DETERGENT ADDITIVE FOR FUEL

Abstract
The use of a block copolymer as detergent additive in an internal combustion engine liquid fuel, including: at least one block A of formula (I):
Description

The present invention relates to the use of a copolymer as detergent additive in a liquid fuel for an internal combustion engine. The invention also relates to a process for keeping clean (keep-clean) and/or for cleaning (clean-up) at least one of the internal parts of an internal combustion engine.


PRIOR ART

Liquid fuels for internal combustion engines contain components that can degrade during the functioning of the engine. The problem of deposits in the internal parts of combustion engines is well known to motorists. It has been shown that the formation of these deposits has consequences on the performance of the engine and in particular a negative impact on consumption and particle emissions. Progress in the technology of fuel additives has made it possible to face up to this problem. “Detergent” additives in fuels have already been proposed to keep the engine clean by limiting deposits (“keep-clean” effect) or by reducing the deposits already present in the internal parts of the combustion engine (“clean-up” effect). Mention may be made, for example, of U.S. Pat. No. 4,171,959 which describes a detergent additive for petrol fuel containing a quaternary ammonium function. WO 2006/135 881 describes a detergent additive containing a quaternary ammonium salt used for reducing or cleaning deposits, especially on the inlet valves. However, engine technology is in constant evolution and the stipulations for fuels must evolve to cope with these technological advances of combustion engines. In particular, the novel petrol or diesel direct-injection systems expose the injectors to increasingly severe pressure and temperature conditions, which promotes the formation of deposits. In addition, these novel injection systems have more complex geometries to optimize the spraying, especially, from more numerous holes having smaller diameters, but which, on the other hand, induce greater sensitivity to deposits. The presence of deposits may impair the combustion performance and in particular increase pollutant emissions and particle emissions. Other consequences of the excessive presence of deposits have been reported in the literature, such as the increase in fuel consumption and maneuverability problems.


Preventing and reducing deposits in these novel engines are essential for optimum functioning of modern engines. There is thus a need to propose detergent additives for fuel which promote optimum functioning of combustion engines, especially for novel engine technologies.


There is also a need for a universal detergent additive that is capable of acting on deposits irrespective of the technology of the engine and/or the nature of the fuel.


SUBJECT OF THE INVENTION

The Applicant has discovered that the block copolymers according to the invention have noteworthy properties as detergent additive in liquid fuels for internal combustion engines. The block copolymers according to the invention used in these fuels can keep the engine clean, in particular by limiting or preventing the formation of deposits (“keep-clean” effect) or by reducing the deposits already present in the internal parts of the combustion engine (“clean-up” effect).


The advantages associated with the use of such copolymers according to the invention are:

    • optimum functioning of the engine,
    • reduction of the fuel consumption,
    • better maneuverability of the vehicle,
    • reduced pollutant emissions, and
    • savings due to less engine maintenance.


The subject of the present invention relates to the use of a block copolymer as detergent additive in a liquid fuel for internal combustion engines, said block copolymer comprising:

    • at least one block A of formula (I) below:




embedded image




    • in which

    • n is an integer ranging from 2 to 100,

    • R1 is chosen from hydrogen and a methyl group,

    • R2 is chosen from C1 to C34 hydrocarbon-based chains,

    • at least one block B of formula (II) below:







embedded image




    • in which

    • p is an integer between 2 and 40, and

    • G is chosen from:
      • an aryl group, and
      • an aryl group substituted with at least one group chosen from:
        • a group R,
        • a C1 to C12 hydrocarbon-based chain, and
        • a C1 to C12 hydrocarbon-based chain substituted with at least the group R, said group R being chosen from the group consisting of:
          • groups comprising from 1 to 40 atoms chosen from C, N and optionally O, and comprising at least one primary, secondary or tertiary amine function, and
          • quaternary ammoniums,

    • said group R being connected to the aryl group or to the hydrocarbon-based chain, preferably via a nitrogen atom present in the group R.





According to a first embodiment, n is an integer ranging from 2 to 40.


