e.g., a form such as a “fill in the blank” displayable element or other data-submission element) are included in the code. The input prompt represents one or more features associated with a potential phishing page, and may be used to correlate with the features of known phishing websites. If there are no input prompts detected by the phishing detection and analysis system, the system does not perform further analysis as the page likely is not used to extract credentials or other sensitive information from the recipient of the webpage. If one or more input prompts are detected during this initial processing of the webpage, the phishing detection and analysis system proceeds to extract the images of the webpage and generate properties associated therewith to be used in classifying the image. The image extracted from the object may include a graphical representation of a subset of the displayed webpage, separately defined graphical representations included in the object, and/or a plurality of the graphical representations defined.
Additional features extracted by the PDAS and associated with the URL being analyzed may include one or more properties associated with each of the embedded images (e.g., a logo, virtual, displayable keyboards, background images, security images, etc.) extracted from the received webpage as well the URL itself. For instance, the PDAS may determine the height and width associated with an image, or in some embodiments, may extract the aspect ratio (i.e. a comparison of the height and width of the image). The PDAS may also generate a cryptographic hash using a cryptographic hashing function (e.g., MD5, SHA2, etc.) of each image which may be used to determine “identicalness” while a second, perceptual hash (sometimes referred to as “phash”), may be generated to be used to determine the similarity of the image to images associated with benign to phishing pages.
For each image associated with the object, a set of the image properties are generated for comparison with properties of known phishing and/or benign webpages. Each image of a webpage is analyzed separately and then each may be correlated separately with properties of known phishing and/or benign webpages, or, depending on the embodiment, the properties across a set of images extracted from the object may be so correlated. More specifically, in one embodiment, each property of an image is correlated with properties of known phishing images and assigned a score based on the correlation. The scores for the various properties are combined to produce an overall or composite score for the image (“image score”). If the image score exceeds a threshold, the image may be determined to be related to a phishing cyber-attack. The image score is a measure of “phishiness” of the image. For example, in this embodiment, if the perceptual hash of a single image on a webpage is associated with phishing while other properties of the image (e.g., the MD5 and aspect ratio) are not correlated with phishing, the entire image may be determined not be associated with a phishing cyber-attack, as reflected in the image score. Meanwhile, in another embodiment, if the perceptual hash similarity is determined to be above a threshold, irrespective of the correlation of the image's other properties with those of a phishing attack, the image may be determined to be associated with a phishing cyber-attack.
Once each image is processed by the PDAS to determine its correlation with known phishing cyber-attacks and thus associated with an image score, the PDAS determines the likelihood that the entire object (i.e., webpage) is related to a phishing attack by generating an object score. The object score can be computed by combining quantitatively the image scores for the images in the object. In some embodiments, a more complicated computation can be used based on a plurality of factors weighted by the image scores, where the factors may include the ratio of displayable image area to the entire displayable area of the webpage (object), and/or quantity of phishy images relative to the entire number of images in the webpage. If the resulting object score exceeds a threshold, the webpage is determined to be part of a phishing cyber-attack and an alert is issued.
The enhanced phishing cyber-attack detection technique described herein enhances the detection of phishing cyberattacks related to objects analyzed by the system using the images embedded in the object. By analyzing the features of the images associated with the object, the system may detect phishing attacks efficiently, limiting the need for increased compute resources and enabling broader protection.
I. Terminology
In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, the term “logic” may be representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, a controller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.
The term “process” may include an instance of a computer program (e.g., a collection of instructions, also referred to herein as an application). In one embodiment, the process may be comprised of one or more threads executing concurrently (e.g., each thread may be executing the same or a different instruction concurrently).
The term “processing” may include execution of a binary or script, or launching an application in which an object is processed, wherein launching should be interpreted as placing the application in an open state and, in some implementations, performing simulations of actions typical of human interactions with the application. For example, the application, an internet browsing application, may be processed such that the application is opened and actions such as “visiting” a website, downloading website pages, scrolling the website page, and activating a link from the website are performed.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be categorized or typed for purposes of analysis. During analysis, for example, the object may exhibit a set of expected and/or unexpected characteristics and, during processing, a set of expected and/or unexpected behaviors, which may evidence the presence of malware and/or potentially part of a cyber-attack. For example, an unexpected behavior of an object may include the generation of additional objects by an object being processed. In one embodiment, an object may include a binary file that may be executed within a virtual machine. Herein, the terms “binary file” and “binary” will be used interchangeably.
