This application claims priority from European Patent Application No 03028877.3 filed Dec. 16, 2003, the entire disclosure of which is incorporated herein by reference.
The present invention relates, to a detent escapement for a timepiece, including an escapement wheel, fitted with teeth, a balance on the pin of which there is fixed a large roller fitted with an impulse pallet-stone and a first actuating finger and a small roller on the circular periphery of which a notch is made, and a blocking member in the form of a lever hinged on a pin, said stop member carrying a device for blocking the escapement wheel and a second actuating finger.
A detent escapement broadly answering the above description has already been proposed and disclosed in the old Swiss Patent No. CH-3299 in the name of Emile James. The proposed arrangement shows a detent-lever pivoted at one of its ends in accordance with a conventional construction of this type of escapement. The balance pin carries a large roller, a first small roller carrying a notch and a second small roller carrying an actuating finger. The detent-lever carries a device for blocking the escapement wheel—in this case, a locking pallet-stone—, a pin, a beak and a strip spring. The detent-lever is returned to the rest position by a spiral shaped return spring. At the moment when the actuating finger raises the detent with the assistance of the strip spring, the beak penetrates the notch at the same time that the escapement wheel moves forward by one step. During the additional arc, the beak is released from the notch is in proximity to the circular periphery of the first small roller.
This arrangement has the advantage of preventing a tooth of the wheel from leaving the locking pallet-stone when the timepiece receives a shock. Indeed, at that moment, the beak abuts for a brief moment against the circular periphery of the first small plate, which stops the detent-lever which is immediately returned to the rest position by the spiral shaped return spring.
The foregoing identifies a weakness affecting the detent escapement, namely that it is very sensitive to shocks, thus this escapement is reserved especially for chronometers of large dimensions or marine chronometers that are not mechanically stressed, said escapement having the reputation of not being suited to wristwatches.
It will be noted however, in what is proposed by the aforecited Swiss Patent, that removal of the beak from the notch is only possible owing to the spiral shaped spring, which exerts a return force on the detent-lever. Indeed, the notch carries almost radial sheer flanks preventing any removal of the beak which might be caused simply by rotation of the roller itself.
Another detent escapement partially answering the description of the first paragraph of this text was proposed by Breguet and is the subject of an illustration (
It was stated hereinbefore that the detent escapement is suitable for timepieces of large dimensions, which use large balances having a large energy reserve and a strong torque for actuating the elastic member that acts on the detent. During a vibration, in fact, the elastic member has to be tightened to release the locking pallet-stone, whereas at the next vibration, the same elastic member has to be let down to enable it to move around the detent which is not being activated.
It is an object of the present invention to propose a timepiece of small dimensions, for example a wristwatch, which is fitted with a detent escapement to replace, for example, the conventional lever escapement and to benefit from the advantages provided by the detent escapement. It will be understood however, that using the prior known techniques described hereinbefore would lead to failure since the energy produced by the balance of a wristwatch is much less than that produced by a marine chronometer, this balance thus proving incapable of overcoming the forces acting on the detent.
Thus the detent escapement of the present invention is characterised in that it omits the elastic member acting on the detent. For this purpose, the detent escapement according to the invention, in addition to answering the definition of the first paragraph of this description, is characterised in that the first and second actuating fingers are shaped such that when the large and small rollers rotate in a first direction, the first finger drives the second finger which moves around a first side of said first finger to release the escapement wheel locking device, the second finger being then driven by a vertical flank with which the notch of the small roller is provided to re-engage the locking device in the escapement wheel, and such a way that when the large and small rollers rotate in a second direction, opposite to the first direction, the first finger drives the second finger which moves around a second side, opposite to the first, of said first finger to keep the locking device engaged in the escapement wheel.
The invention will be explained in detail hereinafter by several embodiments given by way of example, these embodiments being illustrated by the annexed drawings, in which:
FIGS. 4 to 13 are plan views explaining several operating phases of the escapement of the invention;
FIGS. 1 to 3 illustrate the detent escapement that forms the subject of the present invention according to a first embodiment. The escapement includes an escapement wheel 2 fitted with teeth 3. Although not shown in the drawings, the escapement wheel is driven by the gear train of the timepiece, which receives its driving force from a barrel. On the pin 16 of the balance (not shown) there is fixed a large roller 4 fitted with an impulse pallet-stone 5 and a first actuating finger 14. On the same balance pin 16 there is fixed a small roller 23 having a circular periphery 24 and a notch 22. The Figures also show that the escapement includes a blocking member in the form of a lever 6 hinged on a pin 8. The blocking member 6 carries a locking device or locking pallet-stone 7 and a second actuating finger 11.
