The present invention relates to the detection of signals, such as audio streams, which have been modified.
Video and/or audio received by video and/or audio receivers have been monitored for a variety of reasons. For example, the transmission of copyrighted video and/or audio is monitored in order to assess appropriate royalties. Other examples include monitoring to determine whether a receiver is authorized to receive the video and/or audio, and to determine the sources and/or identities of video and/or audio.
One approach to monitoring video and/or audio is to add ancillary codes to the video and/or audio at the time of transmission or recording and to detect and decode the ancillary codes at the time of receipt by a receiver or at the time of performance. There are many arrangements for adding an ancillary code to video and/or audio in such a way that the added ancillary code is not noticed when the video is viewed on a monitor and/or when the audio is reproduced by speakers. For example, it is well known in television broadcasting to hide ancillary codes in non-viewable portions of video by inserting them into either the video's vertical blanking interval or horizontal retrace interval. One such system is referred to as “AMOL” and is taught in U.S. Pat. No. 4,025,851.
Other known video encoding systems have sought to bury the ancillary code in a portion of a video signal's transmission bandwidth that otherwise carries little signal energy. An example of such a system is disclosed by Dougherty in U.S. Pat. No. 5,629,739.
An advantage of adding an ancillary code to audio is that the ancillary code can be detected in connection with radio transmissions and with pre-recorded music, as well as in connection with television transmissions. Moreover, ancillary codes, which are added to audio signals, are reproduced in the audio signal output of a speaker and, therefore, offer the possibility of non-intrusive interception such as by use of a microphone. Thus, the reception and/or performance of audio can be monitored by the use of portable metering equipment.
One known audio encoding system is disclosed by Crosby, in U.S. Pat. No. 3,845,391. In this system, an ancillary code is inserted in a narrow frequency “notch” from which the original audio signal is deleted. The notch is made at a fixed predetermined frequency (e.g., 40 Hz). This approach led to ancillary codes that were audible when the original audio signal containing the ancillary code was of low intensity.
A series of improvements followed the Crosby patent. Thus, Howard, in U.S. Pat. No. 4,703,476, teaches the use of two separate notch frequencies for the mark and the space portions of a code signal. Kramer, in U.S. Pat. Nos. 4,931,871 and in 4,945,412 teaches, inter alia, using a code signal having an amplitude that tracks the amplitude of the audio signal to which the ancillary code is added.
Microphone-equipped audio monitoring devices that can pick up and store inaudible ancillary codes transmitted in an audio signal are also known. For example, Aijalla et al., in WO 94/11989 and in U.S. Pat. No. 5,579,124, describe an arrangement in which spread spectrum techniques are used to add an ancillary code to an audio signal so that the ancillary code is either not perceptible, or can be heard only as low level “static” noise. Also, Jensen et al., in U.S. Pat. No. 5,450,490, teach an arrangement for adding an ancillary code at a fixed set of frequencies and using one of two masking signals, where the choice of masking signal is made on the basis of a frequency analysis of the audio signal to which the ancillary code is to be added.
Moreover, Preuss et al., in U.S. Pat. No. 5,319,735, teach a multi-band audio encoding arrangement in which a spread spectrum ancillary code is inserted in recorded music at a fixed ratio to the input signal intensity (code-to-music ratio) that is preferably 19 dB. Lee et al., in U.S. Pat. No. 5,687,191, teach an audio coding arrangement suitable for use with digitized audio signals in which the code intensity is made to match the input signal by calculating a signal-to-mask ratio in each of several frequency bands and by then inserting the code at an intensity that is a predetermined ratio of the audio input in that band. As reported in this patent, Lee et al. have also described a method of embedding digital information in a digital waveform in pending U.S. application Ser. No. 08/524,132.
It will be recognized that, because ancillary codes are preferably inserted at low intensities in order to prevent the ancillary code from distracting a listener of program audio, such ancillary codes may be vulnerable to various signal processing operations. For example, although Lee et al. discuss digitized audio signals, it may be noted that many of the earlier known approaches to encoding an audio signal are not compatible with current and proposed digital audio standards, particularly those employing signal compression methods that may reduce the signal's dynamic range (and thereby delete a low level ancillary code) or that otherwise may damage an ancillary code. In many applications, it is particularly important for an ancillary code to survive compression and subsequent de-compression by such algorithms as the AC-3 algorithm or the algorithms recommended in the ISO/IEC 11172 MPEG standard, which is expected to be widely used in future digital television transmission and reception systems.
It must also be recognized that the widespread availability of devices to store and transmit copyright protected digital music and images has forced owners of such copyrighted materials to seek methods to prevent unauthorized copying, transmission, and storage of their material. Unlike the analog domain, where repeated copying of music and video stored on media, such as tapes, results in a degradation of quality, digital representations can be copied without any loss of quality. The main constraints preventing illegal reproductions of copyrighted digital material is the large storage capacity and transmission bandwidth required for performing these operations. However, data compression algorithms have made the reproduction of digital material possible.
Data compression is typically achieved by means of “lossy compression” algorithms. In this approach, the inability of the human ear to detect the presence of a low power frequency f1 when there is a neighboring high power frequency f2 is exploited to modify the number of bits used to represent each spectral value. Thus, while a two-channel or stereo digital audio stream in its original form may carry data at a rate of 1.5 megabits/second, a compressed version of this stream may have a data rate of 96 kilobits/second.
A popular compression technology known as MP3 can compress original audio stored as digital files by a factor of ten. When decompressed, the resulting digital audio is virtually indistinguishable from the original. From a single compressed MP3 file, any number of identical digital audio files can be created. Currently, portable devices that can store audio in the form of MP3 files and play these files after decompression are available.
In order to protect copyrighted material, digital code insertion techniques have been developed where ancillary codes are inserted into audio as well as video digital data streams. The inserted ancillary codes are used as digital signatures to uniquely identify a piece of music or an image. As discussed above, many methods for embedding such imperceptible ancillary codes in both audio and video data are currently available. While such ancillary codes provide proof of ownership, there still exists a need for the prevention of distribution of illegally reproduced versions of digital music and video.
In an effort to satisfy this need, it has been proposed to use two separate ancillary codes that are periodically embedded in an audio stream. For example, it is suggested that the ancillary codes be embedded in the audio stream at least once every 15 seconds. The first ancillary code is a “robust” ancillary code that is present in the audio even after it has been subjected to fairly severe compression and decompression. The second ancillary code is a “fragile” ancillary code that is also embedded in the original audio and that is erased during the compression/decompression operation.
The robust ancillary code contains a specific bit that, if set, instructs the software in a compliant player not set, to allow the music to be played without such a search. If the compliant player is instructed to search for the presence of the fragile ancillary code, and if the fragile ancillary code cannot be detected by the compliant player, the compliant player will not play the music.
