Detection of road elements

Information

  • Patent Grant
  • 10789535
  • Patent Number
    10,789,535
  • Date Filed
    Thursday, October 31, 2019
    4 years ago
  • Date Issued
    Tuesday, September 29, 2020
    3 years ago
Abstract
A method for detecting road elements that may include (a) detecting predefined identifiers of road elements, in road related information sensed by vehicles; (b) detecting potential identifiers of road elements that differ from the predefined identifiers of road elements, by processing road related information that was acquired by the vehicles during relevant time windows that are related to the detecting of the predefined identifiers; (c) finding actual identifiers of road elements out of the potential identifiers; wherein the findings is based, at least in part, on road related information that was acquired by the vehicles outside the relevant time windows; and (d) updating a database with the actual identifiers.
Description
CROSS REFERENCE

This application claims priority from US provisional patent serial number 62/771,323, filing date Nov. 26, 2018.


BACKGROUND

Autonomous vehicle are required to detect road elements such as junctions, crossing and roundabouts.


Road elements may be detected based on a set of predefined characters such as the existence of traffic lights, specific road signs, zebra crossings.


It has been found that detection that is based on predefined characters may only detect some of the road elements—as these predefined characters do not appear in each road element. For example—only some roundabouts are preceded by appropriate road signs.


There is a goring need to detect road elements in an efficient manner.


SUMMARY

There are provided systems, method and computer readable mediums for detecting road elements.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings.



FIG. 1 illustrates an example of a vehicle and a remote computerized system;



FIG. 2 illustrates an example of a method;



FIG. 3 illustrates an example of a roundabout and its environment;



FIG. 4 illustrates an example of a roundabout and its environment;



FIG. 5 illustrates an example of a roundabout and its environment;



FIG. 6 illustrates an example of a roundabout and its environment;



FIG. 7 illustrates an example of an image of a roundabout and its environment;



FIG. 8 illustrates an example of a junction and its environment; and



FIG. 9 illustrates an example of timing diagrams.





DETAILED DESCRIPTION OF THE DRAWINGS

Any reference to a system should be applied, mutatis mutandis to a method that is executed by a system and/or to a non-transitory computer readable medium that stores instructions that once executed by the system will cause the system to execute the method.


Any reference to method should be applied, mutatis mutandis to a system that is configured to execute the method and/or to a non-transitory computer readable medium that stores instructions that once executed by the system will cause the system to execute the method.


Any reference to a non-transitory computer readable medium should be applied, mutatis mutandis to a method that is executed by a system and/or a system that is configured to execute the instructions stored in the non-transitory computer readable medium.


The term “and/or” is additionally or alternatively.


The following systems, method and computer readable mediums may use predefined identifiers as road element during an unsupervised process of learning actual identifiers of road elements. The unsupervised learning does not suffer from the limitations of the supervised learning (limited set of predefined identifier, dependency on predefined identifiers that may not exists in each instance of a road element), enhances the detection capabilities of road elements as it is not limited by the set of predefined identifiers, enables a reliable detection of road elements even when the predefined identifiers are not present (or not detected on the fly), may be based on a compact set of predefined identifiers, may be executed by remote computerized system and/or on vehicle mounted processors, may dynamically track changed in the road elements, may use a vast amount of road related information acquired from vehicle (that use relatively cheap sensors, may require a transmission of limited amount of road related information (for example—only acquired during relevant time windows), may be adjustable (selection of actual identifiers out of potential identifiers may be done using adjustable parameters).


Reference is now made to FIG. 1 which is a block diagram of a vehicle 100 that drives a long a road 20 and communicates with a remote computerized system 400.


Vehicle 100 includes an advanced driver-assistance system (ADAS) or autonomous driving system 200, constructed and implemented in accordance with embodiments described herein. For simplicity of explanation the following text will refer to system 200 or to autonomous driving system. Any reference to an autonomous driving system may be applied mutatis mutandis to a Advanced driver-assistance system.


Autonomous driving system 200 may include processing circuitry 210, input/output (I/O) module 220, camera 230, telemetry ECU 240, shock sensor 250, autonomous driving manager 260, and database 270.


Autonomous driving manager 260 may be instantiated in a suitable memory for storing software such as, for example, an optical storage medium, a magnetic storage medium, an electronic storage medium, and/or a combination thereof. It will be appreciated that autonomous driving system 200 may be implemented as an integrated component of an onboard computer system in a vehicle, such as, for example, vehicle 100 from FIG. 1.


Alternatively, system 200 may be implemented and a separate component in communication with the onboard computer system. It will also be appreciated that in the interests of clarity, while autonomous driving system 200 may comprise additional components and/or functionality e.g., for autonomous driving of vehicle 100, such additional components and/or functionality are not depicted in FIG. 1 and/or described herein.


Processing circuitry 210 may be operative to execute instructions stored in memory (not shown). For example, processing circuitry 210 may be operative to execute autonomous driving manager 260.


It will be appreciated that processing circuitry 210 may be implemented as a central processing unit (CPU), and/or one or more other integrated circuits such as application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), full-custom integrated circuits, etc., or a combination of such integrated circuits. It will similarly be appreciated that autonomous driving system 200 may include more than one instance of processing circuitry 210. For example, one such instance of processing circuitry 210 may be a special purpose processor operative to execute autonomous driving manager 260 to perform some, or all, of the functionality of autonomous driving system 200 as described herein.


I/O module 220 may be any suitable communications component such as a network interface card, universal serial bus (USB) port, disk reader, modem or transceiver that may be operative to use protocols such as are known in the art to communicate either directly, or indirectly, with other elements such as, for example, remote computerized system 400, camera 230, telemetry ECU 240, and/or shock sensor 250.


As such, I/O module 220 may be operative to use a wired or wireless connection to connect to remote computerized system 400 via a communications network such as a local area network, a backbone network and/or the Internet, etc. I/O module 220 may also be operative to use a wired or wireless connection to connect to other components of system 200, e.g., camera 230, telemetry ECU 240, and/or shock sensor 250. It will be appreciated that in operation I/O module 220 may be implemented as a multiplicity of modules, where different modules may be operative to use different communication technologies. For example, a module providing mobile network connectivity may be used to connect to remote computerized system 400, whereas a local area wired connection may be used to connect to camera 230, telemetry ECU 240, and/or shock sensor 250.


In accordance with embodiments described herein, camera 230, telemetry ECU 240, and shock sensor 250 represent implementations of sensors. It will be appreciated that camera 230, telemetry ECU 240, and/or shock sensor 250 may be implemented as integrated components of vehicle 100 and may provide other functionality that is the interests of clarity is not explicitly described herein. As described hereinbelow, system 200 may use information about a current driving environment as received from camera 230, telemetry ECU 240, and/or shock sensor 250 to determine to detect road elements such as but not limited to roundabouts, junctions and/or crossings.


Autonomous driving manager 260 may be an application implemented in hardware, firmware, or software that may be executed by processing circuitry 210 to provide driving instructions to vehicle 100.


For example, autonomous driving manager 260 may use images received from camera 230 and/or telemetry data received from telemetry ECU 240 to determine an appropriate driving policy for arriving at a given destination and provide driving instructions to vehicle 100 accordingly. It will be appreciated that autonomous driving manager 260 may also be operative to use other data sources when determining a driving policy, e.g., maps of potential routes, traffic congestion reports, etc.



FIG. 2 illustrates an example of a method 600 for detecting road elements.


Method 600 may start by step 610 of receiving or detecting predefined identifiers of road elements.


Step 610 may include applying a supervised learning process (for example by a neural network or any other machine learning process applied by a machine learning device) on road related information.


For example—images of predefined identifiers of road elements (such as junction traffic signs, roundabout traffic signs, crossing traffic signs, traffic lights, and the like) as well as indications of the content of these images (at least identifying the predefined identifiers) are fed to a neural network/machine learning device thereby training the neural network/machine learning device to identify the predefined identifiers.


