The present disclosure provides methods and apparatus for detecting tissue damage through measurement of Sub-Epidermal Moisture (SEM) and evaluation of those measurements.
The skin is the largest organ in the human body. It is readily exposed to different kinds of damages and injuries. When the skin and its surrounding tissues are unable to redistribute external pressure and mechanical forces, ulcers may be formed. Prolonged continuous exposure to even modest pressure, such as the pressure created by the body weight of a supine patient on their posterior skin surfaces, may lead to a pressure ulcer.
Patients may be required to use a medical device for an extended period of time to treat a particular condition. Some devices are in contact with portions of the patient's body, for example a tube feeding air to a nasal cannula. Patients who are lying prone in a bed may have devices laying on their body, in some cases taped to the skin to hold the device in place. The long-term pressure applied by these devices may be low but the extended period of application may lead to tissue damage that, left untreated, may progress to an open ulcer.
In an aspect, the present disclosure provides for, and includes, an apparatus for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising: a first electrode and a second electrode configured to measure a level of sub-epidermal moisture (SEM) in tissue proximate to the point of contact, an electronics package individually connected to the first and second electrodes and configured to measure a capacitance between the first and second electrodes.
In an aspect, the present disclosure provides for, and includes, a method for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising the steps of: measuring a plurality of sub-epidermal moisture (SEM) values of tissue proximate to the point of contact at incremental times, comparing the plurality of SEM values, and determining if there is a significant increase in the SEM that indicates that there is tissue damage.
Aspects of the disclosure are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and are for purposes of illustrative discussion of aspects of the disclosure. In this regard, the description and the drawings, considered alone and together, make apparent to those skilled in the art how aspects of the disclosure may be practiced.
This description is not intended to be a detailed catalog of all the different ways in which the disclosure may be implemented, or all the features that may be added to the instant disclosure. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. Thus, the disclosure contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant disclosure. In other instances, well-known structures, interfaces, and processes have not been shown in detail in order not to unnecessarily obscure the invention. It is intended that no part of this specification be construed to effect a disavowal of any part of the full scope of the invention. Hence, the following descriptions are intended to illustrate some particular embodiments of the disclosure, and not to exhaustively specify all permutations, combinations, and variations thereof.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terminology used in the description of the disclosure herein is for the purpose of describing particular aspects or embodiments only and is not intended to be limiting of the disclosure.
All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented. References to techniques employed herein are intended to refer to the techniques as commonly understood in the art, including variations on those techniques or substitutions of equivalent techniques that would be apparent to one of skill in the art.
U.S. patent application Ser. No. 14/827,375 discloses an apparatus that measures the sub-epidermal capacitance using a bipolar sensor, where the sub-epidermal capacitance corresponds to the moisture content of the target region of skin of a patient. The '375 application also discloses an array of these bipolar sensors of various sizes.
U.S. patent application Ser. No. 15/134,110 discloses an apparatus for measuring sub-epidermal moisture (SEM) similar to the device shown in
Both U.S. patent application Ser. Nos. 14/827,375 and 15/134,110 are incorporated herein by reference in their entireties.
Unless the context indicates otherwise, it is specifically intended that the various features of the disclosure described herein can be used in any combination. Moreover, the present disclosure also contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted.
The methods disclosed herein include and comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present disclosure.
As used in the description of the disclosure and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).
The terms “about” and “approximately” as used herein when referring to a measurable value such as a length, a frequency, or a SEM value and the like, is meant to encompass variations of ±20%, ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount.
As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y” and phrases such as “from about X to Y” mean “from about X to about Y.”
As used herein, the term “sub-epidermal moisture” or “SEM” refers to the increase in tissue fluid and local edema caused by vascular leakiness and other changes that modify the underlying structure of the damaged tissue in the presence of continued pressure on tissue, apoptosis, necrosis, and the inflammatory process.
As used herein, a “patient” may be a human or animal subject.
As used herein, “delta” refers to a calculated difference between two SEM values.
In an aspect, a calculated delta value is compared to a threshold. When the delta value exceeds the threshold, this indicates a degree of damage. There may be multiple thresholds used to evaluate multiple levels of tissue damage. In one aspect, the maximum SEM value is compared to a threshold. When the maximum value exceeds the threshold, this indicates a degree of damage.
In an aspect, a threshold may be about 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5. In one aspect, a threshold may range from 0.1 to 8.0, such as from 0.1 to 1.0, from 1.1 to 2.0, from 2.1 to 3.0, from 3.1 to 4.0, from 4.1 to 5.0, from 5.1 to 6.0, from 6.1 to 7.0, from 7.1 to 8.0, from 0.1 to 7.5, from 0.5 to 8.0, from 1.0 to 7.0, from 1.5 to 6.5, from 2.0 to 6.0, from 3.0 to 5.5, from 3.5 to 5.0, or from 4.0 to 4.5. In an aspect, a threshold can be scaled by a factor or a multiple based on the values provided herein. It will be understood that a threshold is not limited by design, but rather, one of ordinary skill in the art would be capable of choosing a predetermined value based on a given unit of SEM. In one aspect, thresholds of the present disclosure are varied according to the specific portion of a patient's body on which measurements are being made, or one or more characteristics of the patient such as age, height, weight, family history, ethnic group, and other physical characteristics or medical conditions.
In an aspect, the electronics package 240 includes devices to communicate over link 242 to computer 252, which may be a PC, a mobile tablet, a mobile phone, a server using cloud-based data storage and analysis, or other data systems. Link 242 may include a wired or wireless communication element, optical communication elements, a network that may have one or more switches and routers, and other standard data transfer devices and protocols. Link 242 may also be implemented as hardware with nonvolatile storage, for example a “thumb drive,” that is loaded with data by the electronics package 240 and in turn is physically relocated and connected to the computer 252 whereupon it delivers the data. In an aspect, Link 242 provides real-time communication of recorded SEM measurements and/or calculated delta values from electronic package 240 to computer 252 to allow for real-time monitoring of ulcer development in a patient.
In one aspect, a molded plastic clip 222 of SEM sensing system 250 of the present disclosure is configured to attach to a medical device selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a central line, a catheter, and a fecal management tube. In an aspect, adhesive 226 has a shape selected from the group consisting of substantially a square, substantially a rectangle, substantially a circle, and a polygon. In one aspect, a face of adhesive 226 has a surface area less than 25 cm2, such as less than 20 cm2, less than 15 cm2, less than 10 cm2, or less than 5 cm2. In an aspect, SEM sensing system 250 has a mass of less than 5 grams, such as less than 4 grams, less than 3 grams, less than 2 grams, less than 1 gram, or less than 0.5 gram.
In
Still referring to
In an aspect, device 300 of the present disclosure is configured to attach to a medical device selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a nasal cannula, an IV/PICC line, a central line, a catheter, and a fecal management tube. In one aspect, device 300 has a mass of less than 5 grams, such as less than 4 grams, less than 3 grams, less than 2 grams, less than 1 gram, or less than 0.5 gram.
In an aspect, retention strap 414 may comprise two or more electrodes, such as three or more electrodes, four or more electrodes, five or more electrodes, ten or more electrodes, fifteen or more electrodes, twenty or more electrodes, twenty-five or more electrodes, thirty or more electrodes, forty or more electrodes, fifty or more electrodes or a hundred or more electrodes.