Additional bits in the robust ancillary code also determine whether copies of the music can be made. In all, twelve bits of data constitute an exemplary robust ancillary code and are arranged in a specified bit structure.
A problem with the “fragile” ancillary code is that it is fragile and may be difficult to receive even when there is no unauthorized compression/decompression. Accordingly, an embodiment of the present invention is directed to a pair of robust ancillary codes useful in detecting unauthorized compression. The first ancillary code consists of a number (such as twelve) of bits conforming to a specified bit structure such as that discussed above, and the second ancillary code consists of a number (such as eight) of bits forming a descriptor that characterizes a part of the audio signal in which the ancillary codes are embedded. In a player designed to detect compression, both of the ancillary codes are extracted irrespective of whether or not the audio material has been subjected to a compression/decompression operation. The detector in the player independently computes a descriptor for the received audio and compares this computed descriptor to the embedded descriptor. Any difference that exceeds a threshold indicates unauthorized compression.
According to one aspect of the present invention, an encoder has an input and an output. The input receives a signal. The encoder calculates a zero count of at least a portion of the signal and encodes the signal with the calculated zero count. The output carries the encoded signal.
According to another aspect of the present invention, a decoder has an input and an output. The input receives a signal. The decoder decodes the received signal so as to read a zero count code from the signal, and the output carries a signal based upon the decoded zero count code.
According to still another aspect of the present invention, a method of encoding a signal comprises a) performing a transform of the signal to produce coefficients, b) counting those coefficients having a predetermined value; and, c) encoding the signal with the count.
According to yet another aspect of the present invention, a method of decoding a received signal comprises a) decoding the received signal so as to read a coefficient value count code from the received signal; b) performing a transform of the received signal to produce transform coefficients; c) counting those transform coefficients having a predetermined value; and, d) comparing the coefficient value count contained in the coefficient value count code to the transform coefficient count.
According to a further aspect of the present invention, an electrical signal contains a count code related to a count of coefficients resulting from a transform of at least a portion of the electrical signal.
These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:
Audio signals are usually digitized at sampling rates that range between thirty-two kHz and forty-eight kHz. For example, a sampling rate of 44.1 kHz is commonly used during the digital recording of music. However, digital television (“DTV”) is likely to use a forty eight kHz sampling rate. Besides the sampling rate, another parameter of interest in digitizing an audio signal is the number of binary bits used to represent the audio signal at each of the instants when it is sampled. This number of binary bits can vary, for example, between sixteen and twenty four bits per sample. The amplitude dynamic range resulting from using sixteen bits per sample of the audio signal is ninety-six dB. This decibel measure is the ratio between the square of the highest audio amplitude (216=65536) and the lowest audio amplitude (12=1). The dynamic range resulting from using twenty-four bits per sample is 144 dB. Raw audio, which is sampled at the 44.1 kHz rate and which is converted to a sixteen-bit per sample representation, results in a data rate of 705.6 kbits/s.
As discussed above, compression of audio signals is performed in order to reduce this data rate to a level which makes it possible to transmit a stereo pair of such data on a channel with a throughput as low as 192 kbits/s. This compression typically is accomplished by transform coding. Most compression algorithms are based on the well-known Modified Discrete Cosine Transform(MDCT). This transform is an orthogonal lapped transform that has the property of Time Domain Aliasing Cancellation (TDAC) and was first described by Princen and Bradley in 1986. [Princen J, Bradley A, Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation, IEEE Transactions ASSP-34, No. 5, October 1986, pp 1153-1161]. For example, this transform may be performed on a sampled block of audio containing N samples with amplitudes x(k), where k=0,1, . . . N−1, using the following equation:
for spectral coefficients
The function f(k) in equation (1) is a window function commonly defined in accordance with the following equation:
An inverse transform to reconstruct the original audio from the spectral coefficients resulting from equation (1) is performed in order to decompress the compressed audio.
In order to compute the transform given by equation (1), an audio block is constructed by combining N/2 “old” samples with N/2 “new” samples of audio. In a subsequent audio block, the “new” samples would become “old” samples and so on. Because the blocks overlap, this type of block processing prevents errors that may occur at the boundary between one block and the previous or subsequent block. There are several well known algorithms available to compute the MDCT efficiently. Most of these use the Fast Fourier Transform. [Gluth R, regular FFT-Related Transform Kernels for DCT/DST-based polyphase filter banks, ICASSP 91, pp 2205-8, Vol. 3.]
As a specific example, N may equal 1024 samples per overlapped block, where each block includes 512 “old” samples (i.e., samples from a previous block ) and 512 “new” or current samples. The spectral representation of such a block is divided into critical bands where each band comprises a group of several neighboring frequencies. The power in each of these bands can be calculated by summing the squares of the amplitudes of the frequency components within the band.
Compression algorithms such as MPEG-II Layer 3 (popularly known as MP3) and Dolby's AC-3 reduce the number of bits required to represent each spectral coefficient based on the psycho-acoustic properties of the human auditory system. In fact, several of these coefficients which fall below a given threshold are set to zero. This threshold, which typically represents either (i) the acoustic energy required at the masked frequency in order to make it audible or (ii) an energy change in the existing spectral value that would be perceptible, is usually referred to as the masking threshold and can be dynamically computed for each band. The present invention recognizes that normal uncompressed audio contains far fewer zero coefficients than a corresponding compressed/decompressed version of the same audio.
In order for the encoder 12 to embed a “robust” digital ancillary code in an audio data stream in a manner compatible with compression technology, the encoder 12 should preferably use frequencies and critical bands that match those used in compression. The block length NC of the audio signal that is used for coding may be chosen such that, for example, jNC=Nd=1024, where j is an integer. A suitable value for NC may be, for example, 512. As depicted by a step 40 of the flow chart shown in
The frequencies resulting from the Fourier Transform are indexed in the range −256 to +255, where an index of 255 corresponds to exactly half the sampling frequency fS. Therefore, for a forty-eight kHz sampling frequency, the highest index would correspond to a frequency of twenty-four kHz. Accordingly, for purposes of this indexing, the index closest to a particular frequency component fj resulting from the Fourier Transform ℑ{v(t)} is given by the following equation:
where equation (3) is used in the following discussion to relate a frequency fj and its corresponding index Ij.
The code frequencies fi used for coding a block may be chosen from the Fourier Transform ℑ{v(t)} at a step 46 in a particular frequency range, such as the range of 4.8 kHz to 6 kHz which may be chosen to exploit the higher auditory threshold in this band. Also, each successive bit of the code may use a different pair of code frequencies f1 and f0 denoted by corresponding code frequency indexes I1 and I0. There are two exemplary ways of selecting the code frequencies f1 and f0 at the step 46 so as to create an inaudible wide-band noise like code, although other ways of selecting the code frequencies f1 and f0 could be used.