Step 610 may include receiving the outcome of supervised learning process.


Step 610 may be followed by step 620 of receiving road related information sensed by vehicles. The road related information may include visual information (for example images acquired by one or more visual sensors of a vehicle), and/or audio information and/or non-visual and non-audio information sensed by the vehicle for example any telemetry information, force, speed, acceleration sensed by the vehicle, and the like.


Additionally or alternatively, at least some of the road related information may be detected by sensors located outside the vehicles—for example traffic monitoring cameras or other sensors.


Step 620 may be followed by step 630 of detecting predefined identifiers of road elements, in road related information sensed by vehicles.


Step 430 may be followed by step 640 of detecting potential identifiers of road elements that differ from the predefined identifiers of road elements.


Step 640 may include processing road related information that was acquired by the vehicles during relevant time windows related to timings of detection of the predefined identifiers by the multiple vehicles. For example assuming that a vehicle sensed a predefined identifier at point of time T1 then the vehicle may transmit and/or process road related information within a relevant time window that is related to T1 in the sense that there is a known timing relationship between T1 and the relevant time window. The relevant time window may or may not include T1. The term “sensed” may refer to any one of the acquisition of the predefined identifier by a sensor, to the determination (detection) that the predefined identifier was sensed, and the like. For example—an image sensor may acquire an image of a predefined identifier and the system may identify the predefined identifier in the image at another point of time.


It should be noted that different vehicle may define the same relevant time window in relation to the sensing of the same predefined identifier—but at least two vehicles may define different relevant time windows in relation to the sensing of the same predefined identifier. Differences may stem from differences in the sensing process, from different processing and/or transmission and/or memory resources, and the like.


The relevant time window may start before T1, may start at T1, may start after T1, may end at T1, may end after T1, and the like.


The length and/or any timing parameter of any relevant time window may fulfill at least one of the following

    • be fixed (for example 0.5, 1, 2, 10, 20, 30, 40, 60, 90, 120, 180 seconds or more).
    • change over time.
    • depend on the potential identifier.
    • depend on whether the predefined identifier is expected to preceded the road element.
    • depend on whether the predefined identifier is expected to follow the road element.
    • depend on resources (at least one communication, storage, processing) of the vehicle.
    • depend on resources (at least one communication, storage, processing) of the remote computerized system.
    • depend on the uniqueness and/or confidence level associated with the predefined identifier, and the like. For example a longer time window may be allocated to a predefined identifier that is unique to roundabouts and is detected by a highly reliable sensor. Shorter time window may be allocated to predefined identifiers that are detected by less reliable sensors and/or are detected at bad conditions (for example low visibility) and/or are less unique to the road element.


Step 640 may include searching for potentially relevant objects and/or potentially relevant events that appear in the relevant road related information. A relevant road related information was acquired during at least one relevant time windows.


A potentially relevant event may be a behavior of at least one object. For example—a behavior of the vehicle that senses the road related information, the behavior of one or more other vehicles, the behavior or one or more pedestrians, or a combination of at least two of said behaviors.


A potentially relevant object may be an object that appears in the relevant road related information.


Step 640 may be followed by step 650 of finding actual identifiers of road elements out of the potential identifiers. The findings is based, at least in part, on road related information that was acquired by the vehicles outside the relevant time windows.


The finding may include searching for actual identifiers that will identify (with a first certain probability) road elements of interest (such as roundabouts, crossings and junctions) but not identify (at a second certain probability) road segments that are not interesting.


The finding of the actual identifiers may aim to achieve a desired tradeoff between detection parameters such as false detection rate, positive detection rate, and the like.


Step 650 may include at least one out of:

    • Calculating one or more attributes related to the potentially relevant objects.
    • Calculating one or more attributes related to the potentially relevant events.
    • Calculating one or more attributes related to a group of at least one potentially relevant object and at least one potentially relevant event.
    • Determining whether a potential relevant object is an actual identifier based on the value of one or more attributes associated with the potential relevant object.
    • Determining whether a potential relevant event is an actual identifier based on the value of one or more attributes associated with the potential relevant event.
    • Determining whether a combination of potential relevant objects is an actual identifier based on the value of one or more attributes associated with the combination of potential relevant objects.
    • Determining whether a combination of potential relevant events is an actual identifier based on the value of one or more attributes associated with the combination of potential relevant events.
    • Determining whether a group of at least one potential relevant event and at least one potential relevant object is an actual identifier based on the value of one or more attributes associated with the group.
    • Determining whether a potential relevant object is an actual identifier based on the value of one or more attributes associated with the potential relevant object and one or more attributes related to one or more other potential relevant events and/or one or more attributes related to one or more other potential relevant objects.
    • Determining whether a potential relevant event is an actual identifier based on the value of one or more attributes associated with the potential relevant event and one or more attributes related to one or more other potential relevant events and/or one or more attributes related to one or more other potential relevant objects.
    • Determining whether a combination of potential relevant objects is an actual identifier based on the value of one or more attributes associated with the combination of potential relevant objects and one or more attributes related to one or more other potential relevant events and/or one or more attributes related to one or more other potential relevant objects.
    • Determining whether a combination of potential relevant events is an actual identifier based on the value of one or more attributes associated with the combination of potential relevant events and one or more attributes related to one or more other potential relevant events and/or one or more attributes related to one or more other potential relevant objects.
    • Determining whether a group of at least one potential relevant event and at least one potential relevant object is an actual identifier based on the value of one or more attributes associated with the group and one or more attributes related to one or more other potential relevant events and/or one or more attributes related to one or more other potential relevant objects.


An attribute may include, for example, at least one out of:

    • A number of appearances of at least one potentially relevant object within one or more relevant time windows.
    • A number of appearances of at least one potentially relevant object within one or more sub-sets of one or more relevant time windows.
    • A pattern of appearances of at least one potentially relevant object (for example a number of sequences of continuous appearances of at least one potentially relevant object) within one or more relevant time windows.
    • A pattern of appearances of at least one potentially relevant object within one or more sub-sets of one or more relevant time windows.
    • A number of concurrent appearances of multiple potentially relevant objects within one or more relevant time windows.
    • A number of concurrent appearances of multiple potentially relevant objects within one or more sub-sets of one or more relevant time windows.
    • A number non-concurrent appearances of multiple potentially relevant objects within one or more relevant time windows.
    • A number of non-concurrent appearances of multiple potentially relevant objects within one or more sub-sets of one or more relevant time windows.
    • A number of partially concurrent appearances of multiple potentially relevant objects within one or more relevant time windows. Partially concurrent means concurrent appearances (for example at a certain point in time Tx) of two of more potentially relevant objects and an appearance of yet other one or more potentially relevant objects at one or other points in time (that differs from Tx).
    • A number of partially concurrent appearances of multiple potentially relevant objects within one or more sub-sets of one or more relevant time windows.
    • A number of appearances of at least one potentially relevant event within one or more relevant time windows.
    • A number of appearances of at least one potentially relevant event within one or more sub-sets of one or more relevant time windows.
    • A pattern of appearances of at least one potentially relevant event (for example a number of sequences of continuous appearances of at least one potentially relevant event) within one or more relevant time windows.
    • A pattern of appearances of at least one potentially relevant event within one or more sub-sets of one or more relevant time windows.
    • A number of concurrent appearances of multiple potentially relevant events within one or more relevant time windows.
    • A number of concurrent appearances of multiple potentially relevant events within one or more sub-sets of one or more relevant time windows.
    • A number non-concurrent appearances of multiple potentially relevant events within one or more relevant time windows.
    • A number of non-concurrent appearances of multiple potentially relevant events within one or more sub-sets of one or more relevant time windows.
    • A number of partially concurrent appearances of multiple potentially relevant events within one or more relevant time windows.
    • A number of partially concurrent appearances of multiple potentially relevant event within one or more sub-sets of one or more relevant time windows.
    • A number of concurrent appearances of at least one potentially relevant object and at least one potentially relevant event within one or more relevant time windows.
    • A number of concurrent appearances of at least one potentially relevant object and at least one potentially relevant event within one or more sub-sets of one or more relevant time windows.
    • A number non-concurrent appearances of at least one potentially relevant object and at least one potentially relevant event within one or more relevant time windows.
    • A number of non-concurrent appearances of at least one potentially relevant object and at least one potentially relevant event within one or more sub-sets of one or more relevant time windows.
    • A number of partially concurrent appearances of at least one potentially relevant object and at least one potentially relevant event within one or more relevant time windows.
    • A number of partially concurrent appearances at least one potentially relevant object and at least one potentially relevant event within one or more sub-sets of one or more relevant time windows.