In one aspect, electrodes of retention strap 414 are approximately evenly spaced apart by from about 0.1 cm to about 5 cm when the retention strap is in a relaxed state, such as from about 0.2 cm to about 5 cm, from about 0.3 cm to about 5 cm, from about 0.4 cm to about 5 cm, from about 0.5 cm to about 5 cm, from about 1 cm to about 5 cm, from about 1.5 cm to about 5 cm, from about 2 cm to about 5 cm, from about 2.5 cm to about 5 cm, from about 3 cm to about 5 cm, from about 3.5 cm to about 5 cm, from about 4 cm to about 5 cm, from about 4.5 cm to about 5 cm, from about 0.1 cm to about 4.5 cm, from about 0.1 cm to about 4 cm, from about 0.1 cm to about 3.5 cm, from about 0.1 cm to about 3 cm, from about 0.1 cm to about 2.5 cm, from about 0.1 cm to about 2 cm, from about 0.1 cm to about 1.5 cm, from about 0.1 cm to about 1 cm, from about 0.1 cm to about 0.9 cm, from about 0.1 cm to about 0.8 cm, from about 0.1 cm to about 0.7 cm, from about 0.1 cm to about 0.6 cm, from about 0.1 cm to about 0.5 cm, from about 0.1 cm to about 0.4 cm, from about 0.1 cm to about 0.3 cm, from about 0.1 cm to about 0.2 cm, from about 0.5 cm to about 4.5 cm, from about 1 cm to about 4 cm, from about 1.5 cm to about 3.5 cm, or from about 2 cm to about 3 cm.
In an aspect, retention strap 414 of the present disclosure is configured to function as a tracheostomy strap. In one aspect, retention strap 414 of the present disclosure is configured to function as an abdominal binder. In an aspect, retention strap 414 of the present disclosure is configured to attach to an oxygen delivery mask. In one aspect, retention strap 414 of the present disclosure is configured to attach to an identification band.
In one aspect, a face of retention strap 414 has a surface area less than 6000 cm2, such as less than 5000 cm2, less than 4000 cm2, less than 3000 cm2, less than 2000 cm2, less than 1000 cm2, less than 500 cm2, less than 100 cm2, less than 50 cm2, less than 25 cm2, less than 20 cm2, less than 15 cm2, less than 10 cm2, or less than 5 cm2.
In an aspect, the pressure management elements are provided in sets such as pockets 510A, 501B, and 510C. These pockets may be manipulated in a coordinated fashion to shift the levels of contact pressure between the device 500 and the skin of the patient in the regions of the pockets 510A, 510B, 510C. For example, the pocket 510B is inflated while pockets 510A, 510C are deflated, creating a relatively high contact pressure area around pocket 510B and a relatively low, e.g. lower than the nominal pressure that would be present in the absence of a pressure management element, contact pressure in the regions of pockets 510A, 510C. This relatively low contact pressure allows adequate blood flow to the tissue in that region so as to avoid tissue damage. At a different time, one or both of pockets 510A, 510C are inflated while pocket 510B is deflated, thus reducing the contact pressure in the region of pocket 510B.
In an aspect, the pockets are flexible membranes that comprise a portion of the walls of a sealed compartment that is within or on the surface of device 500. In an aspect, at least one of the walls of the pockets is stretchable. In one aspect, when the pockets are situated within the surface of device 500, the wall of device 500 that is in contact with the skin of a patient is also stretchable.
The words “force” and “pressure” are considered to be interchangeable within the context of this disclosure. A higher pressure within a pocket will apply a greater pressure over the area of the pocket, which produces a higher total force (pressure×area=force). A greater amount of fluid in the pocket does not intrinsically apply a higher pressure or force; the raised height of the pocket will cause the patient's skin to come in contact with the inflated pocket first and thereby the inflated pocket will provide a greater portion of the total force applied by the device 500 to the patient's skin and such is equivalent to providing a greater pressure and/or force.
Pockets may be fully inflated, fully deflated, or partially inflated to an intermediate pressure. In an aspect, the pockets may be inflated with a gas or a liquid or other fluid. The word “inflation” is interpreted as an indication of pressure or, equivalently, of the amount of fluid within the pocket, such that the phrase “higher inflation” includes the situation of a greater amount of fluid in the compartment.
In an aspect, the pockets are connected to a source of pressurized fluid through elements such as tubing, valves, pressure regulators (not shown in
In an aspect, the pressure management element is a mechanical element whose height can be adjusted. In an aspect, the adjustment is provided with an electrical actuator. In an aspect, the actuator comprises a piezoelectric element that causes a change in the height of the element. In an aspect, the pressure management element is a fixed height element that moves parallel to the skin of the patient such that the contact pressure is increased in the region of contact between the element and the skin and reduced in other regions.
In an aspect, the change in inflation of the pockets is driven by an SEM reading taken, for example, by the electrodes 418 of
In an aspect, the change in inflation of the pockets is driven by how a calculated delta value is compared to a threshold. When the delta value exceeds the threshold, inflation pattern of the pockets changes to shift the pressure applied to the patients. There may be multiple thresholds used to determine the inflation pattern of the pockets.
In an aspect, the change in inflation is caused by a timer that regularly shifts the pressure applied to the patient by changing the pattern of active pressure management elements, for example by inflating and deflating different pockets.
In an aspect, a series of predetermined configurations of the pressure management elements are defined and the timer configured to execute a programmed series of changes between these configurations at predefined times. In an aspect, the changes between predetermined configurations are based on SEM readings taken of the patient.
In an aspect, there is a configuration of which pockets are inflated and this default is maintained until a SEM reading indicates a problem, whereupon certain pockets are deflated or reduced in inflation height.
From the foregoing, it will be appreciated that the present invention can be embodied in various ways, which include but are not limited to the following:
Embodiment 1. An apparatus for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising: a first electrode and a second electrode configured to measure a level of sub-epidermal moisture (SEM) in tissue proximate to the point of contact, an electronics package individually connected to the first and second electrodes and configured to measure a capacitance between the first and second electrodes.
Embodiment 2. The apparatus of embodiment 1, where the first and second electrodes are configured to be attached to the medical device.
Embodiment 3. The apparatus of embodiment 1 or 2, where the first and second electrodes are shaped such that the entire surface of each electrode can contact the patient's skin while the medical device is in use.
Embodiment 4. The apparatus of any one of embodiments 1 to 3, further comprising a body coupled to the first and second electrodes, the body configured to be interposed between the medical device and the patient's skin when the medical device is in use.
Embodiment 5. The apparatus of embodiment 4, where the body is further configured to be attached to the medical device.
Embodiment 6. The apparatus of any one of embodiments 1 to 5, further comprising a communication element configured to provide real-time transfer of SEM measurements to a computing unit.
Embodiment 7. The apparatus of any one of embodiments 1 to 6, where the apparatus is a clip configured to attach to a tube of the medical device.
Embodiment 8. The apparatus of embodiment 7, where the tube is selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a catheter, and a fecal management tube.
Embodiment 9. The apparatus of any one of embodiments 1 to 6, where the apparatus is a strap configured to attach to the medical device.
Embodiment 10. The apparatus of embodiment 9, where the medical device is a mask.
Embodiment 11. The apparatus of any one of embodiments 1 to 6, where the medical device is a collar or a cast.
Embodiment 12. The apparatus of any one of embodiments 1 to 11, where the apparatus further comprises one or more pressure management elements.
Embodiment 13. The apparatus of embodiment 12, where each of the one or more pressure management elements is an inflatable pocket.
Embodiment 14. A method for detecting tissue damage proximate to a point of contact between a medical device and a patient's skin, comprising the steps of: measuring a plurality of sub-epidermal moisture (SEM) values of tissue proximate to the point of contact at incremental times, comparing the plurality of SEM values, and determining if there is a significant increase in the SEM that indicates that there is tissue damage.
