Detection of tissue damage

Information

  • Patent Grant
  • 11980475
  • Patent Number
    11,980,475
  • Date Filed
    Monday, October 17, 2022
    2 years ago
  • Date Issued
    Tuesday, May 14, 2024
    6 months ago
Abstract
Methods and apparatus for detection of tissue damage in patients using a medical device for an extended period of time are disclosed.
Description
FIELD

The present disclosure provides methods and apparatus for detecting tissue damage through measurement of Sub-Epidermal Moisture (SEM) and evaluation of those measurements.


BACKGROUND

The skin is the largest organ in the human body. It is readily exposed to different kinds of damages and injuries. When the skin and its surrounding tissues are unable to redistribute external pressure and mechanical forces, ulcers may be formed. Prolonged continuous exposure to even modest pressure, such as the pressure created by the body weight of a supine patient on their posterior skin surfaces, may lead to a pressure ulcer.


Patients may be required to use a medical device for an extended period of time to treat a particular condition. Some devices are in contact with portions of the patient's body, for example a tube feeding air to a nasal cannula. Patients who are lying prone in a bed may have devices laying on their body, in some cases taped to the skin to hold the device in place. The long-term pressure applied by these devices may be low but the extended period of application may lead to tissue damage that, left untreated, may progress to an open ulcer.


SUMMARY

In an aspect, the present disclosure provides for, and includes, an apparatus for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising: a first electrode and a second electrode configured to measure a level of sub-epidermal moisture (SEM) in tissue proximate to the point of contact, an electronics package individually connected to the first and second electrodes and configured to measure a capacitance between the first and second electrodes.


In an aspect, the present disclosure provides for, and includes, a method for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising the steps of: measuring a plurality of sub-epidermal moisture (SEM) values of tissue proximate to the point of contact at incremental times, comparing the plurality of SEM values, and determining if there is a significant increase in the SEM that indicates that there is tissue damage.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the disclosure are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and are for purposes of illustrative discussion of aspects of the disclosure. In this regard, the description and the drawings, considered alone and together, make apparent to those skilled in the art how aspects of the disclosure may be practiced.



FIG. 1 depicts a patient wearing a Continuous Positive Airway Pressure (CPAP) mask.



FIG. 2 depicts a patient being treated with a ventilator.



FIG. 3A illustrates the pressure-induced damage associated with a diagnosis of a stage-1 pressure ulcer.



FIG. 3B depicts a patient who has developed a pressure ulcer from a medical device taped to his chest.



FIGS. 3C and 3D depict patients who developed pressure ulcers from urinary catheters.



FIG. 4A depicts a patient wearing a medical device with a Sub-Epidermal Moisture (SEM) sensor, in accordance with the present disclosure.



FIG. 4B depicts a SEM sensing system, in accordance with the present disclosure.



FIG. 5A illustrates how a medical device may contact a patient.



FIG. 5B depicts a SEM sensing device, in accordance with the present disclosure.



FIG. 5C is an enlarged view of a portion of the device of FIG. 5B, in accordance with the present disclosure.



FIG. 6A depicts a patient wearing a medical device that incorporates an elastic retention strap, in accordance with the present disclosure.



FIG. 6B is an enlarged view of a portion of the retention strap of FIG. 6A, in accordance with the present disclosure.



FIGS. 7A and 7B depict example medical devices with controllable pressure management elements, in accordance with the present disclosure.





DETAILED DESCRIPTION

This description is not intended to be a detailed catalog of all the different ways in which the disclosure may be implemented, or all the features that may be added to the instant disclosure. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. Thus, the disclosure contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant disclosure. In other instances, well-known structures, interfaces, and processes have not been shown in detail in order not to unnecessarily obscure the invention. It is intended that no part of this specification be construed to effect a disavowal of any part of the full scope of the invention. Hence, the following descriptions are intended to illustrate some particular embodiments of the disclosure, and not to exhaustively specify all permutations, combinations, and variations thereof.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terminology used in the description of the disclosure herein is for the purpose of describing particular aspects or embodiments only and is not intended to be limiting of the disclosure.


All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented. References to techniques employed herein are intended to refer to the techniques as commonly understood in the art, including variations on those techniques or substitutions of equivalent techniques that would be apparent to one of skill in the art.


U.S. patent application Ser. No. 14/827,375 discloses an apparatus that measures the sub-epidermal capacitance using a bipolar sensor, where the sub-epidermal capacitance corresponds to the moisture content of the target region of skin of a patient. The '375 application also discloses an array of these bipolar sensors of various sizes.


U.S. patent application Ser. No. 15/134,110 discloses an apparatus for measuring sub-epidermal moisture (SEM) similar to the device shown in FIG. 3, where the device emits and receives an RF signal at a frequency of 32 kHz through a single coaxial sensor and generates a bioimpedance signal, then converts this signal to a SEM value.


Both U.S. patent application Ser. Nos. 14/827,375 and 15/134,110 are incorporated herein by reference in their entireties.


Unless the context indicates otherwise, it is specifically intended that the various features of the disclosure described herein can be used in any combination. Moreover, the present disclosure also contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted.


The methods disclosed herein include and comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present disclosure.


As used in the description of the disclosure and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).


The terms “about” and “approximately” as used herein when referring to a measurable value such as a length, a frequency, or a SEM value and the like, is meant to encompass variations of ±20%, ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount.


As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y” and phrases such as “from about X to Y” mean “from about X to about Y.”


As used herein, the term “sub-epidermal moisture” or “SEM” refers to the increase in tissue fluid and local edema caused by vascular leakiness and other changes that modify the underlying structure of the damaged tissue in the presence of continued pressure on tissue, apoptosis, necrosis, and the inflammatory process.


As used herein, a “patient” may be a human or animal subject.


As used herein, “delta” refers to a calculated difference between two SEM values.



FIG. 1 depicts a patient 100 wearing a CPAP mask 110. A CPAP system is used by individuals having difficulty in breathing while sleeping, among others. The mask 110 is worn every night for the entire time that the person is asleep, typically 7-9 hours. This repeated exposure of sensitive facial tissue, where the skin is close to bone, to long-duration low-pressure contact by the nosepiece 112 or straps 114 poses a risk of developing a pressure ulcer.



FIG. 2 depicts a patient 120 being treated with a ventilator, which includes mouthpiece 130 having, in this example, an endotracheal tube 132 held in place by a strap 134. Patients that are unable to breathe satisfactorily on their own are “put on” a respirator to ensure that their body is receiving sufficient oxygen to heal. A patient may be on a ventilator for a few hours or a few weeks, depending on the injury. Patients who are on a ventilator for extended periods of time may be put in a medically induced coma because of the discomfort of the ventilator, further reducing their mobility and increasing the risk of a pressure ulcer. In FIG. 2, a pad 140 has been placed on the cheek of the patient 120 and under the strap 134 in order to distribute pressure and protect the skin.



FIG. 3A illustrates the pressure-induced damage associated with a diagnosis of a stage-1 pressure ulcer. This cutaway view of a section of skin tissue 150 shows the top layer stratum corneum, the dermis 154, a layer of fat 156 over a layer of muscle 158, and a bone 160. The darkened region 170 indicates damage to the skin penetrating from the stratum corneum 152 down into the dermis 154. The surface of the skin over region 170 may show a redness and a difference in firmness that can be identified by a trained clinician as a symptom of the damage.



FIG. 3B depicts a patient 180 who has developed a pressure ulcer 184 from a medical device 182 taped to his chest. FIG. 3C depicts a patient 180 who has developed a pressure ulcer 184 in the pubic area from a medical device 182, which is a urinary tube. FIG. 3D depicts a patient 180 who has developed a pressure ulcer 184 in the lower abdomen area from a medical device 182, which is also a urinary tube. Development of this type of injury depends on many factors, including the amount of local pressure on the skin, whether additional pressure was created by other items laying over the device 182, and the duration of the pressure. Development of an ulcer is also affected by the condition of the patient's skin, which depends on the age of the patient and their health.



FIG. 4A depicts a patient 200 wearing a medical device 210 with a Sub-Epidermal Moisture (SEM) sensor (not visible in FIG. 4A), in accordance with the present disclosure. There is contact between the device 210 and the patient 200 in multiple locations, such as behind the ear, along the tube 212 over the cheek, at the location of retention device 220, and at the fitting 214 where the tube 212 connects to a nasal cannula (not visible in FIG. 4A). In general, tension on the tube 212 creates pressure in many if not all of these locations.



FIG. 4B depicts an example SEM sensing system 250, in accordance with the present disclosure. The system 250 includes a molded plastic clip 222 configured to attach to the tube 212, a layer of foam 224 to distribute pressure, a SEM sensor 230. In an aspect, there is a layer of adhesive 226 to attach the retention device 220 to the skin of the patient 200. The sensor 230 has electrodes 232, 234 that are connected via wires 236, 238 to electronics package 240, which is configured to make a measurement of the capacitance between the two electrodes 232, 234 and calculate a “delta” value that is, in one aspect, the difference between the highest SEM value and the lowest SEM value in a set of measurements. In an aspect, a set of measurements is taken during a single clinical evaluation. In one aspect, a set of measurements is taken over time, with the first measurement taken at the time of the first use of the medical device.