The term “feature” may be understood to refer, collectively, to the characteristics of an object detected during static analysis, behaviors manifested during dynamic analysis in response to the run-time processing of (e.g., executing) an object, and properties of the object generated during analysis. For example, characteristics may include metadata associated with the object, including, anomalous formatting or structuring associated with the object. Behaviors may include, but are not limited to, an activity such as creation of a displayable user interaction form and/or patterns of activity or inactivity. Properties are discussed at some length below.
The term “network device” may be construed as any intelligent electronic device with the capability of connecting to a network. Such a network may be a public network such as the internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to a network appliance, laptop, mobile phone, or server.
The term “phishing,” as described above, may be understood as the practice of inducing individuals to reveal personal or other sensitive information, such as passwords and credit card numbers, by imitating another, often trusted, party. Phishing cyber-attacks are typically disguised as legitimate requests from a trusted party, a “target,” which appears to be legitimate; however, the email is intended to deceive the recipient into sharing sensitive information. For example, an email requesting credential information may be sent to a recipient implying it is from a bank. In this example the recipient is subject to a phishing cyber-attack from the sender imitating the bank.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
II. Phishing Detection and Analysis System
Generally speaking, the phishing detection and analysis system (PDAS) 100 may be implemented as one or more network-connected electronic devices, where each includes physical hardware comprising hardware processor(s), network interface(s), a memory, and a system interconnect as shown in
The PDAS 100 receives objects for analysis via the communication interface 305 and determines if the received object is phishy (i.e. is a part of or otherwise associated with a phishing cyber-attack). In some embodiments, the PDAS may analyze the objects using a static analysis logic 105 configured to extract characteristics of the object and determine whether the object is phishy by scanning for known patterns or characteristics and/or representations of machine code identified as correlating with the features of phishing cyber-attacks. In some embodiments the PDAS may retrieve the object from a network-connected object store for analysis. For example, an email may contain a URL that references a webpage, which is retrieved by the PDAS 100 from the object store. The object store may contain pre-downloaded webpages frequently used in phishing attacks, or may be connected with a browser facility for downloading the webpages dynamically during analysis, e.g., in response to a request from the PDAS. If the static analysis logic determines the object is suspicious (definitively neither “benign” nor “malicious”), the static analysis logic may provide the suspicious object to a scheduler 130 of the dynamic analysis logic 110 for further analysis.
The static analysis logic 105 may comprise an indicator scanner 106 which receives features associated with each object and compares it with unique indicators. The unique indicators are each associated with a previously encountered object known to be “benign” or “phishing”. In some embodiments, the indicator scanner 106 may be configured with a whitelist (indicators determined to be benign) and a blacklist (indicators determined to be associated with phishing cyber-attacks). The indicator scanner 106 may effect a comparison by generating the unique indicator of the object from a hash of its machine code or other characteristics of the object and comparing the hash to the labelled hashes (e.g. of a set of known phishing or benign objects). In some embodiments, if the object is deemed suspicious and/or cannot be determined to be either benign or phishing, the static analysis logic may direct continued processing of the object by the parsing engine 107 of the static analysis logic 105.
The parsing engine 107 may process the received content and determine whether the content contains hallmarks associated with phishing cyber-attacks, for example, by prompting for user input. The parsing engine 107 may analyze the received content for textual cues associated with cyber-attacks (e.g. text displayed to the user requesting sensitive personal information such as credentials, etc.) In some embodiments the parsing engine 107 may also examine the received content to determine whether there are elements associated with user input (e.g. form elements for inputting “passwords”, etc.) and data submission (e.g. JavaScript code implementing form submission). The parsing engine 107 of the static analysis logic 105 processes the source code of the object using syntactic analysis. The parsing engine 107 processes the object and its source code to determine whether it contains characteristics of phishing cyber-attacks. For example, the parsing engine may receive the source code associated with an object, which may be received from linked websites (e.g. by Cascading Style Sheets referencing remote images for inclusion in the webpage) and using syntactic analysis identify the use of elements (e.g., particular HTML source code) intended to obtain user input. The identification of features associated with phishing cyber-attacks is an important preliminary indicator of a phishing cyber-attack. The parsing engine 107 may utilize heuristics to analyze the source code of the object and identify properties of interest. If characteristics associated with a phishing cyber-attack are identified by the parsing engine 107 of the static analysis logic 105 the parsing engine may extract further characteristics associated with portions of the object.