According to another variant, n is an integer greater than 40 and less than or equal to 100.


According to one embodiment, block B is represented by formula (II) in which G is a substituted aryl group.


Advantageously, the group R is chosen from groups containing at least one primary, secondary or tertiary amine function. In particular, the group R is chosen from the group consisting of: —NH2; groups containing at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function; heterocyclic groups containing from 3 to 34 atoms and at least one nitrogen atom.


The group R preferably represents a heterocyclic group also comprising at least one element chosen from: an oxygen atom, a carbonyl group and one or more unsaturations.


According to a particular embodiment, the group R is chosen from trialkylammonium groups.


According to a preferred particular embodiment, the block copolymer comprises:

    • a block A consisting of a chain of structural units derived from an alkyl acrylate or alkyl methacrylate monomer (ma), and
    • a block B consisting of a chain of structural units derived from a styrenyl monomer (mb) chosen from styrene and styrene derivatives in which the aromatic nucleus is substituted with at least the group R or with at least one linear or branched C1 to C12 hydrocarbon-based chain, which is preferably acyclic, optionally substituted with at least the group R.


Advantageously, the monomer (ma) is chosen from C1 to C34 alkyl acrylates and methacrylates.


The monomer (mb) is preferably chosen from (vinylbenzyl)trialkylammonium isomers, alone or as a mixture.


According to a particular embodiment, the block copolymer is represented by formula (IV) or (V) below:




embedded image




    • in which

    • m=0 or 1,

    • n, p, R1 and R2 are as described above in formulae (I) and (II),

    • R3 is a substituent on the aromatic nucleus, chosen from the group constituted by:
      • hydrogen,
      • C1 to C12 alkyl groups,
      • groups comprising from 1 to 40 atoms chosen from C, N and optionally O, and comprising at least one primary, secondary or tertiary amine function, and
      • quaternary ammoniums, in particular represented by formula (VI) below:








—CH2—N+(R7)(R8)(R9)X  (VI)

      • in which
      • X is chosen from hydroxide and halide ions and organic anions, and
      • R7, R8 and R9 are identical or different and chosen, independently, from C1 to C10 alkyl groups,
    • groups of formula (VII) below:





—CH2—R10  (VII)

      • in which
      • R10 is chosen from groups comprising from 1 to 40 atoms chosen from C, N and optionally O, and comprising at least one primary, secondary or tertiary amine function, or a quaternary ammonium function, and
    • R4 is chosen from the group constituted by:
      • hydrogen,
      • groups comprising from 1 to 40 atoms chosen from C, N and optionally O, and comprising at least one primary, secondary or tertiary amine function, or a quaternary ammonium function,
      • halogens, and
      • C1 to C32 hydrocarbon-based chains, optionally substituted with one or more groups containing at least one heteroatom chosen from N and O,
    • R5 and R6 are identical or different and chosen, independently, from the group constituted by hydrogen and C1 to C10 alkyl groups.
    • T is chosen from C1 to C32 hydrocarbon-based chains and groups derived from a reversible addition-fragmentation chain-transfer (RAFT) radical polymerization transfer agent, it being understood that if T is a group derived from a transfer agent, then m=0.


According to a particular embodiment, the block copolymer is obtained by block polymerization, optionally followed by one or more post-functionalizations.


According to a particular embodiment, the block copolymer is preferably a diblock copolymer.


According to another particular embodiment, the block copolymer is a triblock copolymer containing alternating blocks comprising two blocks A and one block B (ABA) or comprising two blocks B and one block A (BAB).


According to another particular embodiment, the block copolymer comprises at least one sequence of blocks AB, ABA or BAB in which said blocks A and B form a sequence without the presence of an intermediate block of different chemical nature.


According to a particular embodiment, the block copolymer is used in a liquid fuel chosen from hydrocarbon-based fuels and fuels that are not essentially hydrocarbon-based, alone or as a mixture.