In an aspect, a calculated delta value is compared to a threshold. When the delta value exceeds the threshold, this indicates a degree of damage. There may be multiple thresholds used to evaluate multiple levels of tissue damage. In one aspect, the maximum SEM value is compared to a threshold. When the maximum value exceeds the threshold, this indicates a degree of damage.


In an aspect, a threshold may be about 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5. In one aspect, a threshold may range from 0.1 to 8.0, such as from 0.1 to 1.0, from 1.1 to 2.0, from 2.1 to 3.0, from 3.1 to 4.0, from 4.1 to 5.0, from 5.1 to 6.0, from 6.1 to 7.0, from 7.1 to 8.0, from 0.1 to 7.5, from 0.5 to 8.0, from 1.0 to 7.0, from 1.5 to 6.5, from 2.0 to 6.0, from 3.0 to 5.5, from 3.5 to 5.0, or from 4.0 to 4.5. In an aspect, a threshold can be scaled by a factor or a multiple based on the values provided herein. It will be understood that a threshold is not limited by design, but rather, one of ordinary skill in the art would be capable of choosing a predetermined value based on a given unit of SEM. In one aspect, thresholds of the present disclosure are varied according to the specific portion of a patient's body on which measurements are being made, or one or more characteristics of the patient such as age, height, weight, family history, ethnic group, and other physical characteristics or medical conditions.


In an aspect, the electronics package 240 includes devices to communicate over link 242 to computer 252, which may be a PC, a mobile tablet, a mobile phone, a server using cloud-based data storage and analysis, or other data systems. Link 242 may include a wired or wireless communication element, optical communication elements, a network that may have one or more switches and routers, and other standard data transfer devices and protocols. Link 242 may also be implemented as hardware with nonvolatile storage, for example a “thumb drive,” that is loaded with data by the electronics package 240 and in turn is physically relocated and connected to the computer 252 whereupon it delivers the data. In an aspect, Link 242 provides real-time communication of recorded SEM measurements and/or calculated delta values from electronic package 240 to computer 252 to allow for real-time monitoring of ulcer development in a patient.


In one aspect, a molded plastic clip 222 of SEM sensing system 250 of the present disclosure is configured to attach to a medical device selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a central line, a catheter, and a fecal management tube. In an aspect, adhesive 226 has a shape selected from the group consisting of substantially a square, substantially a rectangle, substantially a circle, and a polygon. In one aspect, a face of adhesive 226 has a surface area less than 25 cm2, such as less than 20 cm2, less than 15 cm2, less than 10 cm2, or less than 5 cm2. In an aspect, SEM sensing system 250 has a mass of less than 5 grams, such as less than 4 grams, less than 3 grams, less than 2 grams, less than 1 gram, or less than 0.5 gram.



FIG. 5A illustrates how a medical device may contact a patient. The tube 212 from FIG. 4A runs over the crease 204 between a patient's ear 202 and their skull. Pressure can develop at the point of contact between tube 212 and the crease 204 due to tension in tube 212.



FIG. 5B depicts a SEM sensing device 300, in accordance with the present disclosure. In an aspect, the device 300 is added to a basic medical device, for example tube 212. Electrodes 304 on the external surface of the device body 302 are connected by wires 306 of cable 308 to an external electronics package (not shown in FIG. 5B). In an aspect, the device 300 comprises a processor (not visible in FIG. 5B) that does one or more of switching, sensing, and measurement. In an aspect, the processor provides wireless communication to the electronics package. In one aspect, the wireless communication to the electronics package from the electrodes occurs in real-time. In an aspect, the wireless communication to the electronics package is delayed.



FIG. 5C is an enlarged view of a portion of the device 300 of FIG. 5B, in accordance with the present disclosure. In this example, there are three electrodes 304A, 304B, and 304C that are aligned in a row on the surface of body 302, but this array of electrodes may utilize two or more electrodes that are disposed in any two-dimensional pattern. In an aspect, device 300 may comprise three or more electrodes, such as four or more electrodes, five or more electrodes, ten or more electrodes, fifteen or more electrodes, twenty or more electrodes, twenty-five or more electrodes, thirty or more electrodes, forty or more electrodes, or fifty or more electrodes.


In FIG. 5C, electrodes 304A, 304B, 304C are elongated rectangles with rounded ends, but these electrodes may be provided in any shape and size. In an aspect, electrodes 304A, 304B, and 304C may be any shape or configuration, such as point electrodes, plate electrodes, ring electrodes, hexagonal electrodes, or interdigitated finger electrodes. In this example, the long, thin aspect ratio of the electrodes over the curved body 302 provides for complete contact between each electrode 304A, 304B, 304C and the patient's skin. In one aspect, electrodes of device 300 are approximately evenly spaced apart by from about 0.1 cm to about 5 cm, such as from about 0.2 cm to about 5 cm, from about 0.3 cm to about 5 cm, from about 0.4 cm to about 5 cm, from about 0.5 cm to about 5 cm, from about 1 cm to about 5 cm, from about 1.5 cm to about 5 cm, from about 2 cm to about 5 cm, from about 2.5 cm to about 5 cm, from about 3 cm to about 5 cm, from about 3.5 cm to about 5 cm, from about 4 cm to about 5 cm, from about 4.5 cm to about 5 cm, from about 0.1 cm to about 4.5 cm, from about 0.1 cm to about 4 cm, from about 0.1 cm to about 3.5 cm, from about 0.1 cm to about 3 cm, from about 0.1 cm to about 2.5 cm, from about 0.1 cm to about 2 cm, from about 0.1 cm to about 1.5 cm, from about 0.1 cm to about 1 cm, from about 0.1 cm to about 0.9 cm, from about 0.1 cm to about 0.8 cm, from about 0.1 cm to about 0.7 cm, from about 0.1 cm to about 0.6 cm, from about 0.1 cm to about 0.5 cm, from about 0.1 cm to about 0.4 cm, from about 0.1 cm to about 0.3 cm, from about 0.1 cm to about 0.2 cm, from about 0.5 cm to about 4.5 cm, from about 1 cm to about 4 cm, from about 1.5 cm to about 3.5 cm, or from about 2 cm to about 3 cm. In an aspect, there is an insulating cover layer over each of the electrodes 304A, 304B, 304C.


Still referring to FIG. 5C, the electrodes 304A, 304B, 304C are individually coupled to the electronics package or other controlling processor such that pairs of any two electrodes may be selected to form a two-electrode sensor. With an array of electrodes, a plurality of sensors may be formed to measure capacitance over a region without moving the device 300. For example, electrodes 304A, 304B can be paired to measure the SEM in the tissue between the electrodes 304A, 304B, then electrodes 304B, 304C can be paired to measure the SEM in the tissue between the electrodes 304B, 304C.


In an aspect, device 300 of the present disclosure is configured to attach to a medical device selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a nasal cannula, an IV/PICC line, a central line, a catheter, and a fecal management tube. In one aspect, device 300 has a mass of less than 5 grams, such as less than 4 grams, less than 3 grams, less than 2 grams, less than 1 gram, or less than 0.5 gram.



FIG. 6A depicts a patient 400 wearing a medical device 410 that incorporates a retention strap 414 to hold nosepiece 412 in place, in accordance with the present disclosure. In order to function, there must be tension in the elastic strap 414 and along the contact edges of nosepiece 412.



FIG. 6B is an enlarged view of a portion of the retention strap 414 of FIG. 6A, in accordance with the present disclosure. In this example, electrodes 418 are attached to the elastic 416 such that the electrodes 418 are in contact with the patient's skin while the device 410 is worn. In one aspect, electrodes 418 are elongated-shaped electrodes. In an aspect, similar electrodes (not shown in FIG. 6B) are located on the contact surface of the nosepiece. As described with respect to FIG. 5C, the individual electrodes of an array of electrodes 418 can be connected in various pairs to form sensors. In an aspect, the retention strap 414 includes one or more of a battery, a processor, data storage, and a communication element.


In an aspect, retention strap 414 may comprise two or more electrodes, such as three or more electrodes, four or more electrodes, five or more electrodes, ten or more electrodes, fifteen or more electrodes, twenty or more electrodes, twenty-five or more electrodes, thirty or more electrodes, forty or more electrodes, fifty or more electrodes or a hundred or more electrodes.