The parsing engine 107 may determine that objects are embedded and/or associated with the object (e.g. the image may reference a third party website) and for each image the parsing engine would generate a set of properties associated with the image. The set of properties for the image may comprise the dimensions of the object (e.g. height and width and/or the aspect ratio of the image), a cryptographic hash (e.g., an MD5, etc.) of the image generated by the parsing engine, and a perceptual hash (i.e. a fingerprint of the image derived from features of its content) of the image similarly generated by the parsing engine. In some embodiments the parsing engine may determine, from a semantic analysis of the source code, the target of the object phishing attack (i.e. the entity such as the above mentioned financial institution that is imitated). The set of images and their associated characteristics will be provided to the feature analyzer 160.
The dynamic analysis logic 110 of the phishing detection and analysis system (PDAS) 100, comprises at least one or more virtual machine(s) 120, a software profile store 125, a scheduler 130, and a feature extractor 150. Each virtual machine is configured with an operating system 121, one or more applications 122, and a monitoring logic 124 to intercept activities of the one or more applications during execution while processing of the object. In some embodiments the scheduler 130 is configured to receive an object, from the static analysis logic 105, to be scheduled for processing by the one or more virtual machines 120. The object may be provided to the system with metadata indicating the object has been identified by a prior analysis as suspicious. In other embodiments the scheduler 130 may be configured to process received objects based on the available processing resources of the PDAS 100.
The scheduler 130 is responsible for provisioning and instantiating a virtual machine 120 to execute the object at a schedule time. The scheduler 130 may receive suspicious objects from the malware detection system 105 for analysis in the virtual machine 120. The scheduler 130 may provision a virtual machine 120 with a software profile indicated by the type of object, e.g., an email requires an email application and a URL may require a web browser. In some embodiments, the scheduler may receive metadata associated with the object to be processed identifying a destination device to the scheduler 130. The scheduler may use network resources to identify a software profile similar to the destination device. The scheduler 130 may then provision one or more virtual machine(s) 120 with a software profile (operating system (OS) 121 and one or more applications 122) retrieved from the software profile store 125 and other components appropriate for execution of the object. A virtual machine is executable software that is configured to mimic the performance of a device (e.g., the destination device).
The scheduler 130 can configure the virtual machine to mimic the performance characteristics of a destination device that are pertinent for behavioral monitoring for malware detection. The virtual machine 120 can be provisioned from the store of software profiles 125. In one example, the scheduler 130 configures the characteristics of the virtual machine to mimic only those features (which include statically detected characteristics and dynamically monitored behaviors) that are affected by an object to be executed (opened, loaded, and/or executed) and analyzed. Such features can include ports that are to receive the network data, select device drivers that are to respond to the network data and any other devices that could be coupled to or contained within a device that can respond to the network data.
The store of software profiles 125 is configured to store virtual machine images. The store of software profiles 125 can be any storage capable of storing software. In one example, the store of software profiles 125 stores a single virtual machine image that can be configured by the scheduler 130 to mimic the performance of any destination device on the network. The store of software profiles 125 can store any number of distinct virtual machine images that can be configured to simulate the performance of any destination devices when processed in one or more virtual machine(s) 120.
The processing of an object may occur within one or more virtual machine(s) 120, which may be provisioned with one or more software profiles. The software profile may be configured in response to configuration information provided by the scheduler 130, information extracted from the metadata associated with the object, and/or a default analysis software profile. Each software profile may include an operating system 121 and/or software applications 122. The application 122 may receive an object directly (e.g. an HTML formatted email containing fields for entry of sensitive information, a URL of a webpage enabling a user to submit sensitive user information, etc.). In some embodiments the application 122 may comprise a browser and/or an email client.