According to a particular development, the block copolymer is used as a mixture with an organic liquid in the form of a concentrate, said organic liquid being inert with respect to the block copolymer and miscible in the fuel.


Advantageously, the block copolymer is used in the form of an additive concentrate in combination with at least one fuel additive for an internal combustion engine other than said block copolymer.


According to a particular embodiment, the block copolymer is used in the liquid fuel to keep clean and/or to clean-up at least one of the internal parts of an internal combustion engine.


According to a preferred particular embodiment, the block copolymer is used in the liquid fuel to limit or prevent the formation of deposits in at least one of the internal parts of an internal combustion engine and/or to reduce the existing deposits in at least one of the internal parts of said engine.


Advantageously, the block copolymer is used to reduce the fuel consumption of an internal combustion engine.


According to a particular embodiment, the block copolymer is also used to reduce the pollutant emissions, in particular of an internal combustion engine.


According to a particular embodiment, the internal combustion engine is a spark ignition engine.


According to another particular embodiment, the internal combustion engine is a diesel engine, preferably a direct-injection diesel engine.


According to a preferred particular embodiment, the block copolymer is used to limit or prevent and/or reduce the coking-related deposits and/or deposits of soap and/or lacquering type.


According to a particular embodiment, the block copolymer is used to reduce and/or prevent power loss due to the formation of deposits in the internal parts of a direct-injection diesel engine, said power loss being determined according to the standardized engine test method CEC F-98-08.


According to another particular embodiment, the block copolymer is used to reduce and/or prevent restriction of the fuel flow emitted by the injector of a direct-injection diesel engine during its functioning, said flow restriction being determined according to the standardized engine test method CEC F-23-1-01.


The subject of the present invention also relates to a process for keeping clean and/or for cleaning at least internal parts of an internal combustion engine, comprising at least the following steps:

    • the preparation of a fuel composition by supplementation of a fuel with one or more block copolymers as defined above, and
    • combustion of said fuel composition in said internal combustion engine.


According to a particular embodiment, the internal combustion engine is a spark ignition engine.


Advantageously, the internal part of the spark ignition engine that is kept clean and/or cleaned is preferably chosen from the engine intake system, in particular the intake valves (IVD), the combustion chamber (CCD or TCD) and the fuel injection system, in particular the injectors of an indirect injection system (PFI) or the injectors of a direct injection system (DISI).


According to another particular embodiment, the internal combustion engine is a diesel engine, preferably a direct-injection diesel engine.


Advantageously, the part of the diesel engine that is kept clean and/or cleaned is the injection system of said diesel engine.







DETAILED DESCRIPTION

Other advantages and characteristics will emerge more clearly from the description that follows. The particular embodiments of the invention are given as nonlimiting examples.


According to a particular embodiment, a block copolymer comprises at least one block A and at least one block B.


Block A is represented by formula (I) below:




embedded image




    • in which

    • n is an integer ranging from 2 to 100.





According to a first embodiment, n is an integer ranging from 2 to 40, preferably from 3 to 30, more preferentially from 4 to 20 and even more preferentially from 5 to 10.


According to another variant, n is an integer ranging from more than 40 to 100, preferably from more than 40 to 80, more preferentially from 41 to 70 and even more preferentially from 41 to 50.


R1 is chosen from hydrogen and a methyl group,


R′2 is chosen from C1 to C34, preferably C4 to C30, more preferentially C6 to C24 and more preferentially C8 to C22 hydrocarbon-based chains, said chains being linear or branched, cyclic or acyclic, preferably acyclic. Alkyl groups will be preferred.


The term “hydrocarbon-based chain” means a chain constituted exclusively of carbon and hydrogen atoms, said chain possibly being linear or branched, cyclic, polycyclic or acyclic, saturated or unsaturated, and optionally aromatic or polyaromatic. A hydrocarbon-based chain may comprise a linear or branched part and a cyclic part. It may comprise an aliphatic part and an aromatic part.