One way of selecting the code frequencies f1 and f0 at the step 46 is to compute the code frequencies by use of a frequency hopping algorithm employing a hop sequence HS and a shift index Ishift. For example, if Ns bits are grouped together to form a pseudo-noise sequence, HS is an ordered sequence of Ns numbers representing the frequency deviation relative to a predetermined reference index I5k. For the case where Ns=7, a hop sequence HS={2, 5, 1, 4, 3, 2, 5} and a shift index Ishift=5, for example, could be used. In general, the indices for the Ns bits resulting from a hop sequence may be given by the following equations:
I1=I5k+Hs−Ishift (4)
and
I0=I5k+Hs+Ishift. (5)
One possible choice for the reference frequency f5k is five kHz, for example, which corresponds to a predetermined reference index I5k=53. This value of f5k is chosen because it is above the average maximum sensitivity frequency of the human ear. When encoding a first block of the audio signal with a first bit, I1 and I0 for the first block are determined from equations (4) and (5) using a first of the hop sequence numbers; when encoding a second block of the audio signal with a second bit, I1 and I0 for the second block are determined from equations (4) and (5) using a second of the hop sequence numbers; and so on. For the fifth bit in the sequence {2, 5, 1, 4, 3, 2, 5}, for example, the hop sequence value is three and equations (4) and (5) produce an index I1=51 and an index I0=61 in the case where Ishift=5. In this example, the mid-frequency index is given by the following equation:
Imid=I5k+3=56 (6)
where Imid represents an index mid-way between the code frequency indices I1 and I0. Accordingly, each of the code frequency indices is offset from the mid-frequency index by the same magnitude, Ishift, but the two offsets have opposite signs.
Another way of selecting the code frequencies at the step 46 is to determine a frequency index Imax at which the spectral power of the audio signal, as determined at the step 44, is a maximum in the low frequency band extending from zero Hz to two kHz. In other words, Imax is the index corresponding to the frequency having maximum power in the range of 0-2 kHz. It is useful to perform this calculation starting at index 1, because index 0 represents the “local” DC component and may be modified by high pass filters used in compression. The code frequency indices I1 and I0 are chosen relative to the frequency index Imax so that they lie in a higher frequency band at which the human ear is relatively less sensitive. Again, one possible choice for the reference frequency f5k is five kHz corresponding to a reference index I5k=53 such that I1 and I0 are given by the following equations:
I1=I5k+Imax−Ishift (7)
and
I0=I5k+Imax+Ishift (8)
where Ishift is a shift index, and where Imax varies according to the spectral power of the audio signal. An important observation here is that a different set of code frequency indices I1 and I0 from input block to input block is selected for spectral modulation depending on the frequency index Imax of the corresponding input block. In this case, a code bit is coded as a single bit: however, the frequencies that are used to encode each bit hop from block to block.
Unlike many traditional coding methods, such as Frequency Shift Keying (FSK) or Phase Shift Keying (PSK), the present invention does not rely on a single fixed frequency. Accordingly, a “frequency-hopping” effect is created similar to that seen in spread spectrum modulation systems. However, unlike spread spectrum, the object of varying the coding frequencies of the present invention is to avoid the use of a constant code frequency which may render it audible.
For either of the two code frequencies selection approaches (a) and (b) described above, there are at least four modulation methods that can be implemented at a step 56 in order to encode a binary bit of data in an audio block, i.e., amplitude modulation, modulation by frequency swapping, phase modulation, and odd/even index modulation. These four methods of modulation are separately described below.
In order to code a binary ‘1’ using amplitude modulation, the spectral power at I1 is increased to a level such that it constitutes a maximum in its corresponding neighborhood of frequencies. The neighborhood of indices corresponding to this neighborhood of frequencies is analyzed at a step 48 in order to determine how much the code frequencies f1 and f0 must be boosted and attenuated, respectively, so that they are detectable by the decoder 26. For index I1, the neighborhood may preferably extend from I1−2 to I1+2, and is constrained to cover a narrow enough range of frequencies that the neighborhood of I1 does not overlap the neighborhood of I0. Simultaneously, the spectral power at I0 is modified in order to make it a minimum in its neighborhood of indices ranging from I0−2 to I0+2. Conversely, in order to code a binary ‘0’ using amplitude modulation, the power at I1 is attenuated and the power at I0 is increased in their corresponding neighborhoods.
As an example,
The spectral power modification process requires the computation of four values each in the neighborhood of I1 and I0. For the neighborhood of I1 these four values are as follows: (1) Imax1 which is the index of the frequency in the neighborhood of I1 having maximum power; (2) Pmax1 which is the spectral power at Imax1; (3) Imin1 which is the index of the frequency in the neighborhood of I1 having minimum power; and (4) Pmin1 which is the spectral power at Imin1. Corresponding values for the I0 neighborhood are Imax0, Pmax0, Imin0, and Pmin0.
If Imax1=I1, and if the binary value to be coded is a ‘1,’ only a token increase in Pmax1 (i.e., the power at I1) is required at the step 56. Similarly, if Imin0=I0, then only a token decrease in Pmax0 (i.e., the power at I0) is required at the step 56. When Pmax1 is boosted, it is multiplied by a factor 1+A at the step 56, where A is in the range of about 1.5 to about 2.0. The choice of A is based on experimental audibility tests combined with compression survivability tests. The condition for imperceptibility requires a low value for A, whereas the condition for compression survivability requires a large value for A. A fixed value of A may not lend itself to only a token increase or decrease of power. Therefore, a more logical choice for A would be a value based on the local masking threshold. In this case, A is variable, and coding can be achieved with a minimal incremental power level change and yet survive compression.
In either case, the spectral power at I1 is given by the following equation:
P11=(1+A)·Pmax1 (9)
with suitable modification of the real and imaginary parts of the frequency component at I1. The real and imaginary parts are multiplied by the same factor in order to keep the phase angle constant. The power at I0 is reduced to a value corresponding to (1+A)−1 Pmin0 in a similar fashion.
The Fourier Transform of the block to be coded as determined at the step 44 also contains negative frequency components with indices ranging in index values from −256 to −1. Spectral amplitudes at frequency indices −I1 and −I0 must be set to values representing the complex conjugate of amplitudes at I1 and I0, respectively, according to the following equations:
Re[f(−I1)]=Re[f(I1)] (10)
Im[f(−I1)]=−Im[f(I1)] (11)
Re[f(−I0)]=Re[f(I0)] (12)
Im[f(−I0)]=−Im[f(I0)] (13)
where f(I) is the complex spectral amplitude at index I.
Compression algorithms based on the effect of masking modify the amplitude of individual spectral components by means of a bit allocation algorithm. Frequency bands subjected to a high level of masking by the presence of high spectral energies in neighboring bands are assigned fewer bits, with the result that their amplitudes are coarsely quantized. However, the decompressed audio under most conditions tends to maintain relative amplitude levels at frequencies within a neighborhood. The selected frequencies in the encoded audio stream which have been amplified or attenuated at the step 56 will, therefore, maintain their relative positions even after a compression/decompression process.