Each of the one or more virtual machine(s) 120 may be configured with monitoring logic 124, as part of the software profile. The monitoring logic 124 is configured to observe, capture and report information regarding run-time behavior of an object under analysis during processing within the virtual machine. For example, an object processed by the virtual machine logic may display dynamically generated content, prompting data input by a user. The monitoring logic 124 may identify this dynamically generated content and provide information associated with the behavior to the feature extractor 150. The feature extractor 150 may determine based on the received behavioral information further data should be extracted and provided to the feature analyzer (i.e. if an object prompts for user input, the feature extractor may determine this may be indicative of a phishing cyber-attack and extract all images associated with the object for further analysis).
The monitoring logic 124 of the virtual machine(s) 120 processing the object may identify behaviors (i.e. “observed behaviors”) associated with the object. The observed behaviors are features of the object. Additionally, the effects on the virtual machine caused by the object's operation may be recorded as meta-information. During classification, features may be coupled with meta-information to classify the object processed, as part of a phishing cyber-attack.
The monitoring logic 124 may be embedded to monitor activities within the virtual machine 120 and/or otherwise integrated into the PDAS 100 to monitor operation of the one or more applications 122 of the virtual machine. In some cases, where the object is written in a scripting language or may generate a related object in a scripting language, the application 122 may comprise at least one interpreter to process the suspicious object script and/or an object script generated by processing an object by the application.
In some embodiments, the monitoring logic 124 intercepts behaviors during execution of the application 122 processing an object. The monitoring logic 124 is configured to determine when the user is prompted for data input during processing of an object. The monitoring logic may determine when a user is prompted for input based on syntactic analysis of the code being processed and/or experiential learning.
During processing in the one or more virtual machine(s) 120, monitoring logic 124 of the virtual machine are configured to identify behaviors associated with the phishing cyber-attacks (e.g. credential and/or other user input fields). Signaling from an application 122 may be monitored through intercept points (sometimes referred to as “hooks”) to certain software calls (e.g., Application Programming Interface “API” call, library, procedure, function, or system call). The operations of the application may be monitored an intercept point (herein sometimes referred to as “instrumentation”) in code closely operating with the application to detect a certain type of activity, which may include an activity prompting a particular software call. In some embodiments, the monitoring logic may be embodied as hooks or instrumentation associated with calls to an operating system 121 function. The observed behavior associated with the processing of the object information as well as effects on the virtual machine along with other related metadata may be provided to the feature analyzer 150 for further processing.
A feature analyzer 150 may receive the monitored and detected features from the one or more virtual machine(s) 120. The feature analyzer 150 is configured to detect anomalous activity (e.g., unexpected, abnormal, etc.) indicating that each image associated with the object should be extracted for provision to the feature analyzer 160. The received features are processed by the feature extractor 150 in combination with the data stored in the feature extractor. The feature extractor 150 may contain predefined definitions and/or rules that indicate features (i.e. behaviors) associated with phishing cyber-attacks. For example, during the processing of an object, a user input interface may be created to accept information, e.g., a username and password. The monitoring logic would generate an event in response to the user input interface creation and provide to the feature extractor 150. The feature extractor would consult a predefined set of rules which may indicate that the user input interface creation event may be associated with a phishing cyber-attack and, in response, the feature extractor would extract the images associated with the processing of the object in the virtual machine 120. The predefined definitions and/or rules may be continuously updated via software updates received via the cloud computing services (not shown) and/or via a network administrator.
The feature analyzer 160 receives the features object and images associated with the object, extracted during processing of the object by the static analysis logic 105 and the dynamic analysis logic 110. In some embodiments, the parsing engine 107 and the feature extractor 150 may generate a set of properties associated with each received image. In other embodiments, the images are received by the feature analyzer 160, combined on a per object basis and duplicates filtered out from further processing such that only images unique to the combined set have properties generated. For example, if the static analysis logic 105 extracts images “A” and “B” from a received object while the dynamic analysis logic extracts images “A”, “B”, and “C”, each would be provided to the feature analyzer, before properties are generated, and one sample of images “A” and “B” would be removed such that only one set of properties of “A”, “B” and “C” are generated. The set of images and associated generated properties are provided to the image classifier 170 for further analysis.