It should be noted that the attribute is not limited to numbers or patterns and other attributes may be calculated for example the attribute may be related to location, and/or popularity, and/or frequency, and/or correlation, and/or timing, and the like.


When there are multiple potentially relevant objects then the attribute may be calculated on all possible combinations of any two or more potentially relevant objects of the multiple potentially relevant objects, or on a part of all of the possible combinations.


When there are multiple potentially relevant events then the attribute may be calculated on all possible combinations of any two or more potentially relevant events of the multiple potentially relevant events, or on a part of all of the possible combinations.


When there is a group of at least one potentially relevant object and at least one potentially relevant event then the attribute may be calculated on all possible combinations of any two or more members of the group, or on a part of all of the possible combinations.


Additionally or alternatively, step 650 may include at least one out of

    • Calculating popularities of the potential identifiers within the relevant time windows.
    • Calculating popularities of the potential identifiers outside the relevant time windows.
    • Determining a uniqueness of the different combinations of potential identifiers based on the popularities of the different combinations of potential identifiers within and outside the relevant time windows.
    • Defining at least one combination of potential identifiers as an actual identifier based on a uniqueness of the at least one combination of potential identifiers.
    • Performing an unsupervised learning process.
    • Classifying the actual identifiers to (i) preceding actual identifiers that are detected before reaching the road elements, and (ii) following actual identifiers that are detected after reaching the road elements.


Step 650 may be followed by step 660 of responding to the finding. The responding may include at least one out of (a) transmitting to one or more vehicle the actual identifiers, (b) updating a database of road element identifiers, (c) validating at least one road element identifier, (d) controlling a driving operation of the vehicle based on the finding, and the like.


Step 660 may include updating a data structure of road element identifiers that initially stored the predefined identifiers of road elements, with the actual identifiers of road elements.


Method 600 may be executed by the remote computerized system. Alternatively, method 600 may be executed by system 200. Alternatively, method 200 may be executed in part by a vehicle and in part by the remote computerized system.



FIG. 3 illustrates a roundabout 520 that has three arms 511, 512 and 513, and a vehicle VH1501 that approaches the roundabout (from arm 511), drives within the roundabout and finally exits the roundabout and drives in arm 513. The driving pattern is denoted 501′.


The roundabout is preceded by a roundabout related traffic sign 571 that may be regarded as a predefined identifier of the roundabout.


The vehicle VH1 may acquire road related information while driving. The acquisition may occur regardless of the sensing of the predetermined identifier (the acquisition may be performed in a continuous or non-continuous manner).


The vehicle may first sense the predetermined identifier at an initial point of time—before reaching the roundabout.


The initial point in time may start a relevant time window—or may trigger (after a certain delay) the beginning of the relevant time window. It should be noted that once the predefined identifier is detected the time window may be defined to include points of time that precede the initial point of time.


During the relevant time window the vehicle may acquire road related information while the vehicle approaches the roundabout and/or while driving in the roundabout and/or exiting the roundabout and even at least a predefined period after exiting the roundabout.


The road related information may be processed to detect potential identifiers of the roundabout.


These potential identifiers may include at least out of first tree 531, first cross road 551, second cross road 552, third cross road 553, second tree 532, outer periphery 522 of the roundabout, any feature related to the inner circle of the roundabout such as inner circle border 521, a fountain 523 located at the center of the roundabout, at least a part of the driving pattern 501′ (stopping before reaching the roundabout, turning within the roundabout, exiting from the roundabout), or any combinations of said objects and/or behaviors (for example other cars turning, other cars slowing down, pedestrians wait and then cross). The relationships (spatial and/or timing relationships) between objects and/or events may also be taken into account-such as the distances between the cross roads and their relative orientations). Yet another example of a potential identifier may include tire skid marks at the roundabout—for example on the periphery of the inner circle of the roundabout.


Some of these potential identifiers (such as outer periphery 522 of the roundabout) may be deemed as actual identifiers while others (such as first tree 531 and second tree 532, asphalt sections that may appear in each image) may be rejected. The trees are not unique to roundabouts and may be found in road related information obtained outside the relevant time window.



FIG. 4 illustrates a roundabout 520 that has three arms 511, 512 and 512 and a vehicle VH1501 that approaches the roundabout (from arm 511), drives within the roundabout and finally exits the roundabout and drives in arm 513. The driving pattern is denoted 501′.


The roundabout is preceded by a roundabout related traffic sign 571 that may be regarded as a predefined identifier of the roundabout.


The potential identifiers may include at least out of first tree 531, second tree 532, forth tree 534, building 561, first pedestrian 541, second pedestrians 542, first cross road 551, second cross road 552, third cross road 553, outer periphery 522 of the roundabout, any feature related to the inner circle of the roundabout such as inner circle border 521, a third tree 533 (located at the center of the roundabout), at least a part of the driving pattern 501′ (stopping before reaching the roundabout, turning within the roundabout, exiting from the roundabout), or any combinations of said objects and/or behaviors. For example an potential identifier may be related to a behavior of one or more pedestrians out of first pedestrian 541 and second pedestrians 542.


The relationships (spatial and/or timing relationships) between objects and/or events may also be taken into account—such as the distances between the cross roads and their relative orientations).


Some of these potential identifiers (such as outer periphery 522 of the roundabout) may be deemed as actual identifiers while others (such as first tree 531 and second tree 532, forth tree 532, building 561, pedestrians, asphalt sections that may appear in each image) may be rejected. The trees are not unique to roundabouts and may be found in road related information obtained outside the relevant time window.



FIG. 4 illustrates that the vehicle acquires images—(a) N1 images I1(1)-I1(N1) 580(1)-580(N1) before reaching the roundabout, (b) (N2−N1) images I1(N1+1)-I1(N2) 580(N1+1)-580(N2) while driving in the roundabout, and (c) (N3−N2) images I1(N2+1)-I1(N3) 580(N2+1)-580(N3) after exiting the roundabout.


Images I1(1)-I1(N2) may be acquired during a relevant time window.


Images I1(1)-I1(N1) are acquired before entering the roundabout and may be used for predicting an arrival of the vehicle to the roundabout.


Images I1(1)-I1(N1) are acquired when driving in the roundabout and can be used to verify the prediction.



FIG. 5 illustrates a roundabout 520 that has three arms 511, 512 and 512 and a vehicle VH1501 that approaches the roundabout (from arm 511), drives within the roundabout and finally exits the roundabout and drives in arm 513. The driving pattern is denoted 501′.



FIG. 5 illustrates that the vehicle acquires sensed information—(a) N1 sensed information S1(1)-S1(N1) 581(1)-581(N1) before reaching the roundabout, (b) (N2−N1) sensed information S1(N1+1)-S1(N2) 581(N1+1)-581(N2) while driving in the roundabout, and (c) (N3−N2) sensed information S1(N2+1)-S1(N3) 581(N2+1)-581(N3) after exiting the roundabout.