Embodiment 15. The method of embodiment 14, where there is a significant increase when the largest SEM value of the plurality of SEM values is greater than the smallest SEM value of the plurality of SEM values by an amount that exceeds a threshold.
Embodiment 16. The method of embodiment 14, where there is a significant increase when the largest SEM value of the plurality of SEM values is greater than a threshold.
Embodiment 17. The method of any one of embodiments 14 to 16, where a first measurement of the SEM value is made at the time of the first use of the medical device.
Embodiment 18. The method of any one of embodiments 14 to 17, where the medical device comprises a tube selected from the group consisting of a nasogastric tube, a feeding tube, an endotracheal tube, a tracheostomy tube, a tracheostomy collar, a nasal cannula, an IV/PICC line, a catheter, and a fecal management tube.
Embodiment 19. The method of any one of embodiments 14 to 17, where the medical device is a mask.
Embodiment 20. The method of any one of embodiments 14 to 17, where the medical device is a collar or a cast.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/271,040 filed Feb. 8, 2019, which claims the benefit of U.S. Provisional Application No. 62/628,676, which was filed on Feb. 9, 2018, the entirety of each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3851641 | Toole et al. | Dec 1974 | A |
4295009 | Weidler | Oct 1981 | A |
4557271 | Stoller et al. | Dec 1985 | A |
4857716 | Gombrich et al. | Aug 1989 | A |
4860753 | Amerena | Aug 1989 | A |
5001436 | Scot | Mar 1991 | A |
5073126 | Kikuchi et al. | Dec 1991 | A |
5152296 | Simons | Oct 1992 | A |
5284150 | Butterfield et al. | Feb 1994 | A |
5292341 | Snell | Mar 1994 | A |
5367789 | Lamont | Nov 1994 | A |
5815416 | Liebmann et al. | Sep 1998 | A |
5904581 | Pope et al. | May 1999 | A |
6204749 | Ishihara | Mar 2001 | B1 |
6223088 | Scharnberg et al. | Apr 2001 | B1 |
6254435 | Cheong et al. | Jul 2001 | B1 |
6312263 | Higuchi et al. | Nov 2001 | B1 |
6330479 | Stauffer | Dec 2001 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6370426 | Campbell et al. | Apr 2002 | B1 |
6434422 | Tomoda et al. | Aug 2002 | B1 |
6577700 | Fan et al. | Jun 2003 | B1 |
6634045 | DuDonis et al. | Oct 2003 | B1 |
6738798 | Ploetz et al. | May 2004 | B1 |
6756793 | Hirono et al. | Jun 2004 | B2 |
6963772 | Bloom et al. | Nov 2005 | B2 |
7079899 | Petrofsky | Jul 2006 | B2 |
7291023 | Still et al. | Nov 2007 | B1 |
7315767 | Caduff et al. | Jan 2008 | B2 |
7402135 | Leveque et al. | Jul 2008 | B2 |
7783344 | Lackey et al. | Aug 2010 | B2 |
8011041 | Hann | Sep 2011 | B2 |
8060315 | Brosette et al. | Nov 2011 | B2 |
8355925 | Rothman et al. | Jan 2013 | B2 |
8390583 | Forutanpour et al. | Mar 2013 | B2 |
8494617 | Baker, Jr. et al. | Jul 2013 | B2 |
8648707 | Franz et al. | Feb 2014 | B2 |
8690785 | Lading | Apr 2014 | B2 |
8925392 | Esposito et al. | Jan 2015 | B2 |
9028407 | Bennett-Guerrero | May 2015 | B1 |
9095305 | Engler et al. | Aug 2015 | B2 |
9220455 | Sarrafzadeh et al. | Dec 2015 | B2 |
9271676 | Alanen et al. | Mar 2016 | B2 |
9398879 | Sarrafzadeh et al. | Jul 2016 | B2 |
9675289 | Heaton | Jun 2017 | B2 |
9763596 | Tonar et al. | Sep 2017 | B2 |
9949683 | Afentakis | Apr 2018 | B2 |
9980673 | Sarrafzadeh et al. | May 2018 | B2 |
10085643 | Bandic et al. | Oct 2018 | B2 |
10166387 | Bergelin et al. | Jan 2019 | B2 |
10178961 | Tonar et al. | Jan 2019 | B2 |
10182740 | Tonar et al. | Jan 2019 | B2 |
10188340 | Sarrafzadeh et al. | Jan 2019 | B2 |
10194856 | Afentakis et al. | Feb 2019 | B2 |
10206604 | Bergelin et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10278636 | Wu et al. | May 2019 | B2 |
10285898 | Douglas et al. | May 2019 | B2 |
10307060 | Tran | Jun 2019 | B2 |
10342482 | Lisy et al. | Jul 2019 | B1 |
10383527 | A1-Ali | Aug 2019 | B2 |
10420602 | Horton et al. | Sep 2019 | B2 |
10441185 | Rogers et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10463293 | Maharbiz et al. | Nov 2019 | B2 |
10485447 | Tonar et al. | Nov 2019 | B2 |
10898129 | Burns et al. | Jan 2021 | B2 |
10950960 | Burns et al. | Mar 2021 | B2 |
10959664 | Burns et al. | Mar 2021 | B2 |
11191477 | Burns | Dec 2021 | B2 |
11253192 | Sarrafzadeh et al. | Feb 2022 | B2 |
11284810 | Tonar et al. | Mar 2022 | B2 |
11304652 | Burns et al. | Apr 2022 | B2 |
11337651 | Burns et al. | May 2022 | B2 |
11342696 | Burns et al. | May 2022 | B2 |
11426118 | Burns | Aug 2022 | B2 |
11471094 | Burns | Oct 2022 | B2 |
11534077 | Tonar et al. | Dec 2022 | B2 |
11600939 | Burns et al. | Mar 2023 | B2 |
11627910 | Burns et al. | Apr 2023 | B2 |
11642075 | Burns et al. | May 2023 | B2 |
20010049609 | Girouard et al. | Dec 2001 | A1 |
20010051783 | Edwards et al. | Dec 2001 | A1 |
20020016535 | Martin et al. | Feb 2002 | A1 |
20020032485 | Flam et al. | Mar 2002 | A1 |
20020070866 | Newham | Jun 2002 | A1 |
20020112898 | Honda et al. | Aug 2002 | A1 |
20020143262 | Bardy | Oct 2002 | A1 |
20030009244 | Engleson et al. | Jan 2003 | A1 |
20030036674 | Bouton | Feb 2003 | A1 |
20030036713 | Bouton et al. | Feb 2003 | A1 |
20030110662 | Gilman et al. | Jun 2003 | A1 |
20030116447 | Surridge et al. | Jun 2003 | A1 |
20030130427 | Cleary et al. | Jul 2003 | A1 |
20030139255 | Lina | Jul 2003 | A1 |
20030199783 | Bloom et al. | Oct 2003 | A1 |
20040041029 | Postman et al. | Mar 2004 | A1 |
20040046668 | Smith et al. | Mar 2004 | A1 |
20040054298 | Masuo et al. | Mar 2004 | A1 |
20040080325 | Ogura | Apr 2004 | A1 |
20040133092 | Kain | Jul 2004 | A1 |
20040147977 | Petrofsky | Jul 2004 | A1 |
20040171962 | Leveque et al. | Sep 2004 | A1 |
20040176754 | Island et al. | Sep 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040254457 | Van Der Weide | Dec 2004 | A1 |
20050027175 | Yang | Feb 2005 | A1 |
20050070778 | Lackey et al. | Mar 2005 | A1 |
20050086072 | Fox, Jr. et al. | Apr 2005 | A1 |
20050096513 | Ozguz et al. | May 2005 | A1 |
20050177061 | Alanen et al. | Aug 2005 | A1 |
20050203435 | Nakada | Sep 2005 | A1 |
20050215918 | Frantz et al. | Sep 2005 | A1 |
20050245795 | Goode et al. | Nov 2005 | A1 |
20050251418 | Fox, Jr. et al. | Nov 2005 | A1 |
20060052678 | Drinan et al. | Mar 2006 | A1 |