In one aspect, electrodes of retention strap 414 are approximately evenly spaced apart by from about 0.1 cm to about 5 cm when the retention strap is in a relaxed state, such as from about 0.2 cm to about 5 cm, from about 0.3 cm to about 5 cm, from about 0.4 cm to about 5 cm, from about 0.5 cm to about 5 cm, from about 1 cm to about 5 cm, from about 1.5 cm to about 5 cm, from about 2 cm to about 5 cm, from about 2.5 cm to about 5 cm, from about 3 cm to about 5 cm, from about 3.5 cm to about 5 cm, from about 4 cm to about 5 cm, from about 4.5 cm to about 5 cm, from about 0.1 cm to about 4.5 cm, from about 0.1 cm to about 4 cm, from about 0.1 cm to about 3.5 cm, from about 0.1 cm to about 3 cm, from about 0.1 cm to about 2.5 cm, from about 0.1 cm to about 2 cm, from about 0.1 cm to about 1.5 cm, from about 0.1 cm to about 1 cm, from about 0.1 cm to about 0.9 cm, from about 0.1 cm to about 0.8 cm, from about 0.1 cm to about 0.7 cm, from about 0.1 cm to about 0.6 cm, from about 0.1 cm to about 0.5 cm, from about 0.1 cm to about 0.4 cm, from about 0.1 cm to about 0.3 cm, from about 0.1 cm to about 0.2 cm, from about 0.5 cm to about 4.5 cm, from about 1 cm to about 4 cm, from about 1.5 cm to about 3.5 cm, or from about 2 cm to about 3 cm.


In an aspect, retention strap 414 of the present disclosure is configured to function as a tracheostomy strap. In one aspect, retention strap 414 of the present disclosure is configured to function as an abdominal binder. In an aspect, retention strap 414 of the present disclosure is configured to attach to an oxygen delivery mask. In one aspect, retention strap 414 of the present disclosure is configured to attach to an identification band.


In one aspect, a face of retention strap 414 has a surface area less than 6000 cm2, such as less than 5000 cm2, less than 4000 cm2, less than 3000 cm2, less than 2000 cm2, less than 1000 cm2, less than 500 cm2, less than 100 cm2, less than 50 cm2, less than 25 cm2, less than 20 cm2, less than 15 cm2, less than 10 cm2, or less than 5 cm2.



FIG. 7A depicts an example medical device 500 with controllable pressure management elements, in accordance with the present disclosure. In this example, the medical device 500 is a breathing mask that is representative of all devices where the application element is in long-term contact with the skin of a patient. In an aspect, a medical device having an application element in long-term contact with the skin of a patient is a collar or a cast. In one aspect, a medical device having an application element in long-term contact with the skin of a patient is a cervical collar or a cervical cast. In this example, the pressure management elements are inflatable pockets such as pocket 504, which is shown in an inactive, e.g., deflated, state. Pocket 506, by way of comparison, is shown in an active, e.g., inflated, state. When pockets 504, 506 are configured as shown in FIG. 7A, pressure is higher in the region of pocket 506 and lower in the region of pocket 504. In an aspect, the pressure in the region of pocket 504 is low enough to allow blood flow through the tissue of this region.


In an aspect, the pressure management elements are provided in sets such as pockets 510A, 501B, and 510C. These pockets may be manipulated in a coordinated fashion to shift the levels of contact pressure between the device 500 and the skin of the patient in the regions of the pockets 510A, 510B, 510C. For example, the pocket 510B is inflated while pockets 510A, 510C are deflated, creating a relatively high contact pressure area around pocket 510B and a relatively low, e.g. lower than the nominal pressure that would be present in the absence of a pressure management element, contact pressure in the regions of pockets 510A, 510C. This relatively low contact pressure allows adequate blood flow to the tissue in that region so as to avoid tissue damage. At a different time, one or both of pockets 510A, 510C are inflated while pocket 510B is deflated, thus reducing the contact pressure in the region of pocket 510B.


In an aspect, the pockets are flexible membranes that comprise a portion of the walls of a sealed compartment that is within or on the surface of device 500. In an aspect, at least one of the walls of the pockets is stretchable. In one aspect, when the pockets are situated within the surface of device 500, the wall of device 500 that is in contact with the skin of a patient is also stretchable.


The words “force” and “pressure” are considered to be interchangeable within the context of this disclosure. A higher pressure within a pocket will apply a greater pressure over the area of the pocket, which produces a higher total force (pressure×area=force). A greater amount of fluid in the pocket does not intrinsically apply a higher pressure or force; the raised height of the pocket will cause the patient's skin to come in contact with the inflated pocket first and thereby the inflated pocket will provide a greater portion of the total force applied by the device 500 to the patient's skin and such is equivalent to providing a greater pressure and/or force.


Pockets may be fully inflated, fully deflated, or partially inflated to an intermediate pressure. In an aspect, the pockets may be inflated with a gas or a liquid or other fluid. The word “inflation” is interpreted as an indication of pressure or, equivalently, of the amount of fluid within the pocket, such that the phrase “higher inflation” includes the situation of a greater amount of fluid in the compartment.


In an aspect, the pockets are connected to a source of pressurized fluid through elements such as tubing, valves, pressure regulators (not shown in FIG. 7A) that are coupled to and controlled by a controller (not shown in FIG. 7A). In an aspect, the source of pressurized fluid may be the same source of fluid being provided to the patient through the medical device 500, for example pressurized oxygen-enriched air. In an aspect, the controller of the pressure management element is a part of the electronics package 240 of FIG. 4B.


In an aspect, the pressure management element is a mechanical element whose height can be adjusted. In an aspect, the adjustment is provided with an electrical actuator. In an aspect, the actuator comprises a piezoelectric element that causes a change in the height of the element. In an aspect, the pressure management element is a fixed height element that moves parallel to the skin of the patient such that the contact pressure is increased in the region of contact between the element and the skin and reduced in other regions.



FIG. 7B illustrates another medical device that is a strap 520 similar to the strap 414 shown in FIGS. 6A and 6B. In this example, the strap 520 comprises a band 522 with pockets such as pockets 524, 526 spaced along the band 522. In this example, pocket 524 is inactive and pocket 526 is active, causing the contact pressure under pocket 526 to be higher than the contact pressure under pocket 524. In an aspect, the band 522 is overlaid with an array of electrodes 418 (not visible in FIG. 7B) such that strap 520 can both measure SEM and manage the pressure applied by the strap 520 to the patient's skin.


In an aspect, the change in inflation of the pockets is driven by an SEM reading taken, for example, by the electrodes 418 of FIG. 6B. In one aspect, the change in inflation of the pockets is driven by a delta value that is, in an aspect, the difference between the highest SEM value and the lowest SEM value in a set of measurements. In an aspect, a set of measurements includes measurements taken at a single location. In one aspect, a set of measurements includes measurements taken at multiple locations. In one aspect, a set of measurements is taken at approximately the same time, such as within 10 minutes, within 5 minutes, within 1 minute, within 30 seconds, within 10 seconds, within 5 seconds, or within 1 second. In an aspect, a delta value is calculated by the difference between the most recent SEM value and the cumulative average SEM value over a period of time. In one aspect, a cumulative average SEM value is derived from a set of SEM measurements taken since the first use of the medical device. In an aspect, a cumulative average SEM value is derived from SEM measurements taken within approximately a year, such as within 9 months, within 6 months, within 5 months, within 4 months, within 3 months, within 2 months, within 1 month, within four weeks, within three weeks, within two weeks, within one week, within 6 days, within 5 days, within 4 days, within 3 days, within 2 days, within 1 day, within 16 hours, within 12 hours, within 8 hours, within 4 hours, within 3 hours, within 2 hours, within 1 hour, within 45 minutes, within 30 minutes, within 15 minutes, within 10 minutes, or within 5 minutes.


In an aspect, the change in inflation of the pockets is driven by how a calculated delta value is compared to a threshold. When the delta value exceeds the threshold, inflation pattern of the pockets changes to shift the pressure applied to the patients. There may be multiple thresholds used to determine the inflation pattern of the pockets.


In an aspect, the change in inflation is caused by a timer that regularly shifts the pressure applied to the patient by changing the pattern of active pressure management elements, for example by inflating and deflating different pockets.


In an aspect, a series of predetermined configurations of the pressure management elements are defined and the timer configured to execute a programmed series of changes between these configurations at predefined times. In an aspect, the changes between predetermined configurations are based on SEM readings taken of the patient.


In an aspect, there is a configuration of which pockets are inflated and this default is maintained until a SEM reading indicates a problem, whereupon certain pockets are deflated or reduced in inflation height.


From the foregoing, it will be appreciated that the present invention can be embodied in various ways, which include but are not limited to the following:


Embodiment 1. An apparatus for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising: a first electrode and a second electrode configured to measure a level of sub-epidermal moisture (SEM) in tissue proximate to the point of contact, an electronics package individually connected to the first and second electrodes and configured to measure a capacitance between the first and second electrodes.


Embodiment 2. The apparatus of embodiment 1, where the first and second electrodes are configured to be attached to the medical device.


Embodiment 3. The apparatus of embodiment 1 or 2, where the first and second electrodes are shaped such that the entire surface of each electrode can contact the patient's skin while the medical device is in use.


Embodiment 4. The apparatus of any one of embodiments 1 to 3, further comprising a body coupled to the first and second electrodes, the body configured to be interposed between the medical device and the patient's skin when the medical device is in use.


Embodiment 5. The apparatus of embodiment 4, where the body is further configured to be attached to the medical device.


Embodiment 6. The apparatus of any one of embodiments 1 to 5, further comprising a communication element configured to provide real-time transfer of SEM measurements to a computing unit.


Embodiment 7. The apparatus of any one of embodiments 1 to 6, where the apparatus is a clip configured to attach to a tube of the medical device.


Embodiment 8. The apparatus of embodiment 7, where the tube is selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a catheter, and a fecal management tube.