Sensed information S1(1)-S1(N2) may be acquired during a relevant time window.


Sensed information S1(1)-S1(N1) are acquired before entering the roundabout and may be used for predicting an arrival of the vehicle to the roundabout.


Sensed information S1(1)-1(N1) are acquired when driving in the roundabout and can be used to verify the prediction.


The sensed information may be visual information, may be audio information, may be non-visual and non-audio information, or be combination of information of various types—for example a combination of audio and video, a combination of acceleration and/or speed and/or telemetry readings, and the like.



FIG. 6 illustrates a roundabout 520 that has three arms 511, 512 and 512 and a vehicle VH1501 that approaches the roundabout (from arm 511), drives within the roundabout and finally exits the roundabout and drives in arm 513. The driving pattern is denoted 501′.


The roundabout is not preceded by a roundabout related traffic sign 571 that may be regarded as a predefined identifier of the roundabout.


Despite the absence of the predefined identifier—the roundabout may be detected based on actual identifiers such as (a) outer periphery 522 of the roundabout, (b) any feature related to the inner circle of the roundabout such as inner circle border 521, (c) at least a part of the driving pattern 501′ (stopping before reaching the roundabout, turning within the roundabout, exiting from the roundabout), or any combinations of said objects and/or behaviors.



FIG. 7 illustrates an image acquired by a vehicle that entered a roundabout.


The image include a curved road 502 within the roundabout, an ring shaped zone 603 that surrounds the inner circle 604 of the roundabout, sand 608 and few bushes or plants 605 located in the inner circle 604, various trees 606 that surround the roundabout, a pavement 605 that surrounds the roundabout, and a vehicle 601 that is about to enter the roundabout.


Even at the absence of a roundabout related traffic sign the vehicle may detect the roundabout based on actual identifier such as the curved road 502 within the roundabout, the ring shaped zone 603 that surrounds the inner circle 604 of the roundabout, a driving pattern of the vehicle that acquired the image when entering the roundabout and/when turning in the roundabout, and the like.



FIG. 8 illustrates a T-junction 590 that has three arms 511, 512 and 512 and a vehicle VH1501 that approaches the junction (from arm 512), enters the junction and turns to the right- to arm 512, and drives in arm 513. The driving pattern is denoted 501′.


The junction is preceded by a junction related traffic sign 572 that may be regarded as a predefined identifier of the junction.


The vehicle VH1 may acquire road related information while driving.


The vehicle may first sense the predetermined identifier at an initial point of time—before reaching the j unction. The initial point in time may start a relevant time window—or may trigger (after a certain delay) the beginning of the relevant time window.


During the relevant time window the vehicle may acquire road related information while the vehicle approaches the junction and/or while driving in the junction and/or exiting the junction and even at least a predefined period after exiting the junction.


The road related information may be processed to detect potential identifiers of the junction.


These potential identifiers may include at least out of first tree 531, first cross road 551, second cross road 552, third cross road 553, third tree 533, edge 591 of the junction that faces arm 512, at least a part of the driving pattern 501′ (stopping before reaching the junction, turning within the junction, exiting from the junction), or any combinations of said objects and/or behaviors. The relationships (spatial and/or timing relationships) between objects and/or events may also be taken into account-such as the distances between the cross roads and their relative orientations).


Some of these potential identifiers (such as edge 591) may be deemed as actual identifiers while others (such as first tree 531 and third tree 533, asphalt sections that may appear in each image) may be rejected. The trees are not unique to junctions and may be found in road related information obtained outside the relevant time window.


Various predefined identifiers as well as actual identifiers may be used. Road related information



FIG. 9 illustrates examples of timing diagrams.


Event 661 represents a sensing of a predefined identifier by a vehicle. The sensing occurred at point of time T1. Various relevant time windows 671, 672 and 673 may be defined—all including T1. T2 represents an estimated moment of reaching the road element identified by the predefined identifier.


Event 662 represents a sensing of a predefined identifier by a vehicle. The sensing occurred at point of time T1. Various relevant time windows 674, 675 and 676 may be defined—all including T1. T2 represents an estimated moment of reaching the road element identified by the predefined identifier.


Event 661 is expected to occur before reaching the road element while event 662 is expected to occur after reaching the road element.


Any time window may be of any length, any timing relationships may exist from any time window and the sensing of the predefined event.


There may be provided a method for driving an autonomous vehicle, the method may include:

    • a. Sensing by a vehicle road related information that is indicative of predefined identifiers of road elements.
    • b. Transmitting the road related information to a computerized system such as remote computerized system located outside the vehicle and/or to a computer located in the vehicle.
    • c. Receiving actual identifiers of the road elements.
    • d. Sensing new (new—sensed after step C) road related information by the vehicle.
    • e. Searching in the new road related information for at least one of the actual identifiers.
    • f. Detecting a road element identified by at least one of the actual identifiers.
    • g. Performing a driving related operation based on the detection of the road element.


The terms “including”, “comprising”, “having”, “consisting” and “consisting essentially of” are used in an interchangeable manner. For example—any method may include at least the steps included in the figures and/or in the specification, only the steps included in the figures and/or the specification. The same applies to the system and the mobile computer.


It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.


In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.


Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.


Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality.


Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.


Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.


Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.


Also for example, the examples, or portions thereof, may implemented as soft or code representations of physical circuitry or of logical representations convertible into physical circuitry, such as in a hardware description language of any appropriate type.


Also, the invention is not limited to physical devices or units implemented in non-programmable hardware but can also be applied in programmable devices or units able to perform the desired device functions by operating in accordance with suitable program code, such as mainframes, minicomputers, servers, workstations, personal computers, notepads, personal digital assistants, electronic games, automotive and other embedded systems, cell phones and various other wireless devices, commonly denoted in this application as ‘computer systems’.


However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.


In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one as or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements the mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.


Any system, apparatus or device referred to this patent application includes at least one hardware component.


While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.


Any combination of any component of any component and/or unit of system that is illustrated in any of the figures and/or specification and/or the claims may be provided.


Any combination of any system illustrated in any of the figures and/or specification and/or the claims may be provided.


Any combination of any set of pool cleaning robots illustrated in any of the figures and/or specification and/or the claims may be provided.


Any combination of steps, operations and/or methods illustrated in any of the figures and/or specification and/or the claims may be provided.


Any combination of operations illustrated in any of the figures and/or specification and/or the claims may be provided.


Any combination of methods illustrated in any of the figures and/or specification and/or the claims may be provided.