Block B is represented by formula (II) below:




embedded image




    • in which

    • p is an integer ranging from 2 to 40, preferably from 3 to 30, more preferentially from 4 to 20 and even more preferentially from 5 to 10, and

    • G is a substituted or unsubstituted, preferably C5 to C30, more preferentially C5 to C16 and even more preferentially C6 to C10 aryl group.





According to a particular embodiment, G is an unsubstituted aryl group, for example a naphthyl or phenyl radical.


According to another particular embodiment, G is a substituted aryl group comprising at least one aromatic nucleus substituted with at least one group R or with at least one linear or branched, cyclic or acyclic, preferably acyclic, C1 to C12 and preferably C1 to C4 hydrocarbon-based chain, optionally substituted with at least the group R, said aromatic nucleus preferably containing from 5 to 30 atoms, more preferentially from 5 to 16 atoms and even more preferentially from 6 to 10 atoms.


The group R is chosen from the group consisting of:

    • groups containing at least one primary, secondary or tertiary amine function, especially polyamine groups, and
    • quaternary ammoniums.


The aromatic nucleus of the aryl group is substituted with a hydrocarbon-based chain, or with a group R, or with a hydrocarbon-based chain substituted with R in the ortho, meta or para position, preferably in the para position.


The group R is connected to the aryl group or connected to the hydrocarbon-based chain, preferably via a nitrogen atom present in the group R.


According to a particular embodiment, the group R is chosen from groups containing at least one primary, secondary or tertiary amine function.


Advantageously, the group R is chosen from the group consisting of:

    • groups containing at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function, such as alkylamines, polyalkylene polyamines, polyalkyleneimines, alkylimines, alkylamidines, alkylguanidines and alkylbiguanidines, the alkyl substituents preferably containing from 1 to 34 and preferably from 1 to 12 carbon atoms and being linear or branched, cyclic or acyclic.
    • monocyclic or polycyclic heterocyclic groups, containing from 3 to 34 atoms, preferably from 5 to 12 atoms and more preferentially from 6 to 10 atoms, and at least one nitrogen atom, it being understood that the polycyclic heterocyclic groups optionally contain fused rings. The number of atoms includes the heteroatoms. The term “fused rings” rings which have at least two atoms in common. The heterocyclic groups may also comprise an oxygen atom and/or a carbonyl group and/or one or more unsaturations.


Examples of heterocyclic groups R that may be mentioned include the following radicals: triazole, am inotriazole, pyrrolidone, piperidine imidazole, morpholine, isoxazole, oxazole, indole, said radical preferably being connected to the hydrocarbon-based chain or to the aryl group via a nitrogen atom.


Advantageously, the group R is chosen from the group consisting of:

    • the following groups:
      • amine: —NH2; —NHR′, —NR′R″;
      • imine: —HC═NH; —HC═NR′; —N═CH2, —N═CR′H; —N═CR′R″,
      • amidine: —(C═NH)—NH2; —(C═NH)—NR′H; —(C═NH)—NR′R″; —(C═NR′)—NH2; —(C═NR′)—NR″H; —(C═NR′)—NR″R′″; —N═CH(NH2); —N═CR′(NH2); —N═CH(NR′H); —N═CR′(NR′H); —N═CH(NR′R″); —N═CR′(NR″R′″);
      • guanidine: —NH—(C═NH)—NH2; —NH—(C═NH)—NHR′; —N═C(NH2)2; —N═C(NR′H)2; —N═C(NR′R″)2; —N═C(NR′H)(NR″H),
      • aminoguanidine: —NH—(C═NH)—NH—NH2; —NH—(C═NH)—NH—NHR′; —N═C(NH2)(NH—NH2); —N═C(NR′H)(NH—NH2); —N═C(NR′H)(NR′—NH2); —N═C(NR′R″)(NH—NH2); —N═C(NR′R″) (NR′—NH2),
      • biguanidine: —NH—(C═NH)—NH—(C═NH)—NH2; —NH—(C═NH)—NH—(C═NH)—NHR′;
        • —N═C(NH2)—NH—(C═NH)—NH2; —N═C(NH2)—NH—(C═NR′)—NH2;
        • N═C(NH2)—NH—(C═NH)—NR′H; —N═C(NH2)—NH—(C═NR′)—NR″H;
        • —N═C(NH2)—NH—(C═NH)—NR′R″; —N═C(NH2)—NH—(C═NR′)—NR″R′″;
        • —N═C(NR′H)—NH—(C═NH)—NH2; —N═C(NR′H)—NH—(C═NR″)—NH2;
        • —N═C(NR′H)—NH—(C═NH)—NR″H; —N═C(NR′H)—NH—(C═NR″)—NR′″H;
        • —N═C(NR′H)—NH—(C═NH)—NR″R′″; —N═C(NR′H)—NH—(C═NR″)—NR′″R″″;
        • —N═C(NR′R″)—NH—(C═NH)—NH2; —N═C(NR′R″)—NH—(C═NR′″)—NH2;
        • —N═C(NR′R″)—NH—(C═NH)—NR′″H; —N═C(NR′R″)—NH—(C═NR′″)—NR″″H;
        • —N═C(NR′R″)—NH—(C═NH)—NR′″R″″; —N═C(NR′R″)—NH—(C═NR′″)—NR″″R′″″,
    • the groups —NH—(Ra—NH)k—H; —NH—(Ra—NH)k—R′; and
      • R′, R″, R′″, R″″ and R′″″ represent, independently of each other, a C1-C36 and preferably C1-C12 alkyl group, optionally comprising one or more NH2 functions and one or more —NH— bridges;
      • Ra represents a C1-C6 and preferably C2-C4 alkyl group, k represents an integer ranging from 1 to 20 and preferably from 2 to 12;


Examples of groups R comprising an amine function that may be mentioned include polyamines and polyalkylene-polyamines, for example ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine.


According to a particular embodiment, the group R is chosen from quaternary ammoniums, preferably comprising at least one linear or branched, cyclic or acyclic, preferably acyclic, C1 to C10 and preferably C1 to C4 hydrocarbon-based chain, said chain optionally comprising one or more oxygen atoms in the form of an ether function or as a substitution, preferably as a substitution. The hydrocarbon-based chain may be, for example, an alkyl chain substituted with a hydroxyl group, this type of quaternary ammonium salt possibly being obtained by reaction of a tertiary amine with an epoxide according to any known process.


Advantageously, the group R is chosen from trialkylammonium groups. The alkyl substituents of the trialkylammonium are preferably chosen from alkyl groups containing from 1 to 10 and preferably from 1 to 4 carbon atoms, and being linear or branched, cyclic or acyclic, preferably acyclic.


According to one variant, the group R is chosen from quaternary ammoniums substituted with at least one linear or branched, cyclic or acyclic, preferably acyclic, C1 to C10 and even more preferentially C1 to C4 hydrocarbon-based chain, preferably alkyl, comprising one or more hydroxyl groups.


According to a particular embodiment, the block copolymer comprises at least:

    • one block A consisting of a chain of structural units derived from an alkyl acrylate or alkyl methacrylate monomer ma, and
    • one block B consisting of a chain of structural units derived from a styrenyl monomer mb chosen from styrene and styrene derivatives in which the aromatic nucleus is substituted with at least the group R described above or with at least one linear or branched C1 to C12 and preferably C1 to C4 hydrocarbon-based chain, which is preferably acyclic, optionally substituted with at least said group R.


According to a particular embodiment, the styrenyl monomer mb is represented by formula (III) below:




embedded image




    • in which
      • p is as described previously,
      • g is 0 or 1,
      • L is chosen from linear or branched, preferably a cyclic and saturated, C1 to C12 and preferably C1 to C4 hydrocarbon-based chains, more preferentially the —
      • R is as described previously.





According to a particular embodiment, the block copolymer is obtained by copolymerization of at least one alkyl acrylate or alkyl methacrylate monomer ma and of at least one styrenyl monomer mb as described above.