It may happen that the Fourier Transform ℑ{v(t)} of a block may not result in a frequency component of sufficient amplitude at the frequencies f1 and f0 to permit encoding of a bit by boosting the power at the appropriate frequency. In this event, it is preferable not to encode this block and to instead encode a subsequent block where the power of the signal at the frequencies f1 and f0 is appropriate for encoding.
In this approach, which is a variation of the amplitude modulation approach described above in section (i), the spectral amplitudes at I1 and Imax1 are swapped when encoding a one bit while retaining the original phase angles at I1 and Imax1. A similar swap between the spectral amplitudes at I0 and Imax0 is also performed. When encoding a zero bit, the roles of I1 and I0 are reversed as in the case of amplitude modulation. As in the previous case, swapping is also applied to the corresponding negative frequency indices. This encoding approach results in a lower audibility level because the encoded signal undergoes only a minor frequency distortion. Both the unencoded and encoded signals have identical energy values.
The phase angle associated with a spectral component I0 is given by the following equation:
where 0≦φ0≦2π. The phase angle associated with I1 can be computed in a similar fashion. In order to encode a binary number, the phase angle of one of these components, usually the component with the lower spectral amplitude, can be modified to be either in phase (i.e., 0°) or out of phase (i.e., 180°) with respect to the other component, which becomes the reference. In this manner, a binary 0 may be encoded as an in-phase modification and a binary 1 encoded as an out-of-phase modification. Alternatively, a binary 1 may be encoded as an in-phase modification and a binary 0 encoded as an out-of-phase modification. The phase angle of the component that is modified is designated φM, and the phase angle of the other component is designated φR. Choosing the lower amplitude component to be the modifiable spectral component minimizes the change in the original audio signal.
In order to accomplish this form of modulation, one of the spectral components may have to undergo a maximum phase change of 180°, which could make the code audible. In practice, however, it is not essential to perform phase modulation to this extent, as it is only necessary to ensure that the two components are either “close” to one another in phase or “far” apart. Therefore, at the step 48, a phase neighborhood extending over a range of ±π/4 around φR, the reference component, and another neighborhood extending over a range of ±π/4 around φR+π may be chosen. The modifiable spectral component has its phase angle φM modified at the step 56 so as to fall into one of these phase neighborhoods depending upon whether a binary ‘0’ or a binary ‘1’ is being encoded. If a modifiable spectral component is already in the appropriate phase neighborhood, no phase modification may be necessary. In typical audio streams, approximately 30% of the segments are “self-coded” in this manner and no modulation is required.
In this odd/even index modulation approach, a single code frequency index, I1, selected as in the case of the other modulation schemes, is used. A neighborhood defined by indexes I1, I1+1, I1+2, and I1+3, is analyzed to determine whether the index IM corresponding to the spectral component having the maximum power in this neighborhood is odd or even. If the bit to be encoded is a ‘1’ and the index IM is odd, then the block being coded is assumed to be “auto-coded.” Otherwise, an odd-indexed frequency in the neighborhood is selected for amplification in order to make it a maximum. A bit ‘0’ is coded in a similar manner using an even index. In the neighborhood consisting of four indexes, the probability that the parity of the index of the frequency with maximum spectral power will match that required for coding the appropriate bit value is 0.25. Therefore, 25% of the blocks, on an average, would be auto-coded. This type of coding will significantly decrease code audibility.
It should be noted that these coding techniques preserve the power of the audio signal 14.
A practical problem associated with block coding by either amplitude or phase modulation of the type described above is that large discontinuities in the audio signal can arise at a boundary between successive blocks. These sharp transitions can render the code audible. In order to eliminate these sharp transitions, the time-domain signal v(t) can be multiplied by a smooth envelope or window function w(t) at the step 42 prior to performing the Fourier Transform at the step 44. No window function is required for the modulation by frequency swapping approach described herein. The frequency distortion is usually small enough to produce only minor edge discontinuities in the time domain between adjacent blocks.
The window function w(t) is depicted in
The modified frequency spectrum which now contains the binary code (either ‘0’ or ‘1’) is subjected to an inverse transform operation at a step 62 in order to obtain the encoded time domain signal, as will be discussed below. Following the step 62, the coded time domain signal is determined at a step 64 according to the following equation:
v0(t)=v(t)+(ℑm−1(v(t)w(t))−v(t)w(t)) (15)
where the first part of the right hand side of equation (15) is the original audio signal v(t), where the second part of the right hand side of equation (15) is the encoding, and where the left hand side of equation (15) is the resulting encoded audio signal v0(t).
While individual bits of the “robust” ancillary code can be coded by the method described thus far, practical decoding of digital data also requires (i) synchronization, so as to locate the start of data, and (ii) built-in error correction, so as to provide for reliable data reception. The raw bit error rate resulting from coding by spectral modulation is high and can typically reach a value of 20%. In the presence of such error rates, both synchronization and error-correction may be achieved by using pseudo-noise (PN) sequences of ones and zeroes. A PN sequence can be generated, for example, by using an m-stage shift register 58 and an exclusive-OR gate 60 as shown in
NPN=2m−1 (16)
where m is an integer. With m=3, for example, the 7-bit PN sequence (PN7) is 1110100. The particular sequence depends upon an initial setting of the shift register 58. In one robust version of the encoder 12, each individual bit of code data is represented by this PN sequence—i.e., 1110100 is used for a bit ‘1,’ and the complement 0001011 is used for a bit ‘0.’ The use of seven bits to code each bit of code results in extremely high coding overheads.
An alternative method uses a plurality of PN15 sequences, each of which includes five bits of code data and 10 appended error correction bits. This representation provides a Hamming distance of 7 between any two 5-bit code data words. Up to three errors in a fifteen bit sequence can be detected and corrected. This PN15 sequence is ideally suited for a channel with a raw bit error rate of 20%.
If the first ancillary code contains the twelve bits as described above, and if eight bits are used to specify the number of zeros prior to compression and decompression as described below, the resulting twenty-bit data packet is converted into four groups each containing five bits of data. Ten bits are added to each five bit data group to form four unique 15-bit data PN sequences. A null block may also be added. A PN15 synchronization sequence and the four data sequences together, with each sequence also containing a null block, require 80 audio blocks with a total duration of 0.854 seconds. The structure of each data sequence may be given by the following: DDDDDEEEEEEEEEEN where “N” is a null block that represents no bit, “D” is a data bit, and “E” is an error correction bit. Other sequences may be used.
In terms of synchronization, a unique. synchronization sequence 66 (
As stated earlier, the code data to be transmitted is converted into four bit groups, each of which is represented by a PN15 sequence. As shown in
In the case of stereo signals, the left and right channels are encoded with identical digital data. In the case of mono signals, the left and right channels are combined to produce a single audio signal stream. Because the frequencies selected for modulation are identical in both channels, the resulting monophonic sound is also expected to have the desired spectral characteristics so that, when decoded, the same digital code is recovered.
