The application pertains to gas or smoke detectors. More particularly, the application pertains to portable detectors which include standardized sensing modules which have been certified by an agency, and, are usable with different peripheral circuits without loss of that certification.
Portable gas detectors are being subjected to ever more rigorous regulatory performance certifications. Some of these performance approvals now include a software evaluation. This evaluation typically means that all software in the detector is evaluated and then controlled by an agency from that point forward. This level of control makes it very difficult to make changes or add features to existing designs.
Such regulatory involvement can increase the time needed to commercialize and market new detectors and features, which in turn can lead to a competitive disadvantage in the marketplace. In addition to software certifications, detectors are also usually subject to regulatory evaluations of the hardware that is used to implement gas sensing circuitry. Thus, even if a sensor has been previously certified to a particular performance standard, each new instrument use requires recertification. This process can result in further increased delays with regard to the launch cycle of new products.
While disclosed embodiments can take many different forms, specific embodiments thereof are shown in the drawings and will be described herein in detail with the understanding that the present disclosure is to be considered as an exemplification of the principles thereof as well as the best mode of practicing same, and is not intended to limit the application or claims to the specific embodiment illustrated.
It will be recognized by persons of ordinary skill in the art that embodiments hereof provide a new platform that can reduce the development time by eliminating much of the evaluation performed by regulatory agencies. Generally, embodiments disclosed herein are able to satisfy this objective by providing a novel sensor and method that can determine alarm conditions of a particular gas channel. This process can generally involve calculating a final gas reading; determining high and low alarms; determining fault conditions for the sensor, and providing an alarm indication.
Such embodiments are able to carrying out this process without intervention from the main controller and thus can be considered as a separate safety critical subsystem. This process can enable the safety critical functionality to be contained within a sensor module such that a main processor of a respective detector, responsible for driving the output display device, for example a liquid crystal display device (LCD), as well as any other value added functions, does not need to be evaluated to the same level as the safety critical portion.
Thus, a self-contained sensing element as described herein can become a platform around which instrument families, which can include various types of detectors, can be designed. It will be recognized that this configuration can save anywhere from six months to a year on each new development cycle and can also enable incremental changes and updates to be made to the subject detectors without each change requiring an update to the performance evaluation. Such benefits are at least in part due to the fact that embodiments hereof can be partitioned into safety/non-safety blocks, or modules, which can provide flexibility and simplification of the agency requirements for value added features. These embodiments can provide important advantages in the market by enabling users to respond more quickly to customer requests and expectations.
The Integrated Sensor Platform described herein can be implemented by embedding a programmable processor, such as a micro controller, into the sensor. This controller can perform a series of functions, including converting an analog signal from the sensor to final measurement units, comparing this measured value to stored alarm setpoints, determining fault conditions for the sensor, determining high/low alarm conditions, driving high and low alarms with dedicated output pins, providing a fault status signal via a dedicated output pin, communicating sensor readings to the main controller for display on the LCD, and incorporating the necessary hardware to perform self-diagnostics and prevent runaway conditions.
The detectors 12-i can communicate via a wired or wireless medium 14a with a monitoring system control unit 14.
Detector 12-1 is representative of the members of the plurality of detectors 12. Hence, a discussion of detector 12-1 will apply to remaining members of the plurality 12.
As illustrated in
Circuitry in housing 16 is partitioned into safety related components, or module, 20 and non-safety related circuitry, or module, 22. For example, safety related module 20 includes all agency controlled safety critical elements. These can be implemented as an integrated sensor platform 30 and an associated alarm indicator 32. Platform 30 and output device(s) 32 are interconnected, and platform 30 can provide outputs, 34 to non-safety elements 22.
A single housing is not required. Separate housings for each module type, 20, 22 can be provided. Both modules can be carried on a single substrate.
Platform 30 can include one or more sensor(s) 36a, which can include gas sensors, fire or smoke sensors, radiation sensors all without limitation. Signal conditioning circuitry 36b, gas or smoke level determination circuitry 36c, alarm status indicating circuitry 36d, and fault status indicting circuitry 36e. Circuits 36 can be implemented at least in part with a programmable processor, microcontroller 38a, and associated executable instructions 38b. Those of skill will understand that the instructions 38b can be installed in read only memory, read-write memory or any other configuration without departing from the spirit and scope hereof. Processor 38a, with instructions 38b can also drive the alarm indicating output devices such as light emitting diodes, buzzers or vibrators 32.
Since the sensor platform 30 determines alarm status, the non-safety module 22 does not need agency certification. As a result, users can readily specify or install variations on the circuitry therein.
Without limitation, the non-safety module 22 can include a programmable controller 40 which includes one or more display drivers 40a, and wireless communications circuitry 40b. The controller 40 can also be coupled to liquid crystal display 42a, and datalogger 42b. Advantageously, and, in accordance herewith, users can request versions of detector 12-1 that include the display 42a and datalogger 42b in the housing 16, or in a second, separate housing 16a, as indicted by housing dashed wall 16b. In either instance, the certified safety module 20 is not revised or altered, and no recertification will be required.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope hereof. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims. Further, logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be add to, or removed from the described embodiments.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/880,434 filed Sep. 20, 2013, entitled, “Integrated Sensor Platform”. The '434 application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61880434 | Sep 2013 | US |