Claims
  • 1. A method for detecting road elements, the method comprises: detecting predefined identifiers of road elements, in road related information sensed by vehicles;detecting potential identifiers of road elements that differ from the predefined identifiers of road elements, by processing road related information that was acquired by the vehicles during relevant time windows that are related to the detecting of the predefined identifiers;finding actual identifiers of road elements out of the potential identifiers; wherein the finding is based, at least in part, on road related information that was acquired by the vehicles outside the relevant time windows; andupdating a database with the actual identifiers.
  • 2. The method according to claim 1 wherein the finding of the actual identifiers is responsive to (a) popularities of the potential identifiers within the relevant time windows and (b) popularities of the potential identifiers outside the relevant time windows.
  • 3. The method according to claim 1 wherein the finding of the actual identifiers comprises (a) calculating popularities of different combinations of potential identifiers within the relevant time windows; (b) calculating popularities of the different combinations of potential identifiers outside the relevant time windows; (c) determining a uniqueness of the different combinations of potential identifiers based on the popularities of the different combinations of potential identifiers within and outside the relevant time windows, (d) and defining at least one combination of potential identifiers as an actual identifier based on a uniqueness of the at least one combination of potential identifiers.
  • 4. The method according to claim 1 comprising generating the predefined identifiers of road elements by performing a supervised learning process.
  • 5. The method according to claim 1 wherein the steps of (a) detecting of the potential identifiers, and (b) finding actual identifiers, are included in a unsupervised learning process.
  • 6. The method according to claim 1 wherein the actual identifiers identify corresponding road elements, wherein the method comprising classifying the actual identifiers to (i) preceding actual identifiers that appear in the road related information before predefined identifiers of their corresponding road elements, and (ii) following actual identifiers that appear in the road related information after the predefined identifiers of their corresponding road elements.
  • 7. The method according to claim 6 comprising predicting an arrival of a vehicle to a road element of a certain type based on at least one preceding actual identifier associated with the certain type of road element.
  • 8. The method according to claim 6 comprising verifying an arrival of a vehicle to a road element of a certain type based on at least one following actual identifier associated with the certain type of road element.
  • 9. The method according to claim 1 comprising updating a data structure of road element identifiers that initially stored the predefined identifiers of road elements, with the actual identifiers of road elements.
  • 10. The method according to claim 1 wherein at least one actual identifier is a visual actual identifier.
  • 11. The method according to claim 1 wherein at least one actual identifier is an audio actual identifier.
  • 12. The method according to claim 1 wherein at least one actual identifier is a non-visual and non-audio actual identifier.
  • 13. The method according to claim 1 wherein at least one actual identifier is an accelerometer.
  • 14. The method according to claim 1 wherein at least one actual identifier represents an object.
  • 15. The method according to claim 1 wherein at least one actual identifier represents a behavior of an object.
  • 16. The method according to claim 1 wherein each potential identifier comprises a label that identifies the potential identifier.
  • 17. The method according to claim 16, wherein the finding of the actual identifiers is responsive to (a) popularity of the label within the relevant time windows and (b) a popularity of the label outside the relevant time windows.
  • 18. The method according to claim 1 comprising transmitting, to one or more vehicles the actual identifiers.
  • 19. A method for detecting road elements, the method comprises: detecting predefined identifiers of road elements, in road related information sensed by at least one vehicle; detecting potential identifiers of road elements that differ from the predefined identifiers of road elements, by processing road related information that was acquired by the at least one vehicle during relevant time windows that are related to the detecting of the predefined identifiers; finding actual identifiers of road elements out of the potential identifiers; wherein the finding is based, at least in part, on road related information that was acquired by the at least one vehicle outside the relevant time windows; and updating a database with the actual identifiers.
  • 20. A non-transitory computer readable medium that stores instructions that once executed by a computerized system causes the computerized system to detect road elements, by: detecting predefined identifiers of road elements, in road related information sensed by vehicles;detecting potential identifiers of road elements that differ from the predefined identifiers of road elements, by processing road related information that was acquired by the vehicles during relevant time windows that are related to the detecting of the predefined identifiers;finding actual identifiers of road elements out of the potential identifiers; wherein the finding is based, at least in part, on road related information that was acquired by the vehicles outside the relevant time windows; andupdating a database with the actual identifiers.
  • 21. The non-transitory computer readable medium according to claim 20 wherein the finding of the actual identifiers is responsive to (a) popularities of the potential identifiers within the relevant time windows and (b) popularities of the potential identifiers outside the relevant time windows.
  • 22. The non-transitory computer readable medium according to claim 20 wherein the finding of the actual identifiers comprises (a) calculating popularities of different combinations of potential identifiers within the relevant time windows; (b) calculating popularities of the different combinations of potential identifiers outside the relevant time windows; (c) determining a uniqueness of the different combinations of potential identifiers based on the popularities of the different combinations of potential identifiers within and outside the relevant time windows, (d) and defining at least one combination of potential identifiers as an actual identifier based on a uniqueness of the at least one combination of potential identifiers.
  • 23. The non-transitory computer readable medium according to claim 20 that stores instructions for generating the predefined identifiers of road elements by performing a supervised learning process.
  • 24. The non-transitory computer readable medium according to claim 20 wherein the steps of (a) detecting of the potential identifiers, and (b) finding actual identifiers, are included in an unsupervised learning process.
  • 25. The non-transitory computer readable medium according to claim 20 wherein the actual identifiers identify corresponding road elements, wherein the non-transitory computer readable medium stores instructions for classifying the actual identifiers to (i) preceding actual identifiers that appear in the road related information before predefined identifiers of their corresponding road elements, and (ii) following actual identifiers that appear in the road related information after the predefined identifiers of their corresponding road elements.
  • 26. The non-transitory computer readable medium according to claim 25 that stores instructions for predicting an arrival of a vehicle to a road element of a certain type based on at least one preceding actual identifier associated with the certain type of road element.
  • 27. The non-transitory computer readable medium according to claim 25 that stores instructions for verifying an arrival of a vehicle to a road element of a certain type based on at least one following actual identifier associated with the certain type of road element.
  • 28. The non-transitory computer readable medium according to claim 20 that stores instructions for updating a data structure of road element identifiers that initially stored the predefined identifiers of road elements, with the actual identifiers of road elements.
  • 29. The non-transitory computer readable medium according to claim 20 wherein at least one actual identifier is a visual actual identifier.
US Referenced Citations (446)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5078501 Hekker et al. Jan 1992 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5412564 Ecer May 1995 A