As described above, the first ancillary code may contain twelve-bits conforming to a specified bit structure, and the second ancillary code may contain a number (such as eight) of bits forming a zero count descriptor that characterizes a part of the audio signal in which the ancillary codes are embedded. The above encoding techniques may be used to encode both the first and second ancillary codes. The zero count descriptor contained in the second ancillary code is generated as described below.
As noted above, each data sequence consists of fifteen data blocks and one null block of audio each of 10.66 millisecond duration. The synchronization sequence also contains sixteen blocks of audio with one of the blocks being a null block. The “zero count” may be computed, for example, on an audio segment containing the synchronization sequence as well as the first and second data sequences in accordance with
However, many implementations of popular decompression algorithms, such as Dolby's AC-3, make use of dithering when recreating an audio signal from a compressed digital audio bit stream. Dithering involves the replacement of the MDCT coefficients, which were set to zero during compression, by small random values prior to the inverse transformation that generates the decompressed time domain signal. The rationale for this dithering operation is that the original MDCT coefficients that were set-to zero had small non-zero values that contributed to the overall energy of the audio stream. Dithering is intended to compensate for this lost energy.
The small random values that are used in dithering are uniformly distributed around a zero mean. Therefore, a large number of zero coefficients are converted to non-zero values. As a result, dithering can result in a decrease in the zero count of the compressed signal, thereby making it more difficult to distinguish between original and compressed/decompressed audio. However, a large enough number of coefficients continue to retain a null value so that the zero count remains a useful tool in detecting compression/decompression.
Accordingly, prior to determining the zero count as described above, the encoder 12 computes a transform 85, such as an MDCT, of the original audio signal 14. The encoder 12 then modifies the transform of the original audio signal 14 by replacing at least some and preferably all of the coefficients whose values are zero with corresponding nominal randomly selected non-zero values 86. Following such modification, the encoder 12 reconstructs the audio by performing an inverse transform, such as an inverse MDCT, on the resulting transform coefficients 87. The resulting audio stream may be referred to as the zero suppressed main audio stream. This zero suppression processing does not perceptibly degrade the quality of the audio signal because the altered coefficients still have extremely low values.
This zero suppression process reduces the zero count significantly, typically by an order of magnitude. For example,
The zero suppressed main audio signal is then further processed as a zero suppressed auxiliary audio stream by non-compression type modifications (such as graphic equalization) that result in an increase of the zero count and that are typically found in receivers and/or players 88. As discussed above, and as shown in
The embedded ancillary code(s) are recovered by the decoder 26. The decoder 26, if necessary, converts the analog audio to a sampled digital output stream at a preferred sampling rate matching the sampling rate of the encoder 12. In decoding systems where there are limitations in terms of memory and computing power, a half-rate sampling could be used. In the case of half-rate sampling, each code block would consist of Nc/2=256 samples, and the resolution in the frequency domain (i.e., the frequency difference between successive spectral components) would remain the same as in the full sampling rate case. In the case where the receiver 20 provides digital outputs, the digital outputs are processed directly by the decoder 26 without sampling but at a data rate suitable for the decoder 26.
The task of decoding is primarily one of matching the decoded data bits with those of a PN15 sequence which could be either a synchronization sequence or a code data sequence representing one or more code data bits. The case of amplitude modulated audio blocks is considered here. However, decoding of phase modulated blocks is virtually identical, except for the spectral analysis, which would compare phase angles rather than amplitude distributions, and decoding of index modulated blocks would similarly analyze the parity of the frequency index with maximum power in the specified neighborhood. Audio blocks encoded by frequency swapping can also be decoded by the same process.
In a practical implementation of audio decoding, such as may be used in a home audience metering system, the ability to decode an audio stream in real-time is highly desirable. The decoder 26 may be arranged to run the decoding algorithm described below on Digital Signal Processing (DSP) based hardware typically used in such applications. As disclosed above, the incoming encoded audio signal may be made available to the decoder 26 from either the audio output 28 or from the microphone 30 placed in the vicinity of the speakers 24. In order to increase processing speed and reduce memory requirements, the decoder 26 may sample the incoming encoded audio signal at half (24 kHz) of the normal 48 kHz sampling rate.
Before recovering the actual data bits representing code information, it is necessary to locate the synchronization sequence. In order to search for the synchronization sequence within an incoming audio stream, blocks of 256 samples, each consisting of the most recently received sample and the 255 prior samples, could be analyzed. For real-time operation, this analysis, which includes computing the Fast Fourier Transform of the 256 sample block, has to be completed before the arrival of the next sample. Performing a 256-point Fast Fourier Transform on a 40 MHZ DSP processor takes about 600 microseconds. However, the time between samples is only 40 microseconds, making real time processing of the incoming coded audio signal as described above impractical with current hardware.
Therefore, instead of computing a normal Fast Fourier Transform on each 256 sample block, the decoder 26 may be arranged to achieve real-time decoding by implementing an incremental or sliding Fast Fourier Transform routine 100 (
Moreover, unlike a conventional transform which computes the complete spectrum consisting of 256 frequency “bins,” the decoder 26 computes the spectral amplitude only at frequency indexes that belong to the neighborhoods of interest, i.e., the neighborhoods used by the encoder 12. In a typical example, frequency indexes ranging from 45 to 70 are adequate so that the corresponding frequency spectrum contains only twenty-six frequency bins. Any code that is recovered appears in one or more elements of the status information array SIS as soon as the end of a message block is encountered.
Additionally, it is noted that the frequency spectrum as analyzed by a Fast Fourier Transform typically changes very little over a small number of samples of an audio stream. Therefore, instead of processing each block of 256 samples consisting of one “new” sample and 255 “old” samples, 256 sample blocks may be processed such that, in each block of 256 samples to be processed, the last k samples are “new” and the remaining 256-k samples are from a previous analysis. In the case where k=4, processing speed may be increased by skipping through the audio stream in four sample increments, where a skip factor k is defined as k=4 to account for this operation.
Each element SIS[p] of the status information array SIS consists of five members: a previous condition status PCS, a next jump index JI, a group counter GC, a raw data array DA, and an output data array OP. The raw data array DA has the capacity to hold fifteen integers. The output data array OP stores ten integers, with each integer of the output data array OP corresponding to a five bit number extracted from a recovered PN15 sequence. This PN15 sequence, accordingly, has five actual data bits and ten other bits. These other bits may be used, for example, for error correction. It is assumed here that the useful data in a message block consists of 50 bits divided into 10 groups with each group containing 5 bits, although a message block of any size may be used.