Embodiment 9. The apparatus of any one of embodiments 1 to 6, where the apparatus is a strap configured to attach to the medical device.


Embodiment 10. The apparatus of embodiment 9, where the medical device is a mask.


Embodiment 11. The apparatus of any one of embodiments 1 to 6, where the medical device is a collar or a cast.


Embodiment 12. The apparatus of any one of embodiments 1 to 11, where the apparatus further comprises one or more pressure management elements.


Embodiment 13. The apparatus of embodiment 12, where each of the one or more pressure management elements is an inflatable pocket.


Embodiment 14. A method for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising the steps of: measuring a plurality of sub-epidermal moisture (SEM) values of tissue proximate to the point of contact at incremental times, comparing the plurality of SEM values, and determining if there is a significant increase in the SEM that indicates that there is tissue damage.


Embodiment 15. The method of embodiment 14, where there is a significant increase when the largest SEM value of the plurality of SEM values is greater than the smallest SEM value of the plurality of SEM values by an amount that exceeds a threshold.


Embodiment 16. The method of embodiment 14, where there is a significant increase when the largest SEM value of the plurality of SEM values is greater than a threshold.


Embodiment 17. The method of any one of embodiments 14 to 16, where a first measurement of the SEM value is made at the time of the first use of the medical device.


Embodiment 18. The method of any one of embodiments 14 to 17, where the medical device comprises a tube selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a catheter, and a fecal management tube.


Embodiment 19. The method of any one of embodiments 14 to 17, where the medical device is a mask.


Embodiment 20. The method of any one of embodiments 14 to 17, where the medical device is a collar or a cast.

Claims
  • 1. An apparatus for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising: a first electrode and a second electrode configured to measure a level of sub-epidermal moisture (SEM) in tissue proximate to the point of contact,an electronics package individually connected to the first and second electrodes and configured to measure a capacitance between the first and second electrodes,wherein the medical device is a mask.
  • 2. The apparatus of claim 1, wherein the first and second electrodes are configured to be attached to the medical device.
  • 3. The apparatus of claim 1, wherein the first and second electrodes are shaped such that the entire surface of each electrode can contact the patient's skin while the medical device is in use.
  • 4. The apparatus of claim 1, further comprising a communication element configured to provide real-time transfer of SEM measurements to a computing unit.
  • 5. The apparatus of claim 1, wherein the mask is selected from the group consisting of a Continuous Positive Airway Pressure (CPAP) mask, a face mask, an oxygen delivery mask, and a breathing mask.
  • 6. The apparatus of claim 1, wherein the apparatus further comprises one or more pressure management elements.
  • 7. The apparatus of claim 6, wherein the one or more pressure management elements comprise one or more inflatable pockets.
  • 8. The apparatus of claim 7, wherein the one or more inflatable pockets are flexible membranes that comprise a portion of one or more walls of a sealed compartment that is within or on the surface of the mask.
  • 9. The apparatus of claim 8, wherein at least one of the one or more walls of the one or more inflatable pockets is stretchable.
  • 10. The apparatus of claim 8, wherein at least one portion of the one or more walls of the one or more inflatable pockets is stretchable.
  • 11. The apparatus of claim 8, wherein the sealed compartment is within the surface of the mask and at least a portion of the one or more walls of the sealed compartment that is in contact with the skin of the patient is stretchable.
  • 12. The apparatus of claim 7, wherein the one or more inflatable pockets are inflated with a gas, a liquid, a pressurized fluid, or other fluid.
  • 13. The apparatus of claim 12, wherein the one or more inflatable pockets are connected to a source of the pressurized fluid through one or more elements selected from the group consisting of tubing, valves, pressure regulators coupled to and controlled by a controller, and a combination thereof.
  • 14. The apparatus of claim 13, wherein the pressurized fluid is also provided to the patient via the mask.
  • 15. The apparatus of claim 13, wherein the controller is a part of the electronics package.
  • 16. The apparatus of claim 6, wherein the one or more pressure management elements comprise a mechanical element whose height can be adjusted.
  • 17. The apparatus of claim 16, wherein the height of the mechanical element is adjusted with an electrical actuator.
  • 18. The apparatus of claim 17, wherein the actuator comprises a piezoelectric element that causes a change in height of the element.
  • 19. The apparatus of claim 6, wherein the one or more pressure management elements comprise a fixed height element that moves parallel to the skin of the patient such that the contact pressure is increased in the region of contact between the element and the skin and reduced in other regions.
  • 20. A method for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising the steps of: measuring a plurality of sub-epidermal moisture (SEM) values of tissue proximate to the point of contact at incremental times,comparing the plurality of SEM values, anddetermining if there is a significant increase in the SEM that indicates that there is tissue damage;wherein the medical device is a mask selected from the group consisting of a Continuous Positive Airway Pressure (CPAP) mask, a face mask, an oxygen delivery mask, and a breathing mask.
  • 21. The method of claim 20, wherein there is a significant increase when the largest SEM value of the plurality of SEM values is greater than the smallest SEM value of the plurality of SEM values by an amount that exceeds a threshold.
  • 22. The method of claim 20, wherein there is a significant increase when the largest SEM value of the plurality of SEM values is greater than a threshold.
  • 23. The method of claim 20, wherein a first measurement of the SEM value is made at the time of the first use of the medical device.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-Provisional application Ser. No. 16/271,040 filed Feb. 8, 2019, which claims the benefit of U.S. Provisional Application No. 62/628,676, which was filed on Feb. 9, 2018, the entirety of each of which is incorporated herein by reference.