5436653 Ellis et al. Jul 1995 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5754938 Herz et al. May 1998 A
5763069 Jordan Jun 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5835087 Herz et al. Nov 1998 A
5835901 Duvoisin et al. Nov 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5926812 Hilsenrath et al. Jul 1999 A
5978754 Kumano Nov 1999 A
5991306 Bums et al. Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6128651 Cezar Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6163510 Lee et al. Dec 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6314419 Faisal Nov 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6546405 Gupta et al. Apr 2003 B2
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6640015 Lafruit Oct 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6681032 Bortolussi et al. Jan 2004 B2
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6742094 Igari May 2004 B2
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6877134 Fuller et al. Apr 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6985172 Rigney et al. Jan 2006 B1
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7023979 Wu et al. Apr 2006 B1
7043473 Rassool et al. May 2006 B1
7158681 Persiantsev Jan 2007 B2
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7289643 Brunk et al. Oct 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302089 Smits Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340358 Yoneyama Mar 2008 B2
7346629 Kapur et al. Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7383179 Alves et al. Jun 2008 B2
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7529659 Wold May 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7801893 Gulli Sep 2010 B2
7805446 Potok et al. Sep 2010 B2
7860895 Scofield et al. Dec 2010 B1
7872669 Darrell et al. Jan 2011 B2
7921288 Hildebrand Apr 2011 B1
7933407 Keidar et al. Apr 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8266185 Raichelgauz et al. Sep 2012 B2
8275764 Jeon Sep 2012 B2
8285718 Ong et al. Oct 2012 B1
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8386400 Raichelgauz et al. Feb 2013 B2
8396876 Kennedy et al. Mar 2013 B2
8418206 Bryant et al. Apr 2013 B2
RE44225 Aviv May 2013 E
8442321 Chang et al. May 2013 B1
8457827 Ferguson et al. Jun 2013 B1
8495489 Everingham Jul 2013 B1
8527978 Sallam Sep 2013 B1
8634980 Urmson Jan 2014 B1
8635531 Graham et al. Jan 2014 B2
8655801 Raichelgauz et al. Feb 2014 B2
8655878 Kulkarni et al. Feb 2014 B1
8781152 Momeyer Jul 2014 B2
8782077 Rowley Jul 2014 B1
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8886648 Procopio et al. Nov 2014 B1
8954887 Tseng et al. Feb 2015 B1
8990199 Ramesh et al. Mar 2015 B1
9009086 Raichelgauz et al. Apr 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9298763 Zack Mar 2016 B1
9311308 Sankarasubramaniam et al. Apr 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9440647 Sucan Sep 2016 B1
9466068 Raichelgauz et al. Oct 2016 B2
9646006 Raichelgauz et al. May 2017 B2
9679062 Schillings et al. Jun 2017 B2
9734533 Givot Aug 2017 B1
9807442 Bhatia et al. Oct 2017 B2
9875445 Amer et al. Jan 2018 B2
9984369 Li et al. May 2018 B2
10133947 Yang Nov 2018 B2
10347122 Takenaka Jul 2019 B2
10491885 Hicks Nov 2019 B1
20010019633 Tenze et al. Sep 2001 A1
20010034219 Hewitt et al. Oct 2001 A1
20010038876 Anderson Nov 2001 A1
20020004743 Kutaragi et al. Jan 2002 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020042914 Walker et al. Apr 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020087828 Arimilli et al. Jul 2002 A1
20020091947 Nakamura Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020113812 Walker et al. Aug 2002 A1
20020126002 Patchell Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020163532 Thomas et al. Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020184505 Mihcak et al. Dec 2002 A1
20030004966 Bolle et al. Jan 2003 A1
20030005432 Ellis et al. Jan 2003 A1
20030037010 Schmelzer Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030093790 Logan et al. May 2003 A1
20030101150 Agnihotri et al. May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030110236 Yang et al. Jun 2003 A1
20030115191 Copperman et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030140257 Peterka et al. Jul 2003 A1
20030165269 Fedorovskaya et al. Sep 2003 A1
20030174859 Kim Sep 2003 A1
20030184598 Graham Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040059736 Willse Mar 2004 A1
20040091111 Levy May 2004 A1
20040095376 Graham et al. May 2004 A1
20040098671 Graham et al. May 2004 A1
20040111432 Adams et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040162820 James et al. Aug 2004 A1
20040230572 Omoigui Nov 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050080788 Murata Apr 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050163375 Grady Jul 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050193015 Logston Sep 2005 A1
20050226511 Short Oct 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060015580 Gabriel et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060033163 Chen Feb 2006 A1
20060050993 Stentiford Mar 2006 A1
20060069668 Braddy et al. Mar 2006 A1
20060080311 Potok et al. Apr 2006 A1
20060100987 Leurs May 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060120626 Perlmutter Jun 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060218191 Gopalakrishnan Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri et al. Oct 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060251338 Gokturk et al. Nov 2006 A1
20060251339 Gokturk Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein et al. Dec 2006 A1
20070022374 Huang et al. Jan 2007 A1
20070033170 Sull et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070136782 Ramaswamy et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070196013 Li Aug 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070298152 Baets Dec 2007 A1
20080049789 Vedantham et al. Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080079729 Brailovsky Apr 2008 A1
20080109433 Rose May 2008 A1
20080152231 Gokturk Jun 2008 A1
20080159622 Agnihotri et al. Jul 2008 A1
20080165861 Wen et al. Jul 2008 A1
20080166020 Kosaka Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080201361 Castro et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080247543 Mick et al. Oct 2008 A1
20080253737 Kimura et al. Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080270569 McBride Oct 2008 A1
20080294278 Borgeson Nov 2008 A1
20080307454 Ahanger et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090022472 Bronstein Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090034791 Doretto Feb 2009 A1
20090037088 Taguchi Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz Feb 2009 A1
20090080759 Bhaskar Mar 2009 A1
20090096634 Emam et al. Apr 2009 A1
20090125544 Brindley May 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090165031 Li et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090208106 Dunlop et al. Aug 2009 A1
20090208118 Csurka Aug 2009 A1
20090216761 Raichelgauz Aug 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090278934 Ecker Nov 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20090297048 Slotine et al. Dec 2009 A1
20100042646 Raichelqauz Feb 2010 A1
20100082684 Churchill Apr 2010 A1
20100104184 Bronstein et al. Apr 2010 A1
20100111408 Matsuhira May 2010 A1
20100125569 Nair et al. May 2010 A1
20100162405 Cook et al. Jun 2010 A1
20100191391 Zeng Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100212015 Jin et al. Aug 2010 A1
20100284604 Chrysanthakopoulos Nov 2010 A1
20100293057 Haveliwala et al. Nov 2010 A1
20100306193 Pereira Dec 2010 A1
20100312736 Kello Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100325138 Lee et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110029620 Bonforte Feb 2011 A1
20110035373 Berg et al. Feb 2011 A1
20110038545 Bober Feb 2011 A1
20110055585 Lee Mar 2011 A1
20110164180 Lee Jul 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110216209 Fredlund et al. Sep 2011 A1
20110218946 Stern et al. Sep 2011 A1
20110246566 Kashef Oct 2011 A1
20110276680 Rimon Nov 2011 A1
20110296315 Lin et al. Dec 2011 A1
20120131454 Shah May 2012 A1
20120133497 Sasaki May 2012 A1
20120136853 Kennedy et al. May 2012 A1
20120167133 Carroll et al. Jun 2012 A1
20120179642 Sweeney et al. Jul 2012 A1
20120179751 Ahn Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120207346 Kohli et al. Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120227074 Hill et al. Sep 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120265735 McMillan et al. Oct 2012 A1
20120294514 Saunders et al. Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130043990 Al-Jafar Feb 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski et al. Apr 2013 A1
20130103814 Carrasco Apr 2013 A1
20130151522 Aggarwal et al. Jun 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130212493 Krishnamurthy Aug 2013 A1
20130226820 Sedota, Jr. Aug 2013 A1
20130226930 Amgren et al. Aug 2013 A1
20130227023 Raichelgauz et al. Aug 2013 A1