20060058593 | Drinan et al. | Mar 2006 | A1 |
20060097949 | Luebke et al. | May 2006 | A1 |
20060206013 | Rothman et al. | Sep 2006 | A1 |
20070043282 | Mannheimer et al. | Feb 2007 | A1 |
20070051362 | Sullivan et al. | Mar 2007 | A1 |
20070106172 | Abreu | May 2007 | A1 |
20070179585 | Chandler et al. | Aug 2007 | A1 |
20070185392 | Sherman et al. | Aug 2007 | A1 |
20070191273 | Ambati et al. | Aug 2007 | A1 |
20070213700 | Davison et al. | Sep 2007 | A1 |
20070248542 | Kane et al. | Oct 2007 | A1 |
20080009764 | Davies | Jan 2008 | A1 |
20080015894 | Miller et al. | Jan 2008 | A1 |
20080027509 | Andino et al. | Jan 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080048680 | Hargreaves et al. | Feb 2008 | A1 |
20080054276 | Vogel et al. | Mar 2008 | A1 |
20080063363 | Kientz et al. | Mar 2008 | A1 |
20080166268 | Yamaguchi et al. | Jul 2008 | A1 |
20080259577 | Hu et al. | Oct 2008 | A1 |
20080278336 | Ortega et al. | Nov 2008 | A1 |
20090047694 | Shuber | Feb 2009 | A1 |
20090076410 | Libbus et al. | Mar 2009 | A1 |
20090104797 | Tseng et al. | Apr 2009 | A1 |
20090124924 | Eror et al. | May 2009 | A1 |
20090189092 | Aoi et al. | Jul 2009 | A1 |
20090209830 | Nagle et al. | Aug 2009 | A1 |
20090285785 | Jimi et al. | Nov 2009 | A1 |
20090306487 | Crowe et al. | Dec 2009 | A1 |
20090326346 | Kracker et al. | Dec 2009 | A1 |
20100017182 | Voros et al. | Jan 2010 | A1 |
20100030167 | Thirstrup et al. | Feb 2010 | A1 |
20100042389 | Farruggia et al. | Feb 2010 | A1 |
20100073170 | Siejko et al. | Mar 2010 | A1 |
20100113979 | Sarrafzadeh et al. | May 2010 | A1 |
20100268111 | Drinan et al. | Oct 2010 | A1 |
20100298687 | Yoo et al. | Nov 2010 | A1 |
20100312233 | Furnish et al. | Dec 2010 | A1 |
20100324455 | Rangel et al. | Dec 2010 | A1 |
20100324611 | Deming et al. | Dec 2010 | A1 |
20110046505 | Cornish et al. | Feb 2011 | A1 |
20110160548 | Forster | Jun 2011 | A1 |
20110175844 | Berggren | Jul 2011 | A1 |
20110184264 | Galasso, Jr. et al. | Jul 2011 | A1 |
20110191122 | Kharraz Tavakol et al. | Aug 2011 | A1 |
20110237926 | Jensen | Sep 2011 | A1 |
20110263950 | Larson et al. | Oct 2011 | A1 |
20110301441 | Bandic et al. | Dec 2011 | A1 |
20110313311 | Gaw | Dec 2011 | A1 |
20120029410 | Koenig et al. | Feb 2012 | A1 |
20120061257 | Yu et al. | Mar 2012 | A1 |
20120078088 | Whitestone et al. | Mar 2012 | A1 |
20120150011 | Besio | Jun 2012 | A1 |
20120179006 | Jansen et al. | Jul 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120271121 | Della Torre et al. | Oct 2012 | A1 |
20130041235 | Rogers et al. | Feb 2013 | A1 |
20130072870 | Heppe et al. | Mar 2013 | A1 |
20130121544 | Sarrafzadeh et al. | May 2013 | A1 |
20130123587 | Sarrafzadeh et al. | May 2013 | A1 |
20130137951 | Chuang et al. | May 2013 | A1 |
20130253285 | Bly et al. | Sep 2013 | A1 |
20130261496 | Engler et al. | Oct 2013 | A1 |
20130301255 | Kim et al. | Nov 2013 | A1 |
20130310440 | Duskin et al. | Nov 2013 | A1 |
20130333094 | Rogers et al. | Dec 2013 | A1 |
20130338661 | Behnke, II | Dec 2013 | A1 |
20140121479 | O'Connor et al. | May 2014 | A1 |
20140142984 | Wright et al. | May 2014 | A1 |
20140200486 | Bechtel et al. | Jul 2014 | A1 |
20140221792 | Miller et al. | Aug 2014 | A1 |
20140273025 | Hurskainen et al. | Sep 2014 | A1 |
20140275823 | Lane et al. | Sep 2014 | A1 |
20140288397 | Sarrafzadeh et al. | Sep 2014 | A1 |
20140298928 | Duesterhoft et al. | Oct 2014 | A1 |
20140316297 | McCaughan et al. | Oct 2014 | A1 |
20140318699 | Longinotti-Buitoni et al. | Oct 2014 | A1 |
20150002168 | Kao et al. | Jan 2015 | A1 |
20150009168 | Levesque et al. | Jan 2015 | A1 |
20150094548 | Sabatini et al. | Apr 2015 | A1 |
20150157435 | Chasins et al. | Jun 2015 | A1 |
20150186607 | Gileijnse et al. | Jul 2015 | A1 |
20150230863 | Youngquist et al. | Aug 2015 | A1 |
20150343173 | Tobescu et al. | Dec 2015 | A1 |
20150363567 | Pettus | Dec 2015 | A1 |
20150366499 | Sarrafzadeh et al. | Dec 2015 | A1 |
20150371522 | Mravyan et al. | Dec 2015 | A1 |
20160015962 | Shokoueinejad Maragheh et al. | Jan 2016 | A1 |
20160038055 | Wheeler et al. | Feb 2016 | A1 |
20160058342 | Maiz-Aguinaga et al. | Mar 2016 | A1 |
20160072308 | Nyberg et al. | Mar 2016 | A1 |
20160100790 | Cantu et al. | Apr 2016 | A1 |
20160101282 | Bergelin et al. | Apr 2016 | A1 |
20160166438 | Rovaniemi | Jun 2016 | A1 |
20160174631 | Tong et al. | Jun 2016 | A1 |
20160174871 | Sarrafzadeh et al. | Jun 2016 | A1 |
20160220172 | Sarrafzadeh et al. | Aug 2016 | A1 |
20160270672 | Chen et al. | Sep 2016 | A1 |
20160270968 | Stanford et al. | Sep 2016 | A1 |
20160278692 | Larson et al. | Sep 2016 | A1 |
20160296268 | Gee et al. | Oct 2016 | A1 |
20160310034 | Tonar et al. | Oct 2016 | A1 |
20160338591 | Lachenbruch et al. | Nov 2016 | A1 |
20170007153 | Tonar et al. | Jan 2017 | A1 |
20170014044 | Tonar et al. | Jan 2017 | A1 |
20170014045 | Tonar et al. | Jan 2017 | A1 |
20170105646 | Bryenton et al. | Apr 2017 | A1 |
20170156658 | Maharbiz et al. | Jun 2017 | A1 |
20170172489 | Afentakis | Jun 2017 | A1 |
20170188841 | Ma et al. | Jul 2017 | A1 |
20170238849 | Chapman et al. | Aug 2017 | A1 |
20170255812 | Kwon | Sep 2017 | A1 |
20170311807 | Fu et al. | Nov 2017 | A1 |
20170319073 | DiMaio et al. | Nov 2017 | A1 |
20180020058 | Martines et al. | Jan 2018 | A1 |
20180045725 | Yoo et al. | Feb 2018 | A1 |
20180220924 | Burns et al. | Aug 2018 | A1 |
20180220953 | Burns et al. | Aug 2018 | A1 |
20180220954 | Burns et al. | Aug 2018 | A1 |
20180220961 | Burns et al. | Aug 2018 | A1 |
20180360344 | Burns et al. | Dec 2018 | A1 |
20190000352 | Everett et al. | Jan 2019 | A1 |
20190038133 | Tran | Feb 2019 | A1 |
20190053751 | Torres | Feb 2019 | A1 |
20190060602 | Tran et al. | Feb 2019 | A1 |
20190069836 | Hettrick | Mar 2019 | A1 |
20190104981 | Sarrafzadeh et al. | Apr 2019 | A1 |
20190104982 | Dunn et al. | Apr 2019 | A1 |
20190117964 | Bahrami et al. | Apr 2019 | A1 |
20190134396 | Toth et al. | May 2019 | A1 |
20190142333 | Burns et al. | May 2019 | A1 |
20190147990 | Burns et al. | May 2019 | A1 |
20190148901 | Komoto | May 2019 | A1 |
20190150882 | Maharbiz et al. | May 2019 | A1 |
20190175098 | Burns et al. | Jun 2019 | A1 |
20190192066 | Schoess et al. | Jun 2019 | A1 |
20190246972 | Burns et al. | Aug 2019 | A1 |