Monomer ma is preferably chosen from C1 to C34, preferably C4 to C30, more preferentially C6 to C24 and more preferentially C8 to C22 alkyl acrylates or methacrylates. The alkyl radical of the acrylate or methacrylate is linear or branched, cyclic or acyclic, preferably acyclic.


Among the alkyl (meth)acrylates that may be used in the manufacture of the copolymer of the invention, mention may be made, in a nonlimiting manner, of: n-octyl acrylate, n-octyl methacrylate, n-decyl acrylate, n-decyl methacrylate, n-dodecyl acrylate, n-dodecyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooctyl acrylate, isooctyl methacrylate, isodecyl acrylate, isodecyl methacrylate.


According to a particular embodiment, monomer mb is preferably chosen from styrene derivatives in which the aromatic nucleus is substituted with at least the group R or with at least the hydrocarbon-based chain described above substituted with at least the group R.


According to a particular embodiment, monomer mb is preferably chosen from styrene derivatives in which the aromatic nucleus is substituted with the group R or —CH2R, preferably with —CH2R.


According to a preferred embodiment, monomer mb is chosen from (vinylbenzyl)trialkylammonium isomers in the ortho, meta or para position, preferably in the para position, alone or as a mixture.


According to a particular embodiment, the block copolymer is represented by one of the formulae (IV) and (V) below:




embedded image




    • in which

    • m=0 or 1,

    • n, p, R1 and R2 are as described above,

    • R3 is a substituent in the ortho, meta or para position on the aromatic nucleus, chosen from the group constituted by:
      • hydrogen,
      • linear or branched C1 to C12 and preferably C1 to C4 alkyl groups, which are preferably acyclic;
      • groups containing at least one primary, secondary or tertiary amine function, and
      • quaternary ammoniums, in particular represented by formula (VI) below:








—CH2—N+(R7)(R8)(R9)X  (VI)

        • in which
        • Xis chosen from hydroxide and halide ions and organic anions, in particular the acetate ion,
          • and
        • R7, R8 and R9 are identical or different and chosen, independently, from linear or branched, cyclic or acyclic, preferably acyclic, C1 to C10 and preferably C1 to C4 alkyl groups,
    • groups of formula (VII) below:





—CH2—R10  (VII)

      • in which
      • R10 is chosen from groups containing at least one primary, secondary or tertiary amine function, or a quaternary ammonium function,


R4 is chosen from the group constituted by:

    • hydrogen,
    • groups containing at least one primary, secondary or tertiary amine function, or a quaternary ammonium function,
    • halogens, and
    • cyclic or acyclic, saturated or unsaturated, linear or branched C1 to C32, preferably C1 to C24 and more preferentially C1 to C10 hydrocarbon-based chains, preferably alkyl groups, said chains being optionally substituted with one or more groups containing at least one heteroatom chosen from N and O,


R5 and R6 are identical or different and chosen independently from the group constituted by hydrogen and linear or branched, cyclic or acyclic, more preferentially acyclic, C1 to C10 alkyl groups.


T is chosen from cyclic or acyclic, saturated or unsaturated, linear or branched C1 to C32, preferably C4 to C24 and more preferentially C10 to C24 hydrocarbon-based chains, preferably alkyl groups, and groups derived from a reversible addition-fragmentation chain-transfer (RAFT) radical polymerization transfer agent, it being understood that if T is a group derived from a transfer agent, then m=0.


RAFT-type transfer agents are well known to those skilled in the art. A wide variety of RAFT-type transfer agents are available or are fairly readily synthesizable. Examples that may be mentioned include transfer agents of thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate and trithiocarbonate type, for example S,S0-dibenzyl trithiocarbonate (DBTTC), S,S-bis(α,α′-dimethyl-α″-acetic acid) trithiocarbonate (BDMAT) or 2-cyano-2-propyl benzodithioate. When a transfer agent is used, T may be a group containing sulfur. According to a known process, the transfer agent may be cleaved at the end of polymerization by reacting a cleaving agent such as C2-C6 alkylamines. In this case, T may be a thiol group —SH.