20130283401 Pabla et al. Oct 2013 A1
20130346412 Raichelgauz et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140059443 Tabe Feb 2014 A1
20140095425 Sipple Apr 2014 A1
20140111647 Atsmon Apr 2014 A1
20140125703 Roveta et al. May 2014 A1
20140147829 Jerauld May 2014 A1
20140149918 Asokan et al. May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140156691 Conwell Jun 2014 A1
20140169681 Drake Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140198986 Marchesotti Jul 2014 A1
20140201330 Lozano Lopez Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20140363044 Williams et al. Dec 2014 A1
20140379477 Sheinfeld Dec 2014 A1
20150033150 Lee Jan 2015 A1
20150052089 Kozloski et al. Feb 2015 A1
20150100562 Kohlmeier et al. Apr 2015 A1
20150117784 Lin Apr 2015 A1
20150120627 Hunzinger et al. Apr 2015 A1
20150127516 Studnitzer et al. May 2015 A1
20150134688 Jing May 2015 A1
20150248586 Gaidon et al. Sep 2015 A1
20150254344 Kulkarni et al. Sep 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150286872 Medioni et al. Oct 2015 A1
20150324356 Gutierrez et al. Nov 2015 A1
20150332588 Bulan et al. Nov 2015 A1
20150363644 Wnuk Dec 2015 A1
20160007083 Gurha Jan 2016 A1
20160026707 Ong et al. Jan 2016 A1
20160132194 Grue et al. May 2016 A1
20160210525 Yang Jul 2016 A1
20160221592 Puttagunta Aug 2016 A1
20160275766 Venetianer et al. Sep 2016 A1
20160306798 Guo et al. Oct 2016 A1
20160342683 Kwon Nov 2016 A1
20160357188 Ansari Dec 2016 A1
20170017638 Satyavarta et al. Jan 2017 A1
20170032257 Sharifi Feb 2017 A1
20170041254 Agara Venkatesha Rao Feb 2017 A1
20170109602 Kim Apr 2017 A1
20170154241 Shambik et al. Jun 2017 A1
20170255620 Raichelgauz Sep 2017 A1
20170262437 Raichelgauz Sep 2017 A1
20170323568 Inoue Nov 2017 A1
20180081368 Watanabe Mar 2018 A1
20180101177 Cohen Apr 2018 A1
20180108258 Dilger Apr 2018 A1
20180157903 Tu et al. Jun 2018 A1
20180157916 Doumbouya Jun 2018 A1
20180158323 Takenaka Jun 2018 A1
20180189613 Wolf et al. Jul 2018 A1
20180204111 Zadeh Jul 2018 A1
20180373929 Ye Dec 2018 A1
20190005726 Nakano Jan 2019 A1
20190039627 Yamamoto Feb 2019 A1
20190043274 Hayakawa Feb 2019 A1
20190045244 Balakrishnan Feb 2019 A1
20190056718 Satou Feb 2019 A1
20190065951 Luo Feb 2019 A1
20190096135 Mutto et al. Mar 2019 A1
20190171912 Vallespi-Gonzalez et al. Jun 2019 A1
20190188501 Ryu Jun 2019 A1
20190220011 Della Penna Jul 2019 A1
20190279046 Han et al. Sep 2019 A1
20190304102 Chen et al. Oct 2019 A1
20190317513 Zhang Oct 2019 A1
20190364492 Azizi Nov 2019 A1
20190384303 Muller Dec 2019 A1
20190384312 Herbach Dec 2019 A1
20190385460 Magzimof Dec 2019 A1
20190389459 Berntorp Dec 2019 A1
20200004248 Healey Jan 2020 A1
20200004251 Zhu Jan 2020 A1
20200004265 Zhu Jan 2020 A1
20200005631 Visintainer Jan 2020 A1
20200018606 Wolcott Jan 2020 A1
20200018618 Ozog Jan 2020 A1
20200020212 Song Jan 2020 A1
20200050973 Stenneth Feb 2020 A1
20200073977 Montemerlo Mar 2020 A1
20200090484 Chen Mar 2020 A1
20200097756 Hashimoto Mar 2020 A1
20200133307 Kelkar Apr 2020 A1
20200043326 Tao Jun 2020 A1
Foreign Referenced Citations (10)
Number Date Country
1085464 Jan 2007 EP
3093620 Nov 2016 EP
0231764 Apr 2002 WO
2003067467 Aug 2003 WO
2005027457 Mar 2005 WO
2007049282 May 2007 WO
2014076002 May 2014 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
2016070193 May 2016 WO
Non-Patent Literature Citations (138)
Entry
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. 2015. (Year: 2015).
Lin et al., “Summarization of Large Scale Social Network Activity”, DOI: 10.1109/ICASSP.2009.4960375, Apr. 2009, pp. 3481-3484.
Santos et al., “SCORM-MPEG: an ontology of interoperable metadata for Multimedia and e-Learning”, DOI: 10.1109/SOFTCOM.2015.7314122, Nov. 2, 2015, pp. 5.
Scheper et al., “Nonlinear dynamics in neural computation”, ESANN, 14th European Symposium on Artificial Neural Networks, Jan. 2006, pp. 491-502.
Schneider et al., “A Robust Content Based Digital Signature for Image Authentication”, 3rd IEEE International Conference on Image Processing, Sep. 19, 2006, pp. 227-230.
Semizarov et al.,“Specificity of short interfering RNA determined through gene expression signatures”, PNAS vol. 100 (11), May 27, 2003, pp. 6347-6352.
Sheng Hua et al., “Robust video signature based on ordinal measure”, ICIP '04. 2004 International Conference on Image Processing, Oct. 2004, pp. 685-688.
Stolberg et al., “HiBRID-SoC: A multi-core SoC architecture for multimedia signal processing. VLSI Signal Processing”, Journal of VLSI Signal Processing vol. 41(1), Aug. 2005, pp. 9-20.
Theodoropoulos et al., “Simulating asynchronous architectures on transputer networks”, 4th Euromicro Workshop on Parallel and Distributed Processing, Braga, Portugal, 1996, pp. 274-281.
Vailaya et al., “Content-Based Hierarchical Classification of Vacation Images”, International Conference on Multimedia Computing and Systems, vol. 1, DOI-10.1109/MMCS.1999.779255, Jul. 1999, pp. 518-523.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: A case study”, Information Processing Letters, vol. 95(6), Sep. 2005, pp. 521-528.
Vallet et al., “Personalized Content Retrieval in Context Using Ontological Knowledge”, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Wang et al., “Classifying objectionable websites based on image content” Interactive Distributed Multimedia Systems and Telecommunication Services, vol. 1483, 1998, pp. 113-124.
Wang et al., “A Signature for Content-Based Image Retrieval Using a Geometrical Transform”, 6th ACM International Conference on Multimedia, Multimedia 1998, pp. 229-234.
Ware et al., “Locating and identifying components in a robot's workspace using a hybrid computer architecture”, 10th International Symposium on Intelligent Control, 1995, pp. 139-144.
Li et al. “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, in IEEE Transactions on Image Processing, vol. 22, No. 7, Jul. 2013, pp. 2600-2610.
Colin Whitby-Strevens, “The transputer”, 12th annual international symposium on Computer architecture (ISCA), IEEE Computer Society Press, Jun. 1985, pp. 292-300.
Wilk et al., “The potential of social-aware multimedia prefetching on mobile devices”, International Conference and Workshops on Networked Systems (NetSys 2015) Mar. 2015, p. 1.
Andrew William Hogue, “Tree pattern inference and matching for wrapper induction on the World Wide Web”, May 13, 2014, pp. 106.
Liu et al. “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, IEEE Transactions on Multimedia 16(8, Dec. 2014, pp. 2242-2255.
Raichelgauz et al., “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 6693-6697.
Lin et al., “Robust digital signature for multimedia authentication”, IEEE Circuits and Systems Magazine, vol. 3, No. 4, 2003, pp. 23-26.
Zang et al., “A New Multimedia Message Customizing Framework for mobile Devices”, IEEE International Conference on Multimedia and Expo, 2007, pp. 1043-1046.
Zhou et al., “Ensembling neural networks: Many could be better than all”, Artificial Intelligence, vol. 137, 2002, pp. 239-263.
Zhou et al., “Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, No. 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assessment”, SPIE. 6814. 681411, 2008, p. 1.
Zou et al., “A content-based image authentication system with lossless data hiding”, International Conference on Multimedia and Expo. ICME, 2003, pp. II(213)-II(216).
Akira et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222-2006-8, Mar. 20, 2007, pp. 17.
Amparo et al., “Real Time Speaker Localization and Detection System for Camera Steering In Multiparticipant Videoconferencing Environments”, IEEE International Conference on Acoustics, Speech and Signal Processing 2011, pp. 2592-2595.
Boari et al., “Adaptive Routing for Dynamic Applications In Massively Parallel Architectures”, IEEE Parallel & Distributed Technology: Systems & Applications (vol. 3, Issue: 1, Spring 1995), pp. 61-74.
Boyer et al., “A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research vol. 24 (2005) pp. 1-48.
Brecheisen et al., ““Hierarchical Genre Classification for Large Music Collections””, IEEE International Conference on Multimedia and Expo (ICME) 2006, pp. 1385-1388.
Burgsteiner et al., “Movement prediction from real-world images using a liquid state machine”,International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems IEA/AIE 2005: Innovations in Applied Artificial Intelligence, pp. 121-130.
Cernansky et al., “Feed-forward echo state networks”, IEEE International Joint Conference on Neural Networks, 2005, vol. 3, pp. 1479-1482.
Chang et al., “VideoQ: a fully automated video retrieval system using motion sketches”, Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No. 98EX201), Oct. 19-21, 1998, pp. 270-271.
Cho et al.,“Efficient Motion-Vector-Based Video Search Using Query by Clip”, IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No. 04TH8763), Year: 2004, vol. 2, pp. 1027-1030.
Clement et al.“Speaker diarization of heterogeneous web video files: A preliminary study”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 22-27, 2011 pp. 4432-4435.