The operation of the status information array SIS is explained in connection with
In order to first locate the synchronization sequence, the Fast Fourier Transform corresponding to the initial 256 sample block read at the processing stage 102 is tested at a processing stage 106 for a triple tone, which represents the first bit in the synchronization sequence. The presence of a triple tone may be determined by examining the initial 256 sample block for the indices I0, I1, and Imid used by the encoder 12 in generating the triple tone, as described above. The SIS[p] element of the SIS array that is associated with this initial block of 256 samples is SIS[0], where the status array index p is equal to 0.
If a triple tone is found at the processing stage 106, the values of certain members of the SIS[0] element of the status information array SIS are changed at a processing stage 108 as follows: the previous condition status PCS, which is initially set to 0, is changed to a 1 indicating that a triple tone was found in the sample block corresponding to SIS[0]; the value of the next jump index JI is incremented to 1; and, the first integer of the raw data member DA[0] in the raw data array DA is set to the value (0 or 1) of the triple tone. In this case, the first integer of the raw data member DA[0] in the raw data array DA is set to 1 because it is assumed in this analysis that the triple tone is the equivalent of a 1 bit. Also, the status array index p is incremented by one for the next sample block. If there is no triple tone, none of these changes in the SIS[0] element are made at the processing stage 108, but the status array index p is still incremented by one for the next sample block. Whether or not a triple tone is detected in this 256 sample block, the routine 100 enters an incremental FFT mode at a processing stage 110.
Accordingly, a new 256 sample block increment is read into the buffer at a processing stage 112 by adding four new samples to, and discarding the four oldest samples from, the initial 256 sample block processed at the processing stages 102-106. This new 256 sample block increment is analyzed at a processing stage 114 according to the following steps:
where u0 is the frequency index of interest. In accordance with the typical example described above, the frequency index u0 varies from 45 to 70. It should be noted that this first step involves multiplication of two complex numbers.
where f0ld and fnew are the time-domain sample values. It should be noted that this second step involves the addition of a complex number to the summation of a product of a real number and a complex number. This computation is repeated across the frequency index range of interest (for example, 45 to 70).
where TW is the width of the window in the time domain. This “raised cosine” function requires only three multiplication and addition operations involving the real and imaginary parts of the spectral amplitude. This operation significantly improves computational speed. This step is not required for the case of modulation by frequency swapping.
Because p is not yet equal to 64 as determined at a processing stage 118 and the group counter GC has not accumulated a count of 10 as determined at a processing stage 120, this analysis corresponding to the processing stages 112-120 proceeds in the manner described above in four sample increments where p is incremented for each four sample increment. When SIS[63] is reached where p=64, p is reset to 0 at the processing stage 118, and the 256 sample block increment now in the buffer is exactly 256 samples away from the location in the audio stream at which the SIS[0] element was last updated. Each time p reaches 64, the SIS array represented by the SIS[0]-SIS[63] elements is examined to determine whether the previous condition status PCS of any of these elements is one indicating a triple tone. If the previous condition status PCS of any of these elements corresponding to the current 64 sample block increments is not one, the processing stages 112-120 are repeated for the next 64 block increments. (Each block increment comprises 256 samples.)
Once the previous condition status PCS is equal to 1 for any of the SIS[0]-SIS[63] elements corresponding to any set of 64 sample block increments, and the corresponding raw data member DA[p] is set to the value of the triple tone bit, the next 64 block increments are analyzed at the processing stages 112-120 for the next bit in the synchronization sequence.
Each of the new block increments beginning where p was reset to 0 is analyzed for the next bit in the synchronization sequence. This analysis uses the second member of the hop sequence HS because the next jump index JI is equal to 1. From this hop sequence number and the shift index used in encoding, the I1 and I0 indexes can be determined, for example from equations (4) and (5). Then, the neighborhoods of the I1 and I0 indexes are analyzed to locate maximums and minimums in the case of amplitude modulation. If, for example, a power maximum at I1 and a power minimum at I0 are detected, the next bit in the synchronization sequence is taken to be 1. In order to allow for some variations in the signal that may arise due to compression or other forms of distortion, the index for either the maximum power or minimum power in a neighborhood is allowed to deviate by one from its expected value. For example, if a power maximum is found in the index I1, and if the power minimum in the index I0 neighborhood is found at I0−1, instead of I0, the next bit in the synchronization sequence is still taken to be 1. On the other hand, if a power minimum at I1 and a power maximum at I0 are detected using the same allowable variations discussed above, the next bit in the synchronization sequence is taken to be 0. However, if none of these conditions are satisfied, the output code is set to −1, indicating a sample block that cannot be decoded. Assuming that a 0 bit or a 1 bit is found, the second integer of the raw data member DA[1] in the raw data array DA is set to the appropriate value, and the next jump index JI of SIS[0] is incremented to 2, which corresponds to the third member of the hop sequence HS. From this hop sequence number and the shift index used in encoding, the I1 and I0 indexes can be determined. Then, the neighborhoods of the I1 and I0 indexes are analyzed to locate maximums and minimums in the case of amplitude modulation so that the value of the next bit can be decoded from the third set of 64 block increments, and so on for the remaining ones of the fifteen bits of the synchronization sequence. The fifteen bits stored in the raw data array DA may then be compared with a reference synchronization sequence to determine synchronization. If the number of errors between the fifteen bits stored in the raw data array DA and the reference synchronization sequence exceeds a previously set threshold, the extracted sequence is not acceptable as a synchronization, and the search for the synchronization sequence begins anew with a search for a triple tone.
If a valid synchronization sequence is thus detected, there is a valid synchronization, and the PN15 data sequences may then be extracted using the same analysis as is used for the synchronization sequence, except that detection of each PN15 data sequence is not conditioned upon detection of the triple tone which is reserved for the synchronization sequence. As each bit of a PN15 data sequence is found, it is inserted as a corresponding integer of the raw data array DA. When all integers of the raw data array DA are filled, (i) these integers are compared to each of the thirty-two possible PN15 sequences, (ii) the best matching sequence indicates which 5-bit number to select for writing into the appropriate array location of the output data array OP, and (iii) the group counter GC member is incremented to indicate that the first PN15 data sequence has been successfully extracted. If the group counter GC has not yet been incremented to 10 (this number depends on the number of groups of bits required to encode the first and second ancillary codes) as determined at the processing stage 120, program flow returns to the processing stage 112 in order to decode the next PN15 data sequence.
When the group counter GC has incremented to 10 (or other appropriate number such as four for the twelve-bit first ancillary code and the eight-bit second ancillary code described above) as determined at the processing stage 120, the output data array OP, which contains a full 50-bit message (or 20-bit message as appropriate), is read at a processing stage 122. It is possible that several adjacent elements of the status information array SIS, each representing a message block separated by four samples from its neighbor, may lead to the recovery of the same message because synchronization may occur at several locations in the audio stream which are close to one another. If all these messages are identical, there is a high probability that an error-free code has been received.