The image classifier 170 receives images from the feature analyzer 160. Each image is received with a set of associated generated properties which may include at least a hash of the image, a perceptual hash of the image contents and the dimensions, and/or aspect ratio) of the image. The image classifier may compare, using similarity analysis, the image phash with a set of known phishy phashes stored in a hash store 175. The hash store 175 may store cryptographic hashes and perceptual hashes associated with known benign and/or phishing attacks. During classification, the hashes contained within the hash store 175 may use various techniques (e.g., exact match, similarity analysis, etc.) to determine whether an image hash is associated with a known benign or phishing hash located in the store. The hash store may be a component of the PDAS 100 or located separately or even remotely, and connected to the PDAS 100 via a network connection. In some embodiments similarity analysis may be used to determine whether the image is correlated with a known phishy phash. The image will be determined to be phishy if the level of correlation of the image with known phishy images exceeds a threshold. In some embodiments the image score threshold may be static (e.g., pre-set by the manufacturer of the PDAS 100 or pre-configured by its custom)) or dynamic, varying in response to computer processor availability, information received via the communication interface 305 associated with the current frequency of attacks, and/or experiential learning associated with other factors. When the image classifier 170 determines an image is phishy in response to its correlation with known phishy images exceeding a threshold, the classification is added as a further property of the set of properties associated with the image. The procedure is repeated for each image received from the feature analyzer 160. When each image associated with the object is classified by the image classifier 170, the set of images and the associated generated properties are provided to the object classifier to determine whether the object is determined to represent a phishing cyber-attack.
The object classifier 180 receives from the image classifier 170 a set of images and associated generated properties related to the processing of the object. The object classifier 180 determines the phishiness (i.e. an object score) associated with the object based, at least in part, on the information provided by the image classifier 170. The object classifier 180 may determine an object score by further analyzing the image scores (level of correlation associated with each image) received in comparison to an object score threshold. The object score threshold (i.e. object score threshold) may be based on the total pixel area of images (when displayed) associated with the object determined to be phishy. In other embodiments, the object score threshold may be based on a ratio of phishy image area compared to non-phishy image areas. In still further embodiments, the object score threshold may be based on a ratio of the area of phishy images weighted by the associated image scores against the total area of images in the object. If the object score exceeds the object score threshold, the object classifier 180 determines the object to represent a phishing cyber-attack. When the object classifier 180 determines the phishiness of the object it provides the determination to the reporting engine 190 for alerting. In some embodiments the image classifier 170 and object classifier 180 may be functionally integrated into a single component.
The reporting engine 190 is adapted to receive information from the object classifier 180 and generate alerts that identify to a network administrator and/or an expert network analyst the likelihood of a phishing cyber-attack associated with the processed object. Other additional information regarding the phishing object may optionally be included in the alerts. For example, an alert may include information associated with the targeted recipient of the object and/or the “target” entity (e.g., financial institution) mimicked by the object.
Referring now to
In step 215, the PDAS 100 retrieves the webpage source code associated with the received URL if in step 210 the PDAS receives a URL as an object. In various embodiments the PDAS 100 may retrieve the content via the public network, by intercepting network traffic over the monitored network 102, or from a network object store of the monitored network. When the PDAS has retrieved the content associated with the object (in step 210 or step 215) it will be processed by the static analysis logic 105 and/or the dynamic analysis logic 110 of the PDAS 100. The dynamic analysis logic may receive the network traffic associated with the object content, received in steps 210 and/or 215, so as to be received and processed as network traffic by the virtual machine(s) 120.
In step 220, the static analysis logic 105 and dynamic analysis logic 110 of the PDAS 100 process the content of the object to determine whether the object contains features associated with user input. The static analysis logic 105, while processing the object with a parsing engine 107 may determine whether the object contains features associated with user input. The parsing engine 107 receives the object for analysis and parses the source code for features associated with phishing cyber-attacks (e.g., user input fields, data upload elements, etc.) A user input feature of the object may be determined to be associated with user input based on analysis of the associated labels and content of the object and/or experiential data of the parsing engine 107. Similarly, a static analysis of the object may, in some embodiments, occur in the dynamic analysis logic 110, for example, with respect to images not able to be analyzed prior to execution of the source code of the webpage.