20190282436 | Douglas et al. | Sep 2019 | A1 |
20190290189 | Sarrafzadeh et al. | Sep 2019 | A1 |
20190307360 | Tonar et al. | Oct 2019 | A1 |
20190307405 | Terry et al. | Oct 2019 | A1 |
20200008299 | Tran et al. | Jan 2020 | A1 |
20200043607 | Zerhusen et al. | Feb 2020 | A1 |
20200069240 | Burns | Mar 2020 | A1 |
20200069241 | Burns | Mar 2020 | A1 |
20200069242 | Burns et al. | Mar 2020 | A1 |
20200077892 | Tran | Mar 2020 | A1 |
20200078499 | Gadde et al. | Mar 2020 | A1 |
20200093395 | Tonar et al. | Mar 2020 | A1 |
20200100723 | Burns | Apr 2020 | A1 |
20200113488 | Al-Ali et al. | Apr 2020 | A1 |
20200127398 | Burns et al. | Apr 2020 | A1 |
20200296821 | Trublowski et al. | Sep 2020 | A1 |
20200297244 | Brownhill et al. | Sep 2020 | A1 |
20200297255 | Martinez et al. | Sep 2020 | A1 |
20220287584 | Burns et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
2020103438 | Jan 2021 | AU |
2811609 | Nov 2011 | CA |
2609842 | Oct 2016 | CA |
204119175 | Jan 2015 | CN |
104352230 | Feb 2015 | CN |
104567657 | Apr 2015 | CN |
105578333 | May 2016 | CN |
105963074 | Sep 2016 | CN |
208111467 | Nov 2018 | CN |
102012011212 | Jan 2012 | DE |
1080687 | Mar 2001 | EP |
1372475 | Jan 2004 | EP |
1569553 | Sep 2005 | EP |
3092946 | Nov 2016 | EP |
3280488 | Dec 2018 | EP |
2584808 | Dec 2020 | GB |
2000-060805 | Feb 2000 | JP |
2001-178705 | Jul 2001 | JP |
2001-326773 | Nov 2001 | JP |
2003-169787 | Jun 2003 | JP |
2003-169788 | Jun 2003 | JP |
2003-290166 | Oct 2003 | JP |
2005-52227 | Mar 2005 | JP |
2009-268611 | Nov 2009 | JP |
4418419 | Feb 2010 | JP |
2013-198639 | Oct 2013 | JP |
2015-134074 | Jul 2015 | JP |
10-2014-0058445 | May 2014 | KR |
1996010951 | Apr 1996 | WO |
2001054580 | Aug 2001 | WO |
2002080770 | Oct 2002 | WO |
2004105602 | Dec 2004 | WO |
2005099644 | Oct 2005 | WO |
2006029035 | Mar 2006 | WO |
2007098762 | Sep 2007 | WO |
2009144615 | Dec 2009 | WO |
2010060102 | May 2010 | WO |
2011004165 | Jan 2011 | WO |
2011022418 | Feb 2011 | WO |
2011048556 | Apr 2011 | WO |
2011080080 | Jul 2011 | WO |
2011080262 | Jul 2011 | WO |
2011091517 | Aug 2011 | WO |
2011143071 | Nov 2011 | WO |
2013033724 | Mar 2013 | WO |
2013114356 | Aug 2013 | WO |
2013116242 | Aug 2013 | WO |
2013140714 | Sep 2013 | WO |
2014186894 | Nov 2014 | WO |
2015003015 | Jan 2015 | WO |
2015022583 | Feb 2015 | WO |
2015077838 | Jun 2015 | WO |
2015168720 | Nov 2015 | WO |
2015169911 | Nov 2015 | WO |
2015195720 | Dec 2015 | WO |
2016098062 | Jun 2016 | WO |
2016172263 | Oct 2016 | WO |
2016172264 | Oct 2016 | WO |
2017032393 | Mar 2017 | WO |
2017214188 | Dec 2017 | WO |
2017218818 | Dec 2017 | WO |
2018071715 | Apr 2018 | WO |
2018077560 | May 2018 | WO |
2018115461 | Jun 2018 | WO |
2018144938 | Aug 2018 | WO |
2018144941 | Aug 2018 | WO |
2018144943 | Aug 2018 | WO |
2018144946 | Aug 2018 | WO |
2018168424 | Sep 2018 | WO |
2018189265 | Oct 2018 | WO |
2018209100 | Nov 2018 | WO |
2018234443 | Dec 2018 | WO |
2018236739 | Dec 2018 | WO |
2019020551 | Jan 2019 | WO |
2019030384 | Feb 2019 | WO |
2019048624 | Mar 2019 | WO |
2019048626 | Mar 2019 | WO |
2019048638 | Mar 2019 | WO |
2019072531 | Apr 2019 | WO |
2019073389 | Apr 2019 | WO |
2019076967 | Apr 2019 | WO |
2019096828 | May 2019 | WO |
2019099810 | May 2019 | WO |
2019099812 | May 2019 | WO |
2019113481 | Jun 2019 | WO |
2019157290 | Aug 2019 | WO |
2019162272 | Aug 2019 | WO |
2020014779 | Jan 2020 | WO |
2020043806 | Mar 2020 | WO |
2020053290 | Mar 2020 | WO |
2020077100 | Apr 2020 | WO |
2020187643 | Sep 2020 | WO |
2020187851 | Sep 2020 | WO |
2020234429 | Nov 2020 | WO |
Entry |
---|
Alanen, “Measurement of Hydration in the Stratum Corneum with the MoistureMeter and Comparison with the Corneometer,” Skin Research and Technology, 10:32-37 (2004). |
Alberts et al., “The Extracellular Matrix of Animals,” Molecular Biology of the Cell, 4th ed., pp. 1065-1127 (2002). |
Allman et al., “Pressure Ulcer Risk Factors Among Hospitalized Patients with Activity Limitation,” JAMA, 273:865-870 (1995). |
Anonymous, “Recommended Practices for Positioning the Patient in the Perioperative Practice Setting,” in Perioperative Standards, Recommended Practices, and Guidelines, AORN, Inc., 525-548 (2006). |
Arao et al., “Morphological Characteristics of the Dermal Papillae in the Development of Pressure Sores,” World Wide Wounds (Mar. 1999), 6 pages (obtained online). |
Australian Intellectual Property Office, Office Action dated May 1, 2014, for corresponding Australian patent application No. 2011253253 (pp. 1-10) and pending claims (pp. 11-15) pp. 1-15. |
Australian Patent Office, Office Action dated Jun. 1, 2015, for corresponding Australian Patent Application No. 2011253253 (pp. 1-4) and claims (pp. 5-10) pp. 1-10. |
Bader et al., “Effect of Externally Applied Skin Surface Forces on Tissue Vasculature,” Archives of Physical Medicine and Rehabilitation, 67(11):807-11 (1986). |
Barnes, “Moisture Meters for Use on Thin Lumber and Veneers,” Moisture Register Co., 1-5 (1956). |
Bates-Jensen et al., “Subepidermal Moisture Predicts Erythema and Stage 1 Pressure Ulcers in Nursing Home Residents: A Pilot Study,” Journal of the American Geriatric Society, 55:1199-1205 (2007). |
Bates-Jensen et al., “Subepidermal moisture differentiates erythema and stage 1 pressure ulcers in nursing home residents,” Wound Repair Regeneration, 16:189-197 (2008). |
Bates-Jensen et al., “Subepidermal Moisture Is Associated with Early Pressure Ulcer Damage in Nursing Home Residents with Dark Skin Tones; Pilot Findings,” Journal of Wound Ostomy and Continence Nursing, 36(3):277-284 (2009). |
Bates-Jensen et al., “Subepidermal Moisture Detection of Pressure Induced Tissue Damage on the Trunk: The Pressure Ulcer Detection Study Outcomes,” Wound Repair and Regeneration, 25:502-511 (2017). |
Berggren, “Capacitive Biosensors,” Electroanalysis, 13(3):173-180 (2001), Wiley-VCH (publisher), Weinheim, Germany. |
Bergstrand et al., “Pressure-induced Vasodilation and Reactive Hyperemia at Different Depths in Sacral Tissue Under Clinically Relevant Conditions,” Microcirculation, 21:761-771 (2014). |
Bergstrom et al., “Pressure Ulcers in Adults: Prediction and Prevention,” Clinical Practice Guideline—Quick Reference Guide for Clinicians, 117 (1992). |