US Referenced Citations (272)
Number Name Date Kind
3851641 Toole et al. Dec 1974 A
4295009 Weidler Oct 1981 A
4557271 Stoller et al. Dec 1985 A
4857716 Gombrich et al. Aug 1989 A
4860753 Amerena Aug 1989 A
5001436 Scot Mar 1991 A
5073126 Kikuchi et al. Dec 1991 A
5152296 Simons Oct 1992 A
5284150 Butterfield et al. Feb 1994 A
5292341 Snell Mar 1994 A
5367789 Lamont Nov 1994 A
5815416 Liebmann et al. Sep 1998 A
5904581 Pope et al. May 1999 A
6204749 Ishihara Mar 2001 B1
6223088 Scharnberg et al. Apr 2001 B1
6254435 Cheong et al. Jul 2001 B1
6312263 Higuchi et al. Nov 2001 B1
6330479 Stauffer Dec 2001 B1
6368284 Bardy Apr 2002 B1
6370426 Campbell et al. Apr 2002 B1
6434422 Tomoda et al. Aug 2002 B1
6577700 Fan et al. Jun 2003 B1
6634045 DuDonis et al. Oct 2003 B1
6738798 Ploetz et al. May 2004 B1
6756793 Hirono et al. Jun 2004 B2
6963772 Bloom et al. Nov 2005 B2
7079899 Petrofsky Jul 2006 B2
7291023 Still et al. Nov 2007 B1
7315767 Caduff et al. Jan 2008 B2
7402135 Leveque et al. Jul 2008 B2
7783344 Lackey et al. Aug 2010 B2
8011041 Hann Sep 2011 B2
8060315 Brosette et al. Nov 2011 B2
8355925 Rothman et al. Jan 2013 B2
8390583 Forutanpour et al. Mar 2013 B2
8494617 Baker, Jr. et al. Jul 2013 B2
8648707 Franz et al. Feb 2014 B2
8690785 Lading Apr 2014 B2
8925392 Esposito et al. Jan 2015 B2
9028407 Bennett-Guerrero May 2015 B1
9095305 Engler et al. Aug 2015 B2
9220455 Sarrafzadeh et al. Dec 2015 B2
9271676 Alanen et al. Mar 2016 B2
9398879 Sarrafzadeh et al. Jul 2016 B2
9675289 Heaton Jun 2017 B2
9763596 Tonar et al. Sep 2017 B2
9949683 Afentakis Apr 2018 B2
9980673 Sarrafzadeh et al. May 2018 B2
10085643 Bandic et al. Oct 2018 B2
10166387 Bergelin et al. Jan 2019 B2
10178961 Tonar et al. Jan 2019 B2
10182740 Tonar et al. Jan 2019 B2
10188340 Sarrafzadeh et al. Jan 2019 B2
10194856 Afentakis et al. Feb 2019 B2
10206604 Bergelin et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10278636 Wu et al. May 2019 B2
10285898 Douglas et al. May 2019 B2
10307060 Tran Jun 2019 B2
10342482 Lisy et al. Jul 2019 B1
10383527 A1-Ali Aug 2019 B2
10420602 Horton et al. Sep 2019 B2
10441185 Rogers et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10463293 Maharbiz et al. Nov 2019 B2
10485447 Tonar et al. Nov 2019 B2
10898129 Burns et al. Jan 2021 B2
10950960 Burns et al. Mar 2021 B2
10959664 Burns et al. Mar 2021 B2
11191477 Burns Dec 2021 B2
11253192 Sarrafzadeh et al. Feb 2022 B2
11284810 Tonar et al. Mar 2022 B2
11304652 Burns et al. Apr 2022 B2
11337651 Burns et al. May 2022 B2
11342696 Burns et al. May 2022 B2
11426118 Burns Aug 2022 B2
11471094 Burns Oct 2022 B2
11534077 Tonar et al. Dec 2022 B2
11600939 Burns et al. Mar 2023 B2
11627910 Burns et al. Apr 2023 B2
11642075 Burns et al. May 2023 B2
20010049609 Girouard et al. Dec 2001 A1
20010051783 Edwards et al. Dec 2001 A1
20020016535 Martin et al. Feb 2002 A1
20020032485 Flam et al. Mar 2002 A1
20020070866 Newham Jun 2002 A1
20020112898 Honda et al. Aug 2002 A1
20020143262 Bardy Oct 2002 A1
20030009244 Engleson et al. Jan 2003 A1
20030036674 Bouton Feb 2003 A1
20030036713 Bouton et al. Feb 2003 A1
20030110662 Gilman et al. Jun 2003 A1
20030116447 Surridge et al. Jun 2003 A1
20030130427 Cleary et al. Jul 2003 A1
20030139255 Lina Jul 2003 A1
20030199783 Bloom et al. Oct 2003 A1
20040041029 Postman et al. Mar 2004 A1
20040046668 Smith et al. Mar 2004 A1
20040054298 Masuo et al. Mar 2004 A1
20040080325 Ogura Apr 2004 A1
20040133092 Kain Jul 2004 A1
20040147977 Petrofsky Jul 2004 A1
20040171962 Leveque et al. Sep 2004 A1
20040176754 Island et al. Sep 2004 A1
20040236200 Say et al. Nov 2004 A1
20040254457 Van Der Weide Dec 2004 A1
20050027175 Yang Feb 2005 A1
20050070778 Lackey et al. Mar 2005 A1
20050086072 Fox, Jr. et al. Apr 2005 A1
20050096513 Ozguz et al. May 2005 A1
20050177061 Alanen et al. Aug 2005 A1
20050203435 Nakada Sep 2005 A1
20050215918 Frantz et al. Sep 2005 A1
20050245795 Goode et al. Nov 2005 A1
20050251418 Fox, Jr. et al. Nov 2005 A1
20060052678 Drinan et al. Mar 2006 A1
20060058593 Drinan et al. Mar 2006 A1
20060097949 Luebke et al. May 2006 A1
20060206013 Rothman et al. Sep 2006 A1
20070043282 Mannheimer et al. Feb 2007 A1
20070051362 Sullivan et al. Mar 2007 A1
20070106172 Abreu May 2007 A1
20070179585 Chandler et al. Aug 2007 A1
20070185392 Sherman et al. Aug 2007 A1
20070191273 Ambati et al. Aug 2007 A1
20070213700 Davison et al. Sep 2007 A1
20070248542 Kane et al. Oct 2007 A1
20080009764 Davies Jan 2008 A1
20080015894 Miller et al. Jan 2008 A1
20080027509 Andino et al. Jan 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080048680 Hargreaves et al. Feb 2008 A1
20080054276 Vogel et al. Mar 2008 A1
20080063363 Kientz et al. Mar 2008 A1
20080166268 Yamaguchi et al. Jul 2008 A1
20080259577 Hu et al. Oct 2008 A1
20080278336 Ortega et al. Nov 2008 A1
20090047694 Shuber Feb 2009 A1
20090076410 Libbus et al. Mar 2009 A1
20090104797 Tseng et al. Apr 2009 A1
20090124924 Eror et al. May 2009 A1
20090189092 Aoi et al. Jul 2009 A1
20090209830 Nagle et al. Aug 2009 A1
20090285785 Jimi et al. Nov 2009 A1
20090306487 Crowe et al. Dec 2009 A1
20090326346 Kracker et al. Dec 2009 A1
20100017182 Voros et al. Jan 2010 A1
20100030167 Thirstrup et al. Feb 2010 A1
20100042389 Farruggia et al. Feb 2010 A1
20100073170 Siejko et al. Mar 2010 A1
20100113979 Sarrafzadeh et al. May 2010 A1
20100268111 Drinan et al. Oct 2010 A1
20100298687 Yoo et al. Nov 2010 A1
20100312233 Furnish et al. Dec 2010 A1
20100324455 Rangel et al. Dec 2010 A1
20100324611 Deming et al. Dec 2010 A1
20110046505 Cornish et al. Feb 2011 A1
20110160548 Forster Jun 2011 A1
20110175844 Berggren Jul 2011 A1
20110184264 Galasso, Jr. et al. Jul 2011 A1
20110191122 Kharraz Tavakol et al. Aug 2011 A1
20110237926 Jensen Sep 2011 A1
20110263950 Larson et al. Oct 2011 A1
20110301441 Bandic et al. Dec 2011 A1
20110313311 Gaw Dec 2011 A1
20120029410 Koenig et al. Feb 2012 A1
20120061257 Yu et al. Mar 2012 A1
20120078088 Whitestone et al. Mar 2012 A1
20120150011 Besio Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120190989 Kaiser et al. Jul 2012 A1
20120271121 Della Torre et al. Oct 2012 A1
20130041235 Rogers et al. Feb 2013 A1
20130072870 Heppe et al. Mar 2013 A1
20130121544 Sarrafzadeh et al. May 2013 A1
20130123587 Sarrafzadeh et al. May 2013 A1
20130137951 Chuang et al. May 2013 A1
20130253285 Bly et al. Sep 2013 A1
20130261496 Engler et al. Oct 2013 A1
20130301255 Kim et al. Nov 2013 A1
20130310440 Duskin et al. Nov 2013 A1
20130333094 Rogers et al. Dec 2013 A1
20130338661 Behnke, II Dec 2013 A1
20140121479 O'Connor et al. May 2014 A1
20140142984 Wright et al. May 2014 A1
20140200486 Bechtel et al. Jul 2014 A1
20140221792 Miller et al. Aug 2014 A1
20140273025 Hurskainen et al. Sep 2014 A1
20140275823 Lane et al. Sep 2014 A1
20140288397 Sarrafzadeh et al. Sep 2014 A1
20140298928 Duesterhoft et al. Oct 2014 A1
20140316297 McCaughan et al. Oct 2014 A1
20140318699 Longinotti-Buitoni et al. Oct 2014 A1
20150002168 Kao et al. Jan 2015 A1
20150009168 Levesque et al. Jan 2015 A1
20150094548 Sabatini et al. Apr 2015 A1
20150157435 Chasins et al. Jun 2015 A1
20150186607 Gileijnse et al. Jul 2015 A1
20150230863 Youngquist et al. Aug 2015 A1
20150343173 Tobescu et al. Dec 2015 A1
20150363567 Pettus Dec 2015 A1
20150366499 Sarrafzadeh et al. Dec 2015 A1
20150371522 Mravyan et al. Dec 2015 A1
20160015962 Shokoueinejad Maragheh et al. Jan 2016 A1
20160038055 Wheeler et al. Feb 2016 A1
20160058342 Maiz-Aguinaga et al. Mar 2016 A1
20160072308 Nyberg et al. Mar 2016 A1
20160100790 Cantu et al. Apr 2016 A1
20160101282 Bergelin et al. Apr 2016 A1
20160166438 Rovaniemi Jun 2016 A1
20160174631 Tong et al. Jun 2016 A1
20160174871 Sarrafzadeh et al. Jun 2016 A1
20160220172 Sarrafzadeh et al. Aug 2016 A1
20160270672 Chen et al. Sep 2016 A1
20160270968 Stanford et al. Sep 2016 A1
20160278692 Larson et al. Sep 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160310034 Tonar et al. Oct 2016 A1
20160338591 Lachenbruch et al. Nov 2016 A1
20170007153 Tonar et al. Jan 2017 A1
20170014044 Tonar et al. Jan 2017 A1
20170014045 Tonar et al. Jan 2017 A1
20170105646 Bryenton et al. Apr 2017 A1
20170156658 Maharbiz et al. Jun 2017 A1
20170172489 Afentakis Jun 2017 A1
20170188841 Ma et al. Jul 2017 A1
20170238849 Chapman et al. Aug 2017 A1
20170255812 Kwon Sep 2017 A1