Cococcioni et al., “Automatic diagnosis of defects of rolling element bearings based on computational intelligence techniques”, Ninth International Conference on Intelligent Systems Design and Applications, Nov. 30-Dec. 2, 2009, pp. 970-975.
Emami et al., “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance”, IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance Sep. 18-21, 2012, pp. 349-354.
Fathy et al., “A parallel design and implementation for backpropagation neural network using MIMD architecture”, 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96) , May 16, 1996,1472-1476.
Foote et al.,“Content-based retrieval of music and audio”, Multimedia Storage and Archiving Systems II, Published in SPIE Proceedings vol. 3229, Oct. 6, 1997, p. 1.
Freisleben et al., “Recognition of fractal images using a neural network”,New Trends in Neural Computation, International Workshop on Artificial Neural Networks, IWANN '93 Sitges, Spain, Jun. 9-11, 1993: , pp. 632-637.
Ivan Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School Monterey, California ,1989 pp. 73.
Gomes et al., “Audio Watermarking and Fingerprinting: for Which Applications?”, Journal of New Music Research 32(1) Mar. 2003 p. 1.
Gong et al., “A Knowledge-Based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, International Symposium on Intelligent Multimedia, Video and Speech Processing, Oct. 20-22, 2004, pp. 467-470.
Guo et al., “AdOn: An Intelligent Overlay Video Advertising System”, https://doi.org/10.1145/1571941.1572049, Jul. 2009, pp. 628-629.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 4, Published—Apr. 2000 pp. 86-93.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, International Conference on Image Processing ICIP '04. 2004, Oct. 24-27, 2004, pp. 5.
Iwamoto et al, “Image Signature Robust to Caption Superimposition for Video Sequence Identification”, 2006 International Conference on Image Processing ,IEEE, Atlanta, GA, Oct. 8-11, 2006, pp. 3185-3188.
Herbert Jaeger, “The” echo state“approach to analysing and training recurrent neural networks”, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148 ,2001, pp. 43.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Toward Semantic Sensitive Retrieval and Browsing”, IEEE Transactions on Image Processing, vol. 13, No. 7, Jul. 2004, p. 1.
John L. Johnson., Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images, vol. 33, No. 26, Applied Optics, Sep. 10, 1994, pp. 6239-6253.
Odinaev et al., “Cliques in Neural Ensembles as Perception Carriers”, 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wail Centre Hotel, Vancouver, BC, Canada Jul. 16-21, 2006, pp. 285-292.
Kabary et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, DOI: 10.1145/2505515.2508211, Oct. 2013, pp. 2489-2491.
Keiji Yanai., “Generic Image Classification Using Visual Knowledge on the Web”, DOI: 10.1145/957013.957047, Jan. 2003, pp. 167-176.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, Proceedings of the 2008 IEEE Conference on innovative Technologies in Intelligent Systems and Industrial Applications Multimedia University, Cyberjaya, Malaysia. Jul. 12-13, 2008, pp. 98-103.
Li et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature”, DOI: 10.1109/DICTA.2005.52, Jan. 2006, pp. 7.
Lin et al., “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Multimedia '98. Bristol. U.K., Sep. 1998, pp. 49-54.
Löytynoja et al., “Audio Encryption Using Fragile Watermarking”, DOI: 10.1109/ICICS.2005.1689175, Jul. 2015, pp. 881-885.
Richard F. Lyon., “Computational Models of Neural Auditory Processing”, DOI: 10.1109/ICASSP.1984.1172756, ICASSP '84. IEEE International Conference on Acoustics, Speech, and Signal Processing, Jan. 29, 2003, pp. 5.
Maass et al., “Computational Models for Generic Cortical Microcircuits”, DOI: 10.1201/9780203494462.ch18, Jun. 10, 2003, pp. 1-26.
Mandhaoui et al., “Emotional speech characterization based on multi-features fusion for face-to-face interaction”, 2009 International conference on signals, circuits and systems ,DOI: 10.1109/ICSCS.2009.5412691, Dec. 2009, pp. 1-6.
May et al., “The Transputer”, Neural Computers. Springer Study Edition, vol. 41. Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-83740-1_48, Jan. 1989 pp. 477-486.
McNamara et al., “Diversity Decay in Opportunistic Content Sharing Systems”, DOI: 10.1109/WoWMoM.2011.5986211 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Aug. 15, 2011, pp. 1-3.
Mei et al., “Contextual in-image Advertising”,MM'OS, Oct. 26-31, 2008. Vancouver, British Columbia, Canada. Copyright 2008 ACM 978-1-60558-303-7/08/10, DOI: 10.1145/1459359.1459418 ⋅ Source: DBLP, Jan. 2008, pp. 439-448.
Mei et al., “VideoSense—Towards Effective Online Video Advertising”, MM'07, Sep. 23-28, 2007, Augsburg, Bavaria, Germany.Copyright 2007 ACM 978-1-59593-701-8/07/0009 . . . $5.00, Jan. 2007, pp. 1075-1084.
Mladenovic et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book” 20th Telecommunications forum TELFOR 2012, DOI: 10.1109/TELFOR.2012.6419494, Nov. 20-22, 2012, pp. 1460-1463.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, IEEE Computer Architecture Letters, vol. 5, 2006, DOI 10.1109/L-CA.2006.6, Jul. 5, 2006, pp. 4.
Nagy et al., “A Transputer Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Conference Publication No. 427 © IEE 1996, Sep. 2-5 1996, pp. 84-89.
Nam et al., “Audio-Visual Content-Based Violent Scene Characterization”, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269), DOI: 10.1109/ICIP.1998.723496, pp. 353-357.
Natschläger et al., “The “Liquid Computer”: A Novel Strategy for Real-Time Computing on Time Series”, Jan. 2002, pp. 1-7.
Nouza et al., “Large-Scale Processing, Indexing and Search System for Czech Audio-Visual Cultural Heritage Archives”, DOI: 10.1109/MMSP.2012.6343465, Sep. 2012, pp. 337-342.
Odinaev., “Cliques tu Neural Ensembles as Perception Carriers”, 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wail Centre Hotel, Vancouver, BC, Canada, DOI: 10.1109/IJCNN.2006.246693, Jul. 16-21, 2006, pp. 285-292.
Park et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, DOI: 10.1109/ISCE.2014.6884293, Jun. 2014, pp. 1-2.
Maria Paula Queluz., “Content-based integrity protection of digital images”, San Jose. California ⋅Jan. 1999 SPIE vol. 3657 ⋅0277-786X/99/$10.00, DOI: 10.1117/12.344706, Apr. 1999, pp. 85-93.
Raichelgauz et al., “Co-evoletiooary Learning in Liquid Architectures”, DOI: 10.1007/11494669_30, Jun. 2005, pp. 241-248.
Ribert et al., “An Incremental Hierarchical Clustering”, Vision Interface '99, Trois-Rivieres, Canada, May 19-21, pp. 586-591.
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA.
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ].
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14.
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4.
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010).
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009).
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017.
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017.
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103.
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005).
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251.
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar 1984, vol. 9, pp. 41-44.
Ma Et El “Semantics modeling based image retrieval system using neural networks”, 2005.
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted 11 /04; published Jul. 2005, pp. 1-48.
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014).
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93.
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions on circuits and systems for video technology 8.5 (1998): 644-655.
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230.
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275.
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56.
Stolberg et al (“HIBRID-SOC: A Multi-Core SOC Architecture for Multimedia Signal Processing” 2003).
Stolberg et al, “HIBRID-SOC: A Mul Ti-Core SOC Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281.
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007).
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528.
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12.
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5.
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17.
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222, 2007, pp. 2006-2008.
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263.
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002).
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011).
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006).
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016).
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005).
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018).
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015).
Related Publications (1)
Number Date Country
20200167672 A1 May 2020 US
Provisional Applications (1)
Number Date Country
62771323 Nov 2018 US