Black et al., “Differential Diagnosis of Suspected Deep Tissue Injury,” International Wound Journal, 13(4):531-539 (2015). |
Brem et al., “Protocol for the Successful Treatment of Pressure Ulcers,” The American Journal of Surgery, 188 (Suppl. To Jul. 2004):9S-17S (2004). |
Brem et al. “High cost of stage IV pressure ulcers,” American Journal of Surgery, 200:473-477 (2010). |
Brienza et al., “Friction-Induced Skin Injuries—Are They Pressure Ulcers?,” Journal of Wound Ostomy and Continence Nursing, 42(1):62-64 (2015). |
Carmo-Araujo et al., “Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies,” International Journal of Experimental Pathology, 88:147-154 (2007). |
Ceelen et al., “Compression-induced damage and internal tissue strains are related,” Journal of Biomechanics, 41:3399-3404 (2008). |
Ching et al., “Tissue electrical properties monitoring for the prevention of pressure sore,” Prosthetics and Orthotics International, 35(4):386-394 (2011). |
Clendenin et al., “Inter-operator and inter-device agreement and reliability of the SEM Scanner,” Journal of Tissue Viability, 24(1):17-23 (2015). |
De Lorenzo et al., “Predicting body cell mass with bioimpedance by using theoretical methods: a technological review,” Journal of Applied Physiology, 82(5):1542-1558 (1997). |
De Oliveira et al., “Sub-epidermal moisture versus tradition and visual skin assessments to assess pressure ulcer risk in surgery patients,” Journal of Wound Care, 31(3):254-264 (2022), Mark Allen Group (pub.) (obtained online). |
Demarre et al., “The cost of pressure ulcer prevention and treatment in hospitals and nursing homes in Flanders: A cost-of-illness study,” International Journal of Nursing Studies, 1-14 (2015). |
Dodde et al., “Bioimpedance of soft tissue under compression,” Physiology Measurement, 33(6):1095-1109 (2012). |
Dupont, “Pyralux® FR Coverlay, Bondply & Sheet Adhesive,” webage, Retrieved from: www2.dupont.com/Pyralux/en_US/products/adhesives_films/FR/FR_films_html pp. 1-2 (2012). |
DuPont, “General Specifications for Kapton Polyimide Film,” Retrieved from Dupont: http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/Gen_Specs.pdf, pp. 1-7 (2012). |
DuPont, “Pyralux® FR Copper-clad Laminate,” webpage, Retrieved from: www2.dupont.com/Pyraluxlen_US/ productsllaminate/FR/pyralux_fr.html, pp. 1-2 (2012). |
Eberlein-Gonska et al., “The Incidence and Determinants of Decubitus Ulcers in Hospital Care: An Analysis of Routine Quality Management Data at a University Hospital,” Deutsches Arzteblatt International, 110(33-34):550-556 (2013). |
European Patent Office, ESSR issued on Aug. 22, 2014, for corresponding European Patent Application No. 11781061.4 (pp. 1-7) and pending claims (pp. 3-10) pp. 1-10. |
European Patent Office, Office Action dated Jul. 13, 2015, for corresponding European Patent Application No. 11781061.4 (pp. 1-5) and claims (pp. 6-9) pp. 1-9. |
Extended European Search Report dated Aug. 30, 2016, in European Patent Application No. 16169670. |
Extended European Search Report dated Oct. 18, 2016, in European Patent Application No. 16166483.4. |
Extended European Search Report dated Mar. 13, 2017, in European Patent Application No. 16196899.5. |
Extended European Search Report dated Oct. 25, 2019, in European Patent Application No. 19186393.5. |
Extended European Search Report dated Nov. 19, 2019, in European Patent Application No. 19190000.0. |
Extended European Search Report dated Feb. 6, 2020, in European Patent Application No. 18748733.5. |
Extended European Search Report dated Feb. 10, 2020, in European Patent Application No. 18748025.6. |
Extended European Search Report dated Feb. 10, 2020, in European Patent Application No. 18748512.3. |
Extended European Search Report dated Jun. 24, 2020, in European Patent Application No. 18747707.0. |
Extended European Search Report dated Mar. 17, 2022, in European Patent Application No. 19838240.0. |
Extended European Search Report dated May 24, 2022, in European Patent Application No. 19871332.3. |
Ford, “Hospice Wins Award for Innovation in Pressure Ulcer Prevention,” Nursing Times, downloaded and printed on Apr. 18, 2020, from https://www.nursingtimes.net/news/research-and-innovation/hospice-wins-award-for-innovation-in-pressure-ulcer-prevention-30-11-2018/ (2018). |
Gabriel et al., “The dielectric properties of bilogical tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Physics in Medicine and Biology, 41:2251-69 (1996). |
Gabriel, “Compilation of the Dielectric Properties of Body Tissues at Rf and Microwave Frequencies Report,” Occupational and Environmental Health Directorate, (1996). |
Gardiner et al., “Incidence of hospital-acquired pressure ulcers—a population-based cohort study,” International Wound Journal, 11(6):696-700 (2014). |
Gershon et al., “SEM Scanner Readings to Assess Pressure Induced Tissue Damage,” Proceedings of the 17th Annual European Pressure Ulcer Advisory Panel (EPUAP) meeting, Stockholm, Sweden (2014). |
Gonzalez-Correa et al., “Electrical bioimpedance readings increase with higher pressure applied to the measuring probe,” Physiology Measurement, 26:S39-S47 (2005). |
Great Britain Search Report dated Apr. 27, 2020, in Great Britain Patent Application No. GB2002889.0. |
Great Britain Search Report dated Jun. 28, 2021, in Great Britain Patent Application No. GB2106848.1. |
Great Britain Search Report dated Feb. 9, 2022, in Great Britain Patent Application No. GB2118088.0. |
Great Britain Search Report dated Feb. 14, 2022, in Great Britain Patent Application No. GB2118092.2. |
Guihan et al., “Assessing the feasibility of subepidermal moisture to predict erythema and stage 1 pressure ulcers in persons with spinal cord injury: A pilot study,” Journal of Spinal Cord Medicine, 35(1):46-52 (2012). |
Harrow, “Subepidermal moisture surrounding pressure ulcers in persons with a spinal cord injury: A pilot study,” Journal of Spinal Cord Medicine, 37(6):719-728 (2014). |
Hou, “Section IV. Osteofascial Compartment Syndrome,” Limbs Trauma, 7:215-217 (2016), Hubei Science & Technology Publishing House (pub.), Wuhan, China. |
Houwing et al., “Pressure-induced skin lesions in pigs: reperfusion injury and the effects of vitamin E,” Journal of Wound Care, 9(1):36-40 (2000). |