As already stated hereinbefore, the detent escapement of the present invention is characterised in that it omits an elastic member acting on the blocking member 6. In order to achieve this result, FIGS. 1 to 3 show a particular configuration of the first and second actuating fingers 14 and 11. Indeed, because of this, when the large and small rollers 4 and 23 rotate in a first direction a, first finger 14 drives second finger 11 moving around a first side 20 of said first finger 14, which has the effect of releasing locking pallet-stone 7 from escapement wheel 2 and initiating an impulse on the balance. Second finger 11 is then driven by a rising flank 25 of notch 22 of small roller 23, which has the effect of re-engaging locking pallet-stone 7 in escapement wheel 2. Likewise, the first and second actuating fingers 14 and 11 are shaped such that, when large and small rollers 4 and 23 rotate in a second direction b, opposite to the first, first finger 14 drives second finger 11 moving around a second side 21, opposite to the first, of said first finger 14, which has the effect of keeping locking pallet-stone 7 engaged in escapement wheel 2.
As recalled hereinbefore, therein lies the principle of the detent escapement in which the impulse is only given to the balance once per oscillation. Indeed it has just been seen that the escapement wheel is released when the rollers rotate in one direction, whereas it remains locked when said rollers rotate in the other direction.
The operation of the detent escapement will now be described in detail with reference to FIGS. 4 to 13, which illustrate different phases of operation.
In
In
In
In
In
In
In
In
In
In
FIGS. 14 to 16 illustrate the detent escapement according to a second embodiment. As can be clearly seen, the single pallet-stone of the preceding embodiment has been replaced by first and second locking pallet-stone-stones 40 and 41 arranged on each other, all the other elements forming the escapement remaining the same. The first and second locking pallet-stones 40 and 41 respectively have first and second locking faces 42 and 43 inclined in relation to each other to form a locking line 44 along which tooth 62 of escapement wheel 2 can rest. The first locking face 42 intercepts tooth 62 of wheel 2 when first pallet-stone 40 is inserted between two teeth 60 and 62. As for the first embodiment, when first finger 14 drives second finger 11, via its second side 21, tooth 62 climbs over the second face 43 of second pallet-stone 41. Tooth 62 returns to locking line 44 when second finger 11 leaves first finger 14.
As regards the rest, the various operating phases remain the same as those explained and illustrated in FIGS. 4 to 13. In particular, the tip of tooth 62 lodges, via the effect of drawing, on locking line 44 and stops there, the second locking face 43 upright in front of it, preventing it from continuing on its way.
FIGS. 17 to 19 illustrate the detent escapement according to a third embodiment. Here the single pallet-stone of the first embodiment has been replaced by first and second locking pallet-stones 50 and 51 respectively cooperating with first and second teeth 62 and 63 of escapement wheel 2. The first and second locking pallet-stones respectively have first and second locking faces 52 and 53, inclined in relation to each other. When the locking device is inserted between the teeth of the escapement wheel, it is the first locking face 52 of first pallet-stone 50 which intercepts the first tooth 62 of wheel 2. This wheel is then completely locked when the second locking face 53 of second pallet-stone 51 enters into contact with second tooth 63 of wheel 2, the inclination of locking face 52 being selected such that it is not possible for tooth 63 to climb along said face 52. However, when first finger 14 drives, via its second side 21, second finger 11, the second tooth 63 climbs over second locking face 53 of second pallet-stone 51 forcing wheel 2 to make a slight backward movement against the drive force exerted thereon. Second tooth 63 returns finally to the first point of contact of second locking face 53 with second tooth 63, when second finger 11 leaves first finger 14.
As regards the rest, the various operating phases remain the same as those explained with reference to FIGS. 4 to 13.
In order for the system to operate properly, it is indispensable for the first and second actuating fingers 14 and 11 to be shaped so as to slide easily on top of each other since, as was seen, finger 14 drives finger 11 by making one complete revolution about the latter. Several shapes can be envisaged to achieve this purpose. The Figures illustrating this description show that the first actuating finger 14 has a parallelepiped cross section and that the second actuating finger has a triangular cross section whose angles are rounded. The invention is of course not limited to these shapes, for example first finger 14 could very well have a triangular cross section with rounded angles, while the second finger 11 has a parallelepiped cross section.
The escapement described hereinbefore appears entirely novel in that that it operates without the use of any elastic member and in that it is economical in terms of the energy consumed by the balance. Because of this, it is perfectly suitable for fitting to small timepieces, for example a wristwatch naturally provided with a balance of small size supplying a small amount of energy. In fact, can the escapement described hereinbefore be called a detent escapement when a detent presupposes an elastic member for actuating it? The present invention retains from the detent escapement the direct action of the escapement wheel on the balance and the single impulse given to the balance for one oscillation of the latter.
It will also be noted in conclusion that the whole of the escapement described is no bulkier than a lever escapement mounted in a wristwatch, if not less, whereas the known detent escapements take up a lot of space, which is why their use is limited to watches of large dimensions.
Number | Date | Country | Kind |
---|---|---|---|
03028877.3 | Dec 2003 | EP | regional |