20170311807 Fu et al. Nov 2017 A1
20170319073 DiMaio et al. Nov 2017 A1
20180020058 Martines et al. Jan 2018 A1
20180045725 Yoo et al. Feb 2018 A1
20180220924 Burns et al. Aug 2018 A1
20180220953 Burns et al. Aug 2018 A1
20180220954 Burns et al. Aug 2018 A1
20180220961 Burns et al. Aug 2018 A1
20180360344 Burns et al. Dec 2018 A1
20190000352 Everett et al. Jan 2019 A1
20190038133 Tran Feb 2019 A1
20190053751 Torres Feb 2019 A1
20190060602 Tran et al. Feb 2019 A1
20190069836 Hettrick Mar 2019 A1
20190104981 Sarrafzadeh et al. Apr 2019 A1
20190104982 Dunn et al. Apr 2019 A1
20190117964 Bahrami et al. Apr 2019 A1
20190134396 Toth et al. May 2019 A1
20190142333 Burns et al. May 2019 A1
20190147990 Burns et al. May 2019 A1
20190148901 Komoto May 2019 A1
20190150882 Maharbiz et al. May 2019 A1
20190175098 Burns et al. Jun 2019 A1
20190192066 Schoess et al. Jun 2019 A1
20190246972 Burns et al. Aug 2019 A1
20190282436 Douglas et al. Sep 2019 A1
20190290189 Sarrafzadeh et al. Sep 2019 A1
20190307360 Tonar et al. Oct 2019 A1
20190307405 Terry et al. Oct 2019 A1
20200008299 Tran et al. Jan 2020 A1
20200043607 Zerhusen et al. Feb 2020 A1
20200069240 Burns Mar 2020 A1
20200069241 Burns Mar 2020 A1
20200069242 Burns et al. Mar 2020 A1
20200077892 Tran Mar 2020 A1
20200078499 Gadde et al. Mar 2020 A1
20200093395 Tonar et al. Mar 2020 A1
20200100723 Burns Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200127398 Burns et al. Apr 2020 A1
20200296821 Trublowski et al. Sep 2020 A1
20200297244 Brownhill et al. Sep 2020 A1
20200297255 Martinez et al. Sep 2020 A1
20220287584 Burns et al. Sep 2022 A1
Foreign Referenced Citations (94)
Number Date Country
2020103438 Jan 2021 AU
2811609 Nov 2011 CA
2609842 Oct 2016 CA
204119175 Jan 2015 CN
104352230 Feb 2015 CN
104567657 Apr 2015 CN
105578333 May 2016 CN
105963074 Sep 2016 CN
208111467 Nov 2018 CN
102012011212 Jan 2012 DE
1080687 Mar 2001 EP
1372475 Jan 2004 EP
1569553 Sep 2005 EP
3092946 Nov 2016 EP
3280488 Dec 2018 EP
2584808 Dec 2020 GB
2000-060805 Feb 2000 JP
2001-178705 Jul 2001 JP
2001-326773 Nov 2001 JP
2003-169787 Jun 2003 JP
2003-169788 Jun 2003 JP
2003-290166 Oct 2003 JP
2005-52227 Mar 2005 JP
2009-268611 Nov 2009 JP
4418419 Feb 2010 JP
2013-198639 Oct 2013 JP
2015-134074 Jul 2015 JP
10-2014-0058445 May 2014 KR
1996010951 Apr 1996 WO
2001054580 Aug 2001 WO
2002080770 Oct 2002 WO
2004105602 Dec 2004 WO
2005099644 Oct 2005 WO
2006029035 Mar 2006 WO
2007098762 Sep 2007 WO
2009144615 Dec 2009 WO
2010060102 May 2010 WO
2011004165 Jan 2011 WO
2011022418 Feb 2011 WO
2011048556 Apr 2011 WO
2011080080 Jul 2011 WO
2011080262 Jul 2011 WO
2011091517 Aug 2011 WO
2011143071 Nov 2011 WO
2013033724 Mar 2013 WO
2013114356 Aug 2013 WO
2013116242 Aug 2013 WO
2013140714 Sep 2013 WO
2014186894 Nov 2014 WO
2015003015 Jan 2015 WO
2015022583 Feb 2015 WO
2015077838 Jun 2015 WO
2015168720 Nov 2015 WO
2015169911 Nov 2015 WO
2015195720 Dec 2015 WO
2016098062 Jun 2016 WO
2016172263 Oct 2016 WO
2016172264 Oct 2016 WO
2017032393 Mar 2017 WO
2017214188 Dec 2017 WO
2017218818 Dec 2017 WO
2018071715 Apr 2018 WO
2018077560 May 2018 WO
2018115461 Jun 2018 WO
2018144938 Aug 2018 WO
2018144941 Aug 2018 WO
2018144943 Aug 2018 WO
2018144946 Aug 2018 WO
2018168424 Sep 2018 WO
2018189265 Oct 2018 WO
2018209100 Nov 2018 WO
2018234443 Dec 2018 WO
2018236739 Dec 2018 WO
2019020551 Jan 2019 WO
2019030384 Feb 2019 WO
2019048624 Mar 2019 WO
2019048626 Mar 2019 WO
2019048638 Mar 2019 WO
2019072531 Apr 2019 WO
2019073389 Apr 2019 WO
2019076967 Apr 2019 WO
2019096828 May 2019 WO
2019099810 May 2019 WO
2019099812 May 2019 WO
2019113481 Jun 2019 WO
2019157290 Aug 2019 WO
2019162272 Aug 2019 WO
2020014779 Jan 2020 WO
2020043806 Mar 2020 WO
2020053290 Mar 2020 WO
2020077100 Apr 2020 WO
2020187643 Sep 2020 WO
2020187851 Sep 2020 WO
2020234429 Nov 2020 WO
Non-Patent Literature Citations (145)
Entry
Alanen, “Measurement of Hydration in the Stratum Corneum with the MoistureMeter and Comparison with the Corneometer,” Skin Research and Technology, 10:32-37 (2004).
Alberts et al., “The Extracellular Matrix of Animals,” Molecular Biology of the Cell, 4th ed., pp. 1065-1127 (2002).
Allman et al., “Pressure Ulcer Risk Factors Among Hospitalized Patients with Activity Limitation,” JAMA, 273:865-870 (1995).
Anonymous, “Recommended Practices for Positioning the Patient in the Perioperative Practice Setting,” in Perioperative Standards, Recommended Practices, and Guidelines, AORN, Inc., 525-548 (2006).
Arao et al., “Morphological Characteristics of the Dermal Papillae in the Development of Pressure Sores,” World Wide Wounds (Mar. 1999), 6 pages (obtained online).
Australian Intellectual Property Office, Office Action dated May 1, 2014, for corresponding Australian patent application No. 2011253253 (pp. 1-10) and pending claims (pp. 11-15) pp. 1-15.
Australian Patent Office, Office Action dated Jun. 1, 2015, for corresponding Australian Patent Application No. 2011253253 (pp. 1-4) and claims (pp. 5-10) pp. 1-10.
Bader et al., “Effect of Externally Applied Skin Surface Forces on Tissue Vasculature,” Archives of Physical Medicine and Rehabilitation, 67(11):807-11 (1986).
Barnes, “Moisture Meters for Use on Thin Lumber and Veneers,” Moisture Register Co., 1-5 (1956).
Bates-Jensen et al., “Subepidermal Moisture Predicts Erythema and Stage 1 Pressure Ulcers in Nursing Home Residents: A Pilot Study,” Journal of the American Geriatric Society, 55:1199-1205 (2007).
Bates-Jensen et al., “Subepidermal moisture differentiates erythema and stage 1 pressure ulcers in nursing home residents,” Wound Repair Regeneration, 16:189-197 (2008).
Bates-Jensen et al., “Subepidermal Moisture Is Associated with Early Pressure Ulcer Damage in Nursing Home Residents with Dark Skin Tones; Pilot Findings,” Journal of Wound Ostomy and Continence Nursing, 36(3):277-284 (2009).
Bates-Jensen et al., “Subepidermal Moisture Detection of Pressure Induced Tissue Damage on the Trunk: The Pressure Ulcer Detection Study Outcomes,” Wound Repair and Regeneration, 25:502-511 (2017).
Berggren, “Capacitive Biosensors,” Electroanalysis, 13(3):173-180 (2001), Wiley-VCH (publisher), Weinheim, Germany.
Bergstrand et al., “Pressure-induced Vasodilation and Reactive Hyperemia at Different Depths in Sacral Tissue Under Clinically Relevant Conditions,” Microcirculation, 21:761-771 (2014).
Bergstrom et al., “Pressure Ulcers in Adults: Prediction and Prevention,” Clinical Practice Guideline—Quick Reference Guide for Clinicians, 117 (1992).
Black et al., “Differential Diagnosis of Suspected Deep Tissue Injury,” International Wound Journal, 13(4):531-539 (2015).
Brem et al., “Protocol for the Successful Treatment of Pressure Ulcers,” The American Journal of Surgery, 188 (Suppl. To Jul. 2004):9S-17S (2004).
Brem et al. “High cost of stage IV pressure ulcers,” American Journal of Surgery, 200:473-477 (2010).
Brienza et al., “Friction-Induced Skin Injuries—Are They Pressure Ulcers?,” Journal of Wound Ostomy and Continence Nursing, 42(1):62-64 (2015).
Carmo-Araujo et al., “Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies,” International Journal of Experimental Pathology, 88:147-154 (2007).
Ceelen et al., “Compression-induced damage and internal tissue strains are related,” Journal of Biomechanics, 41:3399-3404 (2008).
Ching et al., “Tissue electrical properties monitoring for the prevention of pressure sore,” Prosthetics and Orthotics International, 35(4):386-394 (2011).
Clendenin et al., “Inter-operator and inter-device agreement and reliability of the SEM Scanner,” Journal of Tissue Viability, 24(1):17-23 (2015).
De Lorenzo et al., “Predicting body cell mass with bioimpedance by using theoretical methods: a technological review,” Journal of Applied Physiology, 82(5):1542-1558 (1997).
De Oliveira et al., “Sub-epidermal moisture versus tradition and visual skin assessments to assess pressure ulcer risk in surgery patients,” Journal of Wound Care, 31(3):254-264 (2022), Mark Allen Group (pub.) (obtained online).
Demarre et al., “The cost of pressure ulcer prevention and treatment in hospitals and nursing homes in Flanders: A cost-of-illness study,” International Journal of Nursing Studies, 1-14 (2015).
Dodde et al., “Bioimpedance of soft tissue under compression,” Physiology Measurement, 33(6):1095-1109 (2012).