The dynamic analysis logic 110, in step 220, may receive the object for processing to determine whether the object contains features associated with user input. The object will be provided to the scheduler 130 of the dynamic analysis logic 110 for prioritization in an analysis queue in at least one of the virtual machine(s) 120. The scheduler will determine a suitable software profile to be selected from a software profile store 125 and used by the virtual machine(s) 120 to process the object. During processing of the object in the virtual machine 120 the monitoring logic 124 may identify features associated with user input. For example, an object processed in the virtual machine may launch a browser (i.e. an application 122) and navigate the window to a webpage containing at least a user input field. The monitoring logic would identify the existence of the user input field and the analysis procedure would proceed to step 230.
If during step 220 the static analysis logic 105 and/or the dynamic analysis logic 110 identifies features associated with data input, each respective logic will continue processing the object in step 230. If no user input features are detected in step 220 the analysis procedure will proceed to step 260 and end. In step 230, each analysis logic would extract the images associated with the object for further analysis. The static analysis logic 105 would extract the images associated with the object with the parsing logic 107, while similarly, the dynamic analysis logic would extract images for further analysis using the monitoring logic 124 coordinating with the feature extractor 150. The feature extractor 150 and the parsing engine 107 would provide the extracted images to the feature analyzer 160 for further processing in step 235.
In step 235, the feature analyzer 160 receives each image associated with the object and generates a set of properties associated with each image of the object. The properties generated by the feature analyzer 160 are used to determine phishiness of the object. In some embodiments, properties generated from the image may include the height and width of the image, the MD5 associated with the image, and/or a perceptual hash (i.e. a phash). The feature analyzer associates each image, its properties and the object target (e.g., a financial institution known to be often used in phishing attacks) and provides the set of properties to the image classifier 170 in step 240.
The image classifier 170, in step 240, receives associated properties for each image of the object and analyzes each image separately. The image classifier 170 compares the MD5 of the image with a store of known phishy MD5s, such as a hash store 175. The store of phishy MD5s may be updated via the communication interface 305, creating or removing entries associated with phishy MD5s as the threat landscape changes. Phishy MD5s are cryptographic hashes of files associated with phishing cyber-attacks. A phishiness is determined by experiential learning. If an MD5 entry for the image is not identified in the image MD5 store of the image classifier, the image classifier will compare the image phash with a phishy phash store. The phishy phash store contains entries associated with known phishy image phashes. In some embodiments, the phishy phash store and the phishy MD5 store may reside in the same store (i.e. a database of entries containing both phishy phashes and MD5s), separate stores, integrated into indicator store 145. The comparison of the image phash with those in the phishy phash store may result in an exact match, identifying the image as a known phishy image. Similarly, if a similarity analysis of the image phash identifies a correlation with a known phishy image, the image will be assigned an image score associated with the level of similarity. If the similarity score does not exceed an image score threshold, the image will be determined to not be suspicious and processing will end. If the image score does exceed an image score threshold, the image classifier 170 will continue to process the object which may include determining if the aspect ratio (i.e. the ratio of the image width to the image height) is similar to images stored in the phishing image database. The image classifier continues the analysis process for each image associated with the object. When the image classifier 170 completes its analysis of each image associated with the object, identifying at least one suspicious and/or phishy image, the image classifier provides the determination of phishiness associated with each image (i.e. an image score) to the object classifier 180 in step 245.
In step 245 the object classifier 180 receives at least the image score associated with each image of the set of images to be used by the object classifier to generate a determination of phishiness of the object (i.e. an object score). The object is determined to be phishy when the object score of the set of images exceeds an object score threshold. In some embodiments the object score threshold may be related to a ratio of phishy image area (i.e. the product of the height and width of each image) to non-phishy image area. In other embodiments the object score threshold may be relate to a weighted average of the area and image score (i.e. the product of the image score and area of the phishy image) as a proportion of the total image area. The object score threshold may be static or dynamic, adjusting in response to updates via the communication interface 305 and/or network administrator input. If the object classifier does not determine the object is phishy, the procedure may proceed to step 260 and end. If the object classifier 180 determines the object is phishy, the determination is provided to the reporting engine 190 in step 250.