Once a message has been recovered and the message has been read at the processing stage 122, the previous condition status PCS of the corresponding SIS element is set to 0 at a processing stage 124 so that searching is resumed at a processing stage 126 for the triple tone of the synchronization sequence of the next message block.
The zero count ancillary code, which was encoded into the audio signal 14 by the encoder 12 either alone or with another ancillary code (such as the first ancillary code described above), is decoded by the decoder 26 using, for example, the decoding technique described above. For example, the decoded zero count may be used by the decoder 26 to determine if the audio signal 14 has undergone compression/decompression.
In order to detect compression/decompression, which increases the zero coefficient count of a transform of an audio signal, the decoder 26 decodes the zero count ancillary code. Also, the decoder 26, following non-compression type modifications (such as graphic equalization) which tend to increase the zero count of a transform of the signal, performs a transform (such as that exemplified by equation (1)) on the same portion of the audio signal 14 that was used by the encoder 12 to make the zero count calculation described above. The decoder 26 then counts the zero coefficients in the transform. For example, if the eight-bit zero count second ancillary code is appended to the twelve-bit first ancillary code as discussed above, the decoder 26 can make its zero count from the transformed portion of the received audio signal containing the synchronization sequence and the first two data sequences (containing the first ten bits of the twelve-bit first ancillary code).
Thereafter, the decoder 26 compares the zero count that it calculates to the zero count contained in the zero count ancillary code as decoded from the audio signal 14. If the difference between the zero count that it calculates and the zero count contained in the zero count ancillary code is greater than a count threshold (such as 400), the decoder 26 may conclude that the received audio stream has been subjected to compression/decompression. The eight-bit descriptor obtained from the embedded code may be multiplied by five if the zero count determined by the encoder 12 was divided by five prior to encoding. Thus, the calculated zero count must exceed the zero count contained in the zero count ancillary code by a predetermined amount in order for the decoder 26 to conclude that the audio signal 14 has undergone compression/decompression.
Accordingly, if the decoder 26 concludes that the audio signal 14 has undergone compression/decompression, the decoder 26 may be arranged to take some action such as controlling the receiver 20 in a predetermined manner. For example, if the receiver 20 is a player, the decoder 26 may be arranged to prevent the player from playing the audio signal 14.
Certain modifications of the present invention have been discussed above. Other modifications will occur to those practicing in the art of the present invention. For example, the invention has been described above in connection with the transmission of an encoded signal from the transmitter 16 to the receiver 20. Alternatively, the present invention may be used in connection with other types of systems. For example, the transmitter 16 could instead be a recording device arranged to record the encoded signal on a medium, and the receiver 20 could instead be a player arranged to play the encoded signal stored on the medium. As another example, the transmitter 16 could instead be a server, such as a web site, and the receiver 20 could instead be a computer or other receiver such as web compliant device coupled over a network, such as the Internet, to the server in order to download the encoded signal.
Also, as described above, coding a signal with a “1” bit using amplitude modulation involves boosting the frequency f1 and attenuating the frequency f0, and coding a signal with a “0” bit using amplitude modulation involves attenuating the frequency f1 and boosting the frequency f0. Alternatively, coding a signal with a “1” bit using amplitude modulation could instead involve attenuating the frequency f1 and boosting the frequency f0, and coding a signal with a “0” bit using amplitude modulation could involve boosting the frequency f1 and attenuating the frequency f0.
Moreover, a triple tone is used to make a synchronization sequence unique. However, a triple tone need not be used if a unique PN15 sequence is available and is clearly distinguishable from possible data sequences.
Furthermore, as described above, twelve bits are used for the first ancillary code and eight bits are used for the second ancillary code. Instead, the number of bits in the first and/or second ancillary codes may be other than twelve and eight respectively, as long as the total number of bits in the first and second ancillary codes add to a number divisible by five using the PN15 sequences described above. Alternatively, other sequences can be used which would not require the total number of bits in the first and second ancillary codes to be divisible by five. In addition, the zero count (second) ancillary code can be used without the first ancillary code.
Also, as described above, the zeros produced by a transform, which may be an MDCT but which could be any other suitable transform, are counted. However, values other zero count could instead, or in addition, be counted as long as these values occur more often in a transform after compression/decompression than before compression/decompression.
Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.
This is a Divisional of U.S. application Ser. No. 09/616,116 filed Jul. 14, 2000 now U.S. Pat. No. 6,879,652. This application contains disclosure similar to the disclosures in U.S. patent application Ser. No. 09/116,397 filed Jul. 16, 1998, in U.S. patent application Ser. No. 09/427,970 filed Oct. 27, 1999, in U.S. patent application Ser. No. 09/428,425 filed Oct. 27, 1999, in U.S. patent application Ser. No. 09/543,480 filed Apr. 6, 2000, and in U.S. patent application Ser. No. 09/553,776 filed Apr. 21, 2000.