Dupont, “Pyralux® FR Coverlay, Bondply & Sheet Adhesive,” webage, Retrieved from: www2.dupont.com/Pyralux/en_US/products/adhesives_films/FR/FR_films_html pp. 1-2 (2012).
DuPont, “General Specifications for Kapton Polyimide Film,” Retrieved from Dupont: http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/Gen_Specs.pdf, pp. 1-7 (2012).
DuPont, “Pyralux® FR Copper-clad Laminate,” webpage, Retrieved from: www2.dupont.com/Pyraluxlen_US/ productsllaminate/FR/pyralux_fr.html, pp. 1-2 (2012).
Eberlein-Gonska et al., “The Incidence and Determinants of Decubitus Ulcers in Hospital Care: An Analysis of Routine Quality Management Data at a University Hospital,” Deutsches Arzteblatt International, 110(33-34):550-556 (2013).
European Patent Office, ESSR issued on Aug. 22, 2014, for corresponding European Patent Application No. 11781061.4 (pp. 1-7) and pending claims (pp. 3-10) pp. 1-10.
European Patent Office, Office Action dated Jul. 13, 2015, for corresponding European Patent Application No. 11781061.4 (pp. 1-5) and claims (pp. 6-9) pp. 1-9.
Extended European Search Report dated Aug. 30, 2016, in European Patent Application No. 16169670.
Extended European Search Report dated Oct. 18, 2016, in European Patent Application No. 16166483.4.
Extended European Search Report dated Mar. 13, 2017, in European Patent Application No. 16196899.5.
Extended European Search Report dated Oct. 25, 2019, in European Patent Application No. 19186393.5.
Extended European Search Report dated Nov. 19, 2019, in European Patent Application No. 19190000.0.
Extended European Search Report dated Feb. 6, 2020, in European Patent Application No. 18748733.5.
Extended European Search Report dated Feb. 10, 2020, in European Patent Application No. 18748025.6.
Extended European Search Report dated Feb. 10, 2020, in European Patent Application No. 18748512.3.
Extended European Search Report dated Jun. 24, 2020, in European Patent Application No. 18747707.0.
Extended European Search Report dated Mar. 17, 2022, in European Patent Application No. 19838240.0.
Extended European Search Report dated May 24, 2022, in European Patent Application No. 19871332.3.
Ford, “Hospice Wins Award for Innovation in Pressure Ulcer Prevention,” Nursing Times, downloaded and printed on Apr. 18, 2020, from https://www.nursingtimes.net/news/research-and-innovation/hospice-wins-award-for-innovation-in-pressure-ulcer-prevention-30-11-2018/ (2018).
Gabriel et al., “The dielectric properties of bilogical tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Physics in Medicine and Biology, 41:2251-69 (1996).
Gabriel, “Compilation of the Dielectric Properties of Body Tissues at Rf and Microwave Frequencies Report,” Occupational and Environmental Health Directorate, (1996).
Gardiner et al., “Incidence of hospital-acquired pressure ulcers—a population-based cohort study,” International Wound Journal, 11(6):696-700 (2014).
Gershon et al., “SEM Scanner Readings to Assess Pressure Induced Tissue Damage,” Proceedings of the 17th Annual European Pressure Ulcer Advisory Panel (EPUAP) meeting, Stockholm, Sweden (2014).
Gonzalez-Correa et al., “Electrical bioimpedance readings increase with higher pressure applied to the measuring probe,” Physiology Measurement, 26:S39-S47 (2005).
Great Britain Search Report dated Apr. 27, 2020, in Great Britain Patent Application No. GB2002889.0.
Great Britain Search Report dated Jun. 28, 2021, in Great Britain Patent Application No. GB2106848.1.
Great Britain Search Report dated Feb. 9, 2022, in Great Britain Patent Application No. GB2118088.0.
Great Britain Search Report dated Feb. 14, 2022, in Great Britain Patent Application No. GB2118092.2.
Guihan et al., “Assessing the feasibility of subepidermal moisture to predict erythema and stage 1 pressure ulcers in persons with spinal cord injury: A pilot study,” Journal of Spinal Cord Medicine, 35(1):46-52 (2012).
Harrow, “Subepidermal moisture surrounding pressure ulcers in persons with a spinal cord injury: A pilot study,” Journal of Spinal Cord Medicine, 37(6):719-728 (2014).
Hou, “Section IV. Osteofascial Compartment Syndrome,” Limbs Trauma, 7:215-217 (2016), Hubei Science & Technology Publishing House (pub.), Wuhan, China.
Houwing et al., “Pressure-induced skin lesions in pigs: reperfusion injury and the effects of vitamin E,” Journal of Wound Care, 9(1):36-40 (2000).
Huang et al., “A device for skin moisture and environment humidity detection,” Sensors and Actuators B: Chemical, 206-212 (2008).
International Search Report and Written Opinion dated Feb. 9, 2012, for International Patent Application No. PCT/US2011/035618.
International Search Report and Written Opinion dated Jul. 22, 2016, for International Patent Application No. PCT/US2016/28515.
International Search Report and Written Opinion dated Jul. 26, 2016, for International Patent Application No. PCT/US2016/28516.
International Search Report dated Apr. 12, 2018, issued in International Patent Application No. PCT/US2018/016731.
International Search Report dated Apr. 12, 2018, issued in International Patent Application No. PCT/US2018/016738.
International Search Report dated Apr. 26, 2018, issued in International Patent Application No. PCT/US2018/016741.
International Search Report dated Jul. 12, 2018, issued in International Patent Application No. PCT/US2018/016736.
International Search Report dated Sep. 10, 2018, issued in International Patent Application No. PCT/US2018/038055.
International Search Report dated Jan. 29, 2019, issued in International Patent Application No. PCT/US2018/061494.
International Search Report dated Feb. 5, 2019, issued in International Patent Application No. PCT/US2018/064527.
International Search Report dated Feb. 11, 2019, issued in International Patent Application No. PCT/US2018/061497.
International Search Report dated May 29, 2019, issued in International Patent Application No. PCT/US2019/017226.
International Search Report dated Mar. 9, 2020, issued in International Patent Application No. PCT/US2019/055655.
International Search Report dated Dec. 8, 2020, issued in International Patent Application No. PCT/US2020/051134.
International Search Report dated Aug. 17, 2021, issued in International Patent Application No. PCT/US2021/023818.
International Search Report dated May 13, 2022, issued in International Patent Application No. PCT/US2022/014913.
International Search Report dated Aug. 2, 2022, issued in International Patent Application No. PCT/US2022/025508.
International Search Report dated Aug. 15, 2022, issued in International Patent Application No. PCT/US2022/019338.
Jan et al., “Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations,” Physiology Measurement, 33(10):1733-1745 (2012).
Jaskowski, “Evaluation of the Healing Process of Skin Wounds by Means of Skin Absolute Value of Electrical Impedance,” Dermatol. Mon.schr., 172(4):223-228 (1986).
Jiang et al., “Ischemia-Reperfusion Injury-Induced Histological Changes Affecting Early Stage Pressure Ulcer Development in a Rat model,” Ostomy Wound Management, 57:55-60 (2011).
Jiang et al., “Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing,” Spinal Cord, 52(2):145-151 (2014).
Jiricka et al., “Pressure Ulcer Risk factors in an ICU Population,” American Journal of Critical Care, 4:361-367 (1995).
Kanai et al., “Electrical measurement of fluid distribution in legs and arms,” Medical Progress through Technology Journal, 12:159-170 (1987).
Kasuya et al., “Potential application of in vivo imaging of impaired lymphatic duct to evaluate the severity of pressure ulcer in mouse model,” Scientific Reports, 4:4173 (7 pages) (2014).
Lee, “CapSense Best Practices,” Application Note 2394, 1-10 (2007).
Liu et al., “A Systematic Review of Electrical Stimulation for Pressure Ulcer Prevention and Treatment in People with Spinal Cord Injuries,” The Journal of Spinal Cord Medicine, 37(6):703-718 (2014).
Loerakker et al., “Temporal Effects of Mechanical Loading on Deformation-Induced Damage in Skeletal Muscle Tissue,” Annual Review of Biomedical Engineering, 38(8):2577-2587 (2010).
Loerakker et al., “The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading,” Journal of Applied Physiology, 111(4):1168-1177 (2011).
Lyder et al., “Quality of Care for Hospitalized Medicare Patients at Risk for Pressure Ulcers,” Archives of Internal Medicine,161:1549-1554 (2001).