The process continues in step 250 wherein, the reporting engine 190 receives information from the object classifier 180 and generates alerts issued via the communication interface 305 that identify to an administrator (or an expert network analyst) the likelihood of a phishing cyber-attack originating from the object processed by the PDAS analysis logic. Additional information regarding the phishing object may optionally be included in the alerts. For example, additional reported information may contain, in part, the targeted domain (i.e. a website from which images of the object are similar, etc.). The targeted domain associated with the URL may indicate whether or not the webpage is genuine (i.e. if the targeted domain is consistent with the domain identified in the URL). The reporting engine 190 may also provide connected network security systems with updated information regarding phishing attacks and the associated MD5 for blocking the network traffic associated with the phishing objects. In some embodiments, if the object classifier 180 does not determine the object represents a phishing cyber-attack, the reporting engine 190 may alert a network administrator via an alert, while in alternative embodiments the reporting engine will not issue an alert. Once step 250 is complete, the generated phishing detection procedure concludes at step 260.
The processor(s) 310 is further coupled to a persistent storage 315 via a second transmission medium 313. According to one embodiment of the disclosure, the persistent storage 315 may include, an optional static analysis logic 105 comprising an indicator scanner 106 and/or a parsing engine 107, a dynamic analysis logic comprising one or more virtual machine(s) 120, a scheduler 130, a feature extractor 150, a feature analyzer 160, an image classifier 170, an object classifier 180, a reporting engine 190, as well as the communication interface logic 320. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 15/469,400 filed Mar. 24, 2017, now U.S. Pat. No. 10,904,286 issued Jan. 26, 2021, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Fso et al. | Jul 2000 | A |
6092194 | Fouboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Fouboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sørhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7840724 | Nishiyama | Nov 2010 | B2 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
3045094 | Feragawa | Oct 2011 | A1 |
8042184 | Batenin | Oct 2011 | B1 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8438642 | Feng et al. | May 2013 | B2 |
8448245 | Banerjee | May 2013 | B2 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9628805 | Smarda | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10163105 | Ziraknejad | Dec 2018 | B1 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
10904286 | Liu | Jan 2021 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Farbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020172421 | Kondo et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Mkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Fuvell et al. | Oct 2007 | A1 |
20070240219 | Fuvell et al. | Oct 2007 | A1 |
20070240220 | Fuvell et al. | Oct 2007 | A1 |
20070240222 | Fuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080212899 | Gokturk | Sep 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Proves et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20100313266 | Feng et al. | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupar et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150163242 | Laidlaw et al. | Jun 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150213251 | Turgeman | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20170099140 | Hoy et al. | Apr 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
Afroz et al., “PhishZoo: Detecting Phishing Websites by Looking at Them”, 2011 IEEE Fifth International Conference on Semantic Computing, Date of Conference: Sep. 18-21, 2011. |
U.S. Appl. No. 15/469,400, filed Mar. 24, 2017 Final Office Action dated Apr. 17, 2020. |
U.S. Appl. No. 15/469,400, filed Mar. 24, 2017 Final Office Action dated May 22, 2019. |
U.S. Appl. No. 15/469,400, filed Mar. 24, 2017 Non-Final Office Action dated Nov. 6, 2018. |
U.S. Appl. No. 15/469,400, filed Mar. 24, 2017 Non-Final Office Action dated Sep. 9, 2019. |
U.S. Appl. No. 15/469,400, filed Mar. 24, 2017 Notice of Allowance dated Oct. 8, 2020. |
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., “Cantina: a content-based approach to detecting phishing web sites”, WWW '07: Proceedings of the 16th International conference on World Wide Web, May (Year: 2007). |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.iso?reload-true&arnumber=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”) (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”. Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlaq Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W., et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard fora NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D., et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Number | Date | Country | |
---|---|---|---|
Parent | 15469400 | Mar 2017 | US |
Child | 17157968 | US |