Huang et al., “A device for skin moisture and environment humidity detection,” Sensors and Actuators B: Chemical, 206-212 (2008). |
International Search Report and Written Opinion dated Feb. 9, 2012, for International Patent Application No. PCT/US2011/035618. |
International Search Report and Written Opinion dated Jul. 22, 2016, for International Patent Application No. PCT/US2016/28515. |
International Search Report and Written Opinion dated Jul. 26, 2016, for International Patent Application No. PCT/US2016/28516. |
International Search Report dated Apr. 12, 2018, issued in International Patent Application No. PCT/US2018/016731. |
International Search Report dated Apr. 12, 2018, issued in International Patent Application No. PCT/US2018/016738. |
International Search Report dated Apr. 26, 2018, issued in International Patent Application No. PCT/US2018/016741. |
International Search Report dated Jul. 12, 2018, issued in International Patent Application No. PCT/US2018/016736. |
International Search Report dated Sep. 10, 2018, issued in International Patent Application No. PCT/US2018/038055. |
International Search Report dated Jan. 29, 2019, issued in International Patent Application No. PCT/US2018/061494. |
International Search Report dated Feb. 5, 2019, issued in International Patent Application No. PCT/US2018/064527. |
International Search Report dated Feb. 11, 2019, issued in International Patent Application No. PCT/US2018/061497. |
International Search Report dated May 29, 2019, issued in International Patent Application No. PCT/US2019/017226. |
International Search Report dated Mar. 9, 2020, issued in International Patent Application No. PCT/US2019/055655. |
International Search Report dated Dec. 8, 2020, issued in International Patent Application No. PCT/US2020/051134. |
International Search Report dated Aug. 17, 2021, issued in International Patent Application No. PCT/US2021/023818. |
International Search Report dated May 13, 2022, issued in International Patent Application No. PCT/US2022/014913. |
International Search Report dated Aug. 2, 2022, issued in International Patent Application No. PCT/US2022/025508. |
International Search Report dated Aug. 15, 2022, issued in International Patent Application No. PCT/US2022/019338. |
Jan et al., “Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations,” Physiology Measurement, 33(10):1733-1745 (2012). |
Jaskowski, “Evaluation of the Healing Process of Skin Wounds by Means of Skin Absolute Value of Electrical Impedance,” Dermatol. Mon.schr., 172(4):223-228 (1986). |
Jiang et al., “Ischemia-Reperfusion Injury-Induced Histological Changes Affecting Early Stage Pressure Ulcer Development in a Rat model,” Ostomy Wound Management, 57:55-60 (2011). |
Jiang et al., “Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing,” Spinal Cord, 52(2):145-151 (2014). |
Jiricka et al., “Pressure Ulcer Risk factors in an ICU Population,” American Journal of Critical Care, 4:361-367 (1995). |
Kanai et al., “Electrical measurement of fluid distribution in legs and arms,” Medical Progress through Technology Journal, 12:159-170 (1987). |
Kasuya et al., “Potential application of in vivo imaging of impaired lymphatic duct to evaluate the severity of pressure ulcer in mouse model,” Scientific Reports, 4:4173 (7 pages) (2014). |
Lee, “CapSense Best Practices,” Application Note 2394, 1-10 (2007). |
Liu et al., “A Systematic Review of Electrical Stimulation for Pressure Ulcer Prevention and Treatment in People with Spinal Cord Injuries,” The Journal of Spinal Cord Medicine, 37(6):703-718 (2014). |
Loerakker et al., “Temporal Effects of Mechanical Loading on Deformation-Induced Damage in Skeletal Muscle Tissue,” Annual Review of Biomedical Engineering, 38(8):2577-2587 (2010). |
Loerakker et al., “The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading,” Journal of Applied Physiology, 111(4):1168-1177 (2011). |
Lyder et al., “Quality of Care for Hospitalized Medicare Patients at Risk for Pressure Ulcers,” Archives of Internal Medicine,161:1549-1554 (2001). |
Martinsen, “Bioimpedance and Bioelectricity Basics,” Elsevier Academic Press, Chapters 1 and 10 (2015). |
Mathiesen et al., “Are labour-intensive efforts to prevent pressure ulcers cost-effective?” Journal of Medical Economics, 16(10):1238-1245 (2013). |
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Journal of Applied Physiology, 84(5):1801-1816 (1998). |
Miller et al., “Lymphatic Clearance during Compressive Loading,” Lymphology, 14(4):161-166 (1981). |
Moore et al., “A randomised controlled clinical trial of repositioning, using the 30° tilt, for the prevention of pressure ulcers,” Journal of Clinical Nursing, 20:2633-2644 (2011). |
Moore et al., “Pressure ulcer prevalence and prevention practices in care of the older person in the Republic of Ireland,” Journal of Clinical Nursing, 21:362-371 (2012). |
Moore et al., “A review of PU prevalence and incidence across Scandinavia, Iceland and Ireland (Part I)”, Journal of Wound Care, 22(7):361-362, 364-368 (2013). |
Moore et al., “Subepidermal Moisture (SEM) and Bioimpedance: A Literature Review of a Novel Method for Early Detection of Pressure-Induced Tissue Damage (Pressure Ulcers),” International Wound Journal, 14(2):331-337 (2016). |
Moore, “Using SEM (Sub Epidermal Moisture) Measurement for Early Pressure Ulcer Detection,” Institute for Pressure Injury Prevention, WCICT 2017 (Jun. 20-21), Manchester, UK, 7 pp., available at www.pressureinjuryprevention.com/wp-content/uploads/2017/07/ipip_Moore_Sub_Epidermal_Moisture_notes.pdf (2017) (obtained online). |
Moore et al., “SEM Scanner Made Easy,” Wounds International, pp. 1-6, available at www.woundsinternational.com (2018). |
Mulasi, “Bioimpedance at the Bedside: Current Applications, Limitations, and Opportunities,” Nutritional Clinical Practice, 30(2):180-193 (2015). |
Musa et al., “Clinical impact of a sub-epidermal moisture scanner: what is the real-world use?,” J. Wound Care, 30(3):2-11 (2021), Mark Allen Group (pub.) (obtained online). |
National Pressure Ulcer Advisory Panel et al., “Prevention and Treatment of Pressure Ulcers: Clinical Practice Guideline,” Cambridge Media, (2014). |