Martinsen, “Bioimpedance and Bioelectricity Basics,” Elsevier Academic Press, Chapters 1 and 10 (2015).
Mathiesen et al., “Are labour-intensive efforts to prevent pressure ulcers cost-effective?” Journal of Medical Economics, 16(10):1238-1245 (2013).
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Journal of Applied Physiology, 84(5):1801-1816 (1998).
Miller et al., “Lymphatic Clearance during Compressive Loading,” Lymphology, 14(4):161-166 (1981).
Moore et al., “A randomised controlled clinical trial of repositioning, using the 30° tilt, for the prevention of pressure ulcers,” Journal of Clinical Nursing, 20:2633-2644 (2011).
Moore et al., “Pressure ulcer prevalence and prevention practices in care of the older person in the Republic of Ireland,” Journal of Clinical Nursing, 21:362-371 (2012).
Moore et al., “A review of PU prevalence and incidence across Scandinavia, Iceland and Ireland (Part I)”, Journal of Wound Care, 22(7):361-362, 364-368 (2013).
Moore et al., “Subepidermal Moisture (SEM) and Bioimpedance: A Literature Review of a Novel Method for Early Detection of Pressure-Induced Tissue Damage (Pressure Ulcers),” International Wound Journal, 14(2):331-337 (2016).
Moore, “Using SEM (Sub Epidermal Moisture) Measurement for Early Pressure Ulcer Detection,” Institute for Pressure Injury Prevention, WCICT 2017 (Jun. 20-21), Manchester, UK, 7 pp., available at www.pressureinjuryprevention.com/wp-content/uploads/2017/07/ipip_Moore_Sub_Epidermal_Moisture_notes.pdf (2017) (obtained online).
Moore et al., “SEM Scanner Made Easy,” Wounds International, pp. 1-6, available at www.woundsinternational.com (2018).
Mulasi, “Bioimpedance at the Bedside: Current Applications, Limitations, and Opportunities,” Nutritional Clinical Practice, 30(2):180-193 (2015).
Musa et al., “Clinical impact of a sub-epidermal moisture scanner: what is the real-world use?,” J. Wound Care, 30(3):2-11 (2021), Mark Allen Group (pub.) (obtained online).
National Pressure Ulcer Advisory Panel et al., “Prevention and Treatment of Pressure Ulcers: Clinical Practice Guideline,” Cambridge Media, (2014).
Nixon et al., “Pathology, diagnosis, and classification of pressure ulcers: comparing clinical and imaging techniques,” Wound Repair and Regeneration, 13(4):365-372 (2005).
Nuutinen et al., “Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat,” Physiological Measurement, 25:447-454 (2004).
O'Goshi, “Skin conductance; validation of Skicon-200EX compared to the original model, Skicon-100,” Skin Research and Technology, 13:13-18 (2007).
Oliveira, “The Accuracy of Ultrasound, Thermography, Photography and Sub-Epidermal Moisture as a Predictor of Pressure Ulcer Presence—a Systematic Review,” RCSI, School of Nursing thesis (2015).
Oomens et al., “Pressure Induced Deep Tissue Injury Explained,” Annual Review of Biomedical Engineering, 43(2):297-305 (2015).
Pang et al. (eds.) Diagnosis and Treatment of Diabetes, China Press of Traditional Chinese Medicine (publisher), Beijing, China, pp. 466-468 (Oct. 2016), with English Translation.
Rotaru et al., “Friction between Human Skin and Medical Textiles for Decubitus Prevention,” Tribology International, 65:91-96 (2013).
Saxena, The Pocket Doctor: Obstetrics & Gynecology, pp. 76-77 (2017), Tianjin Science & Technology Translation & Publishing Co. Ltd. (pub.), Tianjin, China.
Scallan et al., “Chapter 4: Pathophysiology of Edema Formation,” Capillary Fluid Exchange: Regulation, Functions, and Pathology, 47-61 (2010).
Schultz et al., “Extracellular matrix: review of its role in acute and chronic wounds,” World Wide Wounds, 1-20 (2005).
Schwan, “Electrical properties of tissues and cells,” Advances in Biology and Medical Physics, 15:148-199 (1957).
Seibert et al., “Technical Expert Panel Summary Report: Refinement of a Cross-Setting Pressure Ulcer/Injury Quality Measure for Skilled Nursing Facilities, Inpatient Rehabilitation Facilities, Long-Term Care Hospitals, and Home Health Agencies,” RTI International Abt Associates, CMS Contract No. HHSM-500-2013-130151, 49 pp. (Aug. 2019).
Sener et al., “Pressure ulcer-induced oxiadative organ injury is ameliorated by beta-glucan treatment in rats,” International Immunopharmacology, 6(5):724-732 (2006).
Sewchuck et al., “Prevention and Early Detection of Pressure Ulcers in Patients Undergoing Cardian Surgery,” AORN Journal, 84(1):75-96 (2006).
Sprigle et al., “Analysis of Localized Erythema Using Clinical Indicators and Spectroscopy,” Ostomy Wound Management, 49:42-52 (2003).
Stekelenburg et al., “Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model,” Journal of Applied Physiology, 102:2002-2011 (2007).
Stekelenburg et al., “Deep Tissue Injury: How Deep is Our Understanding?” Archives of Physical Medicine Rehabilitation, 89(7):1410-1413 (2008).
Supplementary Partial European Search Report dated Jan. 27, 2020, in European Patent Application No. 18747707.
Supplementary Partial European Search Report dated Jul. 13, 2021, in European Patent Application No. 18887039.
Supplementary Partial European Search Report dated Oct. 1, 2021, in European Patent Application No. 19751130.
Swisher et al., “Impedance sensing device enables early detection of pressure ulcers in vivo,” Nature Communications, 6:6575-6584 (2015).
Thomas et al., “Hospital-Acquired Pressure Ulcers and Risk of Death,” Journal of the American Geriatrics Society, 44:1435-1440 (1996).
Thomas, “Prevention and Treatment of Pressure Ulcers,” J. Am. Med. Dir. Assoc., 7:46-59 (2006).
Truong et al., “Pressure Ulcer Prevention in the Hospital Setting Using Silicone Foam Dressings,” Cureus, 8(8):e730, pp. 1-6 (2016).
Tur et al., “Topical Hydrogen Peroxide Treatment of Ischemic Ulcers in the Guinea Pig: Blood Recruitment in Multiple Skin Sites,” J. Am. Acad. Dermatol., 33:217-221 (1995).
Valentinuzzi et al., “Bioelectrical Impedance Techniques in Medicine. Part II: Monitoring of Physiological Events by Impedance,” Critical Reviews in Biomedical Engineering, 24(4-6):353-466 (1996).
Vangilder et al., “Results of Nine International Pressure Ulcer Prevalence Surveys: 1989 to 2005,” Ostomy Wound Management, 54(2):40-54 (2008).
Vowden et al., “Diabetic Foot Ulcer or Pressure Ulcer? That Is the Question,” The Diabetic Foot Journal, 18:62-66 (2015).
Wagner et al., “Bioelectrical Impedance as a Discriminator of Pressure Ulcer Risk,” Advances in Wound Care, 9(2):30-37 (1996).
Wang et al., “A Wireless Biomedical Instrument for Evidence-Based Tissue Wound Characterization,” Wireless Health, pp. 222-223 (2010).
Wang, “Biomedical Systen for Monitoring Pressure Ulcer Development,” UCLA Electronic Theses and Dissertations, California, USA, pp. 1-123 (2013).
Watanabe et al., “CT anlysis of the use of the electrical impedance technique to estimate local oedema in the extremities in patients with lymphatic obstruction,” Medical and Biological Engineering and Computing, 36(1):60-65 (1998).
Weiss, “Tissue destruction by neutrophils,” The New England Journal of Medicine, 320(6):365-76 (1989).
Yang, Handbook of Practical Burn Surgery, p. 48 (2008), People's Military Medical Press (pub.), Beijing, China.
Zanibbi, “Pattern Recognition: An Overview,” downloaded from https://www.cs.rit.edu/˜rlaz/prec20092/slides/Overview.pdf, 30 pp. (2010).
Hamazoto et al., “Estimate of Burn Depth by Non-Invasive Capacitance Measurement,” Japan Soc. ME & BE, 42:266 (Jun. 2003).
Arimoto et al., “Non-Contact Skin Moisture Measurement Based on Near-Infrared Spectroscopy,” Applied Spectroscopy, 58(12):1439-1446 (2004).
Extended European Search Report dated Feb. 1, 2023, in European Patent Application No. 22211200.
Extended European Search Report completed Nov. 7 , 2023, in European Patent Application No. 23188775.3.
Partial European Search Report dated Sep. 6, 2023, in European Application No. 23188775.3.
Ross et al., “Assessment of Sub-Epidermal Moisture by Direct Measurement of Tissue Biocapacitance,” Medical Engineering & Physics, 73:92-99 (Jul. 26, 2019).
Supplementary Partial European Search Report completed Jan. 10, 2024, in European Patent Application No. 21782145.
Related Publications (1)
Number Date Country
20230068683 A1 Mar 2023 US
Provisional Applications (1)
Number Date Country
62628676 Feb 2018 US
Continuations (1)
Number Date Country
Parent 16271040 Feb 2019 US
Child 18047084 US