Number | Name | Date | Kind |
---|---|---|---|
2573279 | Scherbatskoy | Oct 1951 | A |
2630525 | Tomberlin et al. | Mar 1953 | A |
2766374 | Hoffmann | Oct 1956 | A |
2982813 | Hathaway | May 1961 | A |
3004104 | Hembrooke | Oct 1961 | A |
3492577 | Reiter et al. | Jan 1970 | A |
3684838 | Kahn | Aug 1972 | A |
3684839 | Kahn | Aug 1972 | A |
3696298 | Kahn et al. | Oct 1972 | A |
3733430 | Thompson et al. | May 1973 | A |
3735048 | Tomsa et al. | May 1973 | A |
3760275 | Ohsawa et al. | Sep 1973 | A |
3845391 | Crosby | Oct 1974 | A |
4025851 | Haselwood et al. | May 1977 | A |
4134127 | Campioni | Jan 1979 | A |
4225967 | Miwa et al. | Sep 1980 | A |
4238849 | Gassmann | Dec 1980 | A |
4313197 | Maxemchuk | Jan 1982 | A |
4379947 | Warner | Apr 1983 | A |
4425642 | Moses et al. | Jan 1984 | A |
4425661 | Moses et al. | Jan 1984 | A |
4512013 | Nash et al. | Apr 1985 | A |
4523311 | Lee et al. | Jun 1985 | A |
4652915 | Heller, III | Mar 1987 | A |
4677466 | Lert, Jr. et al. | Jun 1987 | A |
4688255 | Kahn | Aug 1987 | A |
4697209 | Kiewit et al. | Sep 1987 | A |
4703476 | Howard | Oct 1987 | A |
4750053 | Allen | Jun 1988 | A |
4750173 | Blüthgen | Jun 1988 | A |
4771455 | Hareyama et al. | Sep 1988 | A |
4876617 | Best et al. | Oct 1989 | A |
4931871 | Kramer | Jun 1990 | A |
4943973 | Werner | Jul 1990 | A |
4945412 | Kramer | Jul 1990 | A |
4956709 | Richer et al. | Sep 1990 | A |
4972471 | Gross et al. | Nov 1990 | A |
5079647 | Nenezu et al. | Jan 1992 | A |
5113437 | Best et al. | May 1992 | A |
5212551 | Conanan | May 1993 | A |
5213337 | Sherman | May 1993 | A |
5227874 | Von Kohorn | Jul 1993 | A |
5285498 | Johnston | Feb 1994 | A |
5319735 | Preuss et al. | Jun 1994 | A |
5355161 | Bird et al. | Oct 1994 | A |
5379345 | Greenberg | Jan 1995 | A |
5394274 | Kahn | Feb 1995 | A |
5404377 | Moses | Apr 1995 | A |
5425100 | Thomas et al. | Jun 1995 | A |
5450490 | Jensen et al. | Sep 1995 | A |
5457807 | Weinblatt | Oct 1995 | A |
5463423 | Tults | Oct 1995 | A |
5473631 | Moses | Dec 1995 | A |
5481370 | Kim | Jan 1996 | A |
5534941 | Sie et al. | Jul 1996 | A |
5535300 | Hall et al. | Jul 1996 | A |
5537215 | Niimura et al. | Jul 1996 | A |
5550593 | Nakabayashi | Aug 1996 | A |
5574962 | Fardeau et al. | Nov 1996 | A |
5574963 | Weinblatt et al. | Nov 1996 | A |
5579124 | Aijala et al. | Nov 1996 | A |
5581800 | Fardeau et al. | Dec 1996 | A |
5583962 | Davis et al. | Dec 1996 | A |
5594934 | Lu et al. | Jan 1997 | A |
5629739 | Dougherty | May 1997 | A |
5629779 | Jeon | May 1997 | A |
5630203 | Weinblatt | May 1997 | A |
5668805 | Yoshinobu | Sep 1997 | A |
5675388 | Cooper | Oct 1997 | A |
5687191 | Lee et al. | Nov 1997 | A |
5689822 | Zucker | Nov 1997 | A |
5699124 | Nuber et al. | Dec 1997 | A |
5703877 | Nuber et al. | Dec 1997 | A |
5719937 | Warren et al. | Feb 1998 | A |
5731841 | Rosenbaum et al. | Mar 1998 | A |
5745604 | Rhoads | Apr 1998 | A |
5757417 | Aras et al. | May 1998 | A |
5761606 | Wolzien | Jun 1998 | A |
5764763 | Jensen et al. | Jun 1998 | A |
5768426 | Rhoads | Jun 1998 | A |
5768680 | Thomas | Jun 1998 | A |
5774452 | Wolosewicz | Jun 1998 | A |
5787334 | Fardeau et al. | Jul 1998 | A |
5808689 | Small | Sep 1998 | A |
5809041 | Shikakura et al. | Sep 1998 | A |
5822360 | Lee et al. | Oct 1998 | A |
5822436 | Rhoads | Oct 1998 | A |
5826164 | Weinblatt | Oct 1998 | A |
5826165 | Echeita et al. | Oct 1998 | A |
5832119 | Rhoads | Nov 1998 | A |
5832199 | Apperley et al. | Nov 1998 | A |
5844826 | Nguyen | Dec 1998 | A |
5850481 | Rhoads | Dec 1998 | A |
5856973 | Thompson | Jan 1999 | A |
5930274 | Kaniwa et al. | Jul 1999 | A |
5930369 | Cox et al. | Jul 1999 | A |
5963909 | Warren et al. | Oct 1999 | A |
6035177 | Moses et al. | Mar 2000 | A |
6151578 | Bourcet et al. | Nov 2000 | A |
6157327 | Akaogi | Dec 2000 | A |
6253185 | Arean et al. | Jun 2001 | B1 |
6266430 | Rhoads | Jul 2001 | B1 |
6272176 | Srinivasan | Aug 2001 | B1 |
6308150 | Neo et al. | Oct 2001 | B1 |
6330335 | Rhoads | Dec 2001 | B1 |
6338037 | Todd et al. | Jan 2002 | B1 |
6349284 | Park et al. | Feb 2002 | B1 |
6353672 | Rhoads | Mar 2002 | B1 |
6421445 | Jensen et al. | Jul 2002 | B1 |
6427012 | Petrovic | Jul 2002 | B1 |
6434253 | Hayashi et al. | Aug 2002 | B1 |
6493457 | Quackenbush et al. | Dec 2002 | B1 |
6507299 | Nuijten | Jan 2003 | B1 |
6512796 | Sherwood | Jan 2003 | B1 |
6519769 | Hopple et al. | Feb 2003 | B1 |
6539095 | Rhoads | Mar 2003 | B1 |
6574350 | Rhoads et al. | Jun 2003 | B1 |
6580314 | Deus et al. | Jun 2003 | B1 |
6584138 | Neubauer et al. | Jun 2003 | B1 |
6928249 | Robinson | Aug 2005 | B2 |
7142581 | Khayrallah et al. | Nov 2006 | B2 |
20010032313 | Haitsma et al. | Oct 2001 | A1 |
20020006203 | Tachibana et al. | Jan 2002 | A1 |
20020010919 | Lu et al. | Jan 2002 | A1 |
20020055398 | Halko | May 2002 | A1 |
20020085736 | Kalker et al. | Jul 2002 | A1 |
20020087864 | Depovere et al. | Jul 2002 | A1 |
20020184503 | Kalker et al. | Dec 2002 | A1 |
20030004589 | Bruekers et al. | Jan 2003 | A1 |
20030036910 | Van Der Veen et al. | Feb 2003 | A1 |
20030131350 | Peiffer et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
43 16 297 | Apr 1994 | DE |
0 243 561 | Apr 1987 | EP |
0 535 893 | Jul 1993 | EP |
0 598 398 | May 1994 | EP |
0 606 703 | Jul 1994 | EP |
0 674 405 | Sep 1995 | EP |
0 913 952 | May 1999 | EP |
1 104 193 | May 2001 | EP |
2 170 080 | Jul 1986 | GB |
2 260 246 | Jul 1993 | GB |
2 292 506 | Feb 1996 | GB |
07 059030 | Mar 1995 | JP |
09 009213 | Jan 1997 | JP |
200184080 | Jul 2001 | JP |
WO 8909985 | Oct 1989 | WO |
WO 9307689 | Apr 1993 | WO |
WO 9411989 | May 1994 | WO |
9731440 | Aug 1997 | WO |
9959275 | Nov 1999 | WO |
0004662 | Jan 2000 | WO |
0022605 | Apr 2000 | WO |
0129691 | Apr 2001 | WO |
0249363 | Jun 2002 | WO |
03060630 | Jul 2003 | WO |
03060630 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040170381 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09616116 | Jul 2000 | US |
Child | 10794194 | US |