Nixon et al., “Pathology, diagnosis, and classification of pressure ulcers: comparing clinical and imaging techniques,” Wound Repair and Regeneration, 13(4):365-372 (2005). |
Nuutinen et al., “Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat,” Physiological Measurement, 25:447-454 (2004). |
O'Goshi, “Skin conductance; validation of Skicon-200EX compared to the original model, Skicon-100,” Skin Research and Technology, 13:13-18 (2007). |
Oliveira, “The Accuracy of Ultrasound, Thermography, Photography and Sub-Epidermal Moisture as a Predictor of Pressure Ulcer Presence—a Systematic Review,” RCSI, School of Nursing thesis (2015). |
Oomens et al., “Pressure Induced Deep Tissue Injury Explained,” Annual Review of Biomedical Engineering, 43(2):297-305 (2015). |
Pang et al. (eds.) Diagnosis and Treatment of Diabetes, China Press of Traditional Chinese Medicine (publisher), Beijing, China, pp. 466-468 (Oct. 2016), with English Translation. |
Rotaru et al., “Friction between Human Skin and Medical Textiles for Decubitus Prevention,” Tribology International, 65:91-96 (2013). |
Saxena, The Pocket Doctor: Obstetrics & Gynecology, pp. 76-77 (2017), Tianjin Science & Technology Translation & Publishing Co. Ltd. (pub.), Tianjin, China. |
Scallan et al., “Chapter 4: Pathophysiology of Edema Formation,” Capillary Fluid Exchange: Regulation, Functions, and Pathology, 47-61 (2010). |
Schultz et al., “Extracellular matrix: review of its role in acute and chronic wounds,” World Wide Wounds, 1-20 (2005). |
Schwan, “Electrical properties of tissues and cells,” Advances in Biology and Medical Physics, 15:148-199 (1957). |
Seibert et al., “Technical Expert Panel Summary Report: Refinement of a Cross-Setting Pressure Ulcer/Injury Quality Measure for Skilled Nursing Facilities, Inpatient Rehabilitation Facilities, Long-Term Care Hospitals, and Home Health Agencies,” RTI International Abt Associates, CMS Contract No. HHSM-500-2013-130151, 49 pp. (Aug. 2019). |
Sener et al., “Pressure ulcer-induced oxiadative organ injury is ameliorated by beta-glucan treatment in rats,” International Immunopharmacology, 6(5):724-732 (2006). |
Sewchuck et al., “Prevention and Early Detection of Pressure Ulcers in Patients Undergoing Cardian Surgery,” AORN Journal, 84(1):75-96 (2006). |
Sprigle et al., “Analysis of Localized Erythema Using Clinical Indicators and Spectroscopy,” Ostomy Wound Management, 49:42-52 (2003). |
Stekelenburg et al., “Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model,” Journal of Applied Physiology, 102:2002-2011 (2007). |
Stekelenburg et al., “Deep Tissue Injury: How Deep is Our Understanding?” Archives of Physical Medicine Rehabilitation, 89(7):1410-1413 (2008). |
Supplementary Partial European Search Report dated Jan. 27, 2020, in European Patent Application No. 18747707. |
Supplementary Partial European Search Report dated Jul. 13, 2021, in European Patent Application No. 18887039. |
Supplementary Partial European Search Report dated Oct. 1, 2021, in European Patent Application No. 19751130. |
Swisher et al., “Impedance sensing device enables early detection of pressure ulcers in vivo,” Nature Communications, 6:6575-6584 (2015). |
Thomas et al., “Hospital-Acquired Pressure Ulcers and Risk of Death,” Journal of the American Geriatrics Society, 44:1435-1440 (1996). |
Thomas, “Prevention and Treatment of Pressure Ulcers,” J. Am. Med. Dir. Assoc., 7:46-59 (2006). |
Truong et al., “Pressure Ulcer Prevention in the Hospital Setting Using Silicone Foam Dressings,” Cureus, 8(8):e730, pp. 1-6 (2016). |
Tur et al., “Topical Hydrogen Peroxide Treatment of Ischemic Ulcers in the Guinea Pig: Blood Recruitment in Multiple Skin Sites,” J. Am. Acad. Dermatol., 33:217-221 (1995). |
Valentinuzzi et al., “Bioelectrical Impedance Techniques in Medicine. Part II: Monitoring of Physiological Events by Impedance,” Critical Reviews in Biomedical Engineering, 24(4-6):353-466 (1996). |
Vangilder et al., “Results of Nine International Pressure Ulcer Prevalence Surveys: 1989 to 2005,” Ostomy Wound Management, 54(2):40-54 (2008). |
Vowden et al., “Diabetic Foot Ulcer or Pressure Ulcer? That Is the Question,” The Diabetic Foot Journal, 18:62-66 (2015). |
Wagner et al., “Bioelectrical Impedance as a Discriminator of Pressure Ulcer Risk,” Advances in Wound Care, 9(2):30-37 (1996). |
Wang et al., “A Wireless Biomedical Instrument for Evidence-Based Tissue Wound Characterization,” Wireless Health, pp. 222-223 (2010). |
Wang, “Biomedical Systen for Monitoring Pressure Ulcer Development,” UCLA Electronic Theses and Dissertations, California, USA, pp. 1-123 (2013). |
Watanabe et al., “CT anlysis of the use of the electrical impedance technique to estimate local oedema in the extremities in patients with lymphatic obstruction,” Medical and Biological Engineering and Computing, 36(1):60-65 (1998). |
Weiss, “Tissue destruction by neutrophils,” The New England Journal of Medicine, 320(6):365-76 (1989). |
Yang, Handbook of Practical Burn Surgery, p. 48 (2008), People's Military Medical Press (pub.), Beijing, China. |
Zanibbi, “Pattern Recognition: An Overview,” downloaded from https://www.cs.rit.edu/˜rlaz/prec20092/slides/Overview.pdf, 30 pp. (2010). |
Hamazoto et al., “Estimate of Burn Depth by Non-Invasive Capacitance Measurement,” Japan Soc. ME & BE, 42:266 (Jun. 2003). |
Arimoto et al., “Non-Contact Skin Moisture Measurement Based on Near-Infrared Spectroscopy,” Applied Spectroscopy, 58(12):1439-1446 (2004). |
Extended European Search Report dated Feb. 1, 2023, in European Patent Application No. 22211200. |
Extended European Search Report completed Nov. 7 , 2023, in European Patent Application No. 23188775.3. |
Partial European Search Report dated Sep. 6, 2023, in European Application No. 23188775.3. |
Ross et al., “Assessment of Sub-Epidermal Moisture by Direct Measurement of Tissue Biocapacitance,” Medical Engineering & Physics, 73:92-99 (Jul. 26, 2019). |
Supplementary Partial European Search Report completed Jan. 10, 2024, in European Patent Application No. 21782145. |
Number | Date | Country | |
---|---|---|---|
20230068683 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
62628676 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16271040 | Feb 2019 | US |
Child | 18047084 | US |