According to one variant, at least one of the groups R3, R4 and R10 is a group containing at least one primary, secondary or tertiary amine function chosen independently from the group consisting of:

    • groups containing at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function, such as alkylamines, polyalkylene polyamines, polyalkyleneimines, alkylimines, alkylamidines, alkylguanidines and alkylbiguanidines, the alkyl substituents preferably containing from 1 to 34 and preferably from 1 to 12 carbon atoms and being linear or branched, cyclic or acyclic.
    • monocyclic or polycyclic heterocyclic groups, containing from 3 to 34 atoms, preferably from 5 to 12 atoms and more preferentially from 6 to 10 atoms, and at least one nitrogen atom, it being understood that the polycyclic heterocyclic groups optionally contain fused rings. The number of atoms includes the heteroatoms. The term “fused rings” means rings which have at least two atoms in common. The heterocyclic groups may also comprise an oxygen atom and/or a carbonyl group and/or one or more unsaturations. Examples of heterocyclic groups that may be mentioned include the following radicals: triazole, am inotriazole, pyrrolidone, piperidine imidazole, morpholine, isoxazole, oxazole, indole, said radical preferably being connected via a nitrogen atom.


Advantageously, at least one of the groups R3, R4 and R10 is chosen from the group consisting of:

    • the following groups:
      • amine: —NH2; —NHR′, —NR′R″;
      • imine: —HC═NH; —HC═NR′; —N═CH2, —N═CR′H; —N═CR′R″,
      • amidine: —(C═NH)—NH2; —(C═NH)—NR′H; —(C═NH)—NR′R″; —(C═NR′)—NH2; —(C═NR′)—NR″H; —(C═NR′)—NR″R′″; —N═CH(NH2); —N═CR′(NH2); —N═CH(NR′H); —N═CR′(NR′H); —N═CH(NR′R″); —N═CR′(NR″R′″);
      • guanidine: —NH—(C═NH)—NH2; —NH—(C═NH)—NHR′; —N═C(NH2)2; —N═C(NR′H)2; —N═C(NR′R″)2; —N═C(NR′H)(NR″H),
      • aminoguanidine: —NH—(C═NH)—NH—NH2; —NH—(C═NH)—NH—NHR′; —N═C(NH2)(NH—NH2); —N═C(NR′H)(NH—NH2); —N═C(NR′H)(NR′—NH2); —N═C(NR′R″)(NH—NH2); —N═C(NR′R″) (NR′—NH2),
      • biguanidine: —NH—(C═NH)—NH—(C═NH)—NH2; —NH—(C═NH)—NH—(C═NH)—NHR′;
        • —N═C(NH2)—NH—(C═NH)—NH2; —N═C(NH2)—NH—(C═NR′)—NH2;
        • —N═C(NH2)—NH—(C═NH)—NR′H; —N═C(NH2)—NH—(C═NR′)—NR″H;
        • —N═C(NH2)—NH—(C═NH)—NR′R″; —N═C(NH2)—NH—(C═NR′)—NR″R′″;
        • —N═C(NR′H)—NH—(C═NH)—NH2; —N═C(NR′H)—NH—(C═NR″)—NH2;
        • —N═C(NR′H)—NH—(C═NH)—NR″H; —N═C(NR′H)—NH—(C═NR″)—NR′″H;
        • —N═C(NR′H)—NH—(C═NH)—NR″R′″; —N═C(NR′H)—NH—(C═NR″)—NR′″R″″;
        • —N═C(NR′R″)—NH—(C═NH)—NH2; —N═C(NR′R″)—NH—(C═NR′″)—NH2;
        • —N═C(NR′R″)—NH—(C═NH)—NR′″H; —N═C(NR′R″)—NH—(C═NR′″)—NR″″H;
        • —N═C(NR′R″)—NH—(C═NH)—NR″R′″; —N═C(NR′R″)—NH—(C═NR′″)—NR″″R′″″;
    • the groups —NH—(Ra—NH)k—H; —NH—(Ra—NH)k—R′; and
      • R′, R″, R′″, R″″ and R′″″ represent, independently of each other, a C1-C36 and preferably C1-C12 alkyl group, optionally comprising one or more NH2 functions and one or more —NH— bridges;
      • Ra represents a C1-C6 and preferably C2-C4 alkyl group, k represents an integer ranging from 1 to 20 and preferably from 2 to 12;


Examples of groups comprising an amine function that may be mentioned include polyamines and polyalkylene-polyamines, for example ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine.


According to another variant, at least one of the groups R3, R4 and R10 is chosen from groups containing at least one quaternary ammonium function obtained by quaternization of the primary, secondary or tertiary amines as described above, according to any known process.


At least one of the groups R3, R4 and R10 may be chosen in particular from groups containing at least one quaternary ammonium function, obtained by quaternization of at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function; the heterocyclic groups containing from 3 to 34 atoms and at least one nitrogen atom.


Advantageously, at least one of the groups R3, R4 and R10 is chosen from groups containing at least one quaternary ammonium function obtained by quaternization of tertiary amines.


According to a particular embodiment, the quaternary ammonium is chosen from iminium, amidinium, formamidinium, guanidinium and biguanidinium quaternary ammoniums.


According to another particular embodiment, at least one of the groups R3, R4 and R10 is chosen from groups containing at least one quaternary ammonium function chosen from heterocyclic groups containing from 3 to 34 atoms and at least one nitrogen atom, preferably from pyrrolinium, pyridinium, imidazolium, triazolium, triazinium, oxazolium and isoxazolium quaternary ammoniums.


According to a particular embodiment, at least one of the groups R3, R4 and R10 is chosen from groups containing at least one quaternary ammonium function, preferably comprising at least one linear or branched, cyclic or acyclic, preferably acyclic, C1 to C10 and preferably C1 to C4 hydrocarbon-based chain, said chain optionally comprising one or more oxygen atoms in the form of an ether function or as a substitution, preferably as a substitution. The hydrocarbon-based chain may be, for example, an alkyl chain substituted with a hydroxyl group, this type of quaternary ammonium possibly being obtained by reaction of a tertiary amine with an epoxide according to any known process.


Advantageously, at least one of the groups R3, R4 and R10 is chosen from trialkylammonium groups. The alkyl substituents of the trialkylammonium are preferably chosen from alkyl groups containing from 1 to 10 and preferably from 1 to 4 carbon atoms, and being linear or branched, cyclic or acyclic, preferably acyclic.


According to a variant, at least one of the groups R3, R4 and R10 is chosen from quaternary ammoniums substituted with at least one linear or branched, cyclic or acyclic, preferably acyclic, C1 to C10 and even more preferentially C1 to C4 hydrocarbon-based chain, preferably alkyl, comprising one or more hydroxyl groups.


The block copolymer may be prepared according to any known polymerization process. The various polymerization techniques and conditions are widely described in the literature and fall within the general knowledge of a person skilled in the art.


It is understood that it would not constitute a departure from the scope of the invention if the copolymer according to the invention were obtained from monomers other than ma and mb, insofar as the final copolymer corresponds to that of the invention, i.e. obtained by copolymerization of at least ma and mb. For example, it would not constitute a departure from the scope of the invention if the copolymer were obtained by copolymerization of monomers other than ma and mb followed by a post-functionalization.


For example, the units derived from an alkyl (meth)acrylate monomer ma may be obtained from a polymethyl (meth)acrylate fragment, by transesterification reaction using an alcohol of chosen chain length to form the expected alkyl group.


Examples of post-functionalizations that may be mentioned are nucleophilic substitution reactions, which are well known to those skilled in the art. A block copolymer comprising a quaternary ammonium group of formula (VI) with R7, R8 and R9 being methyl groups and X a chlorine may be obtained from a copolymer of formula (IV) or (V) in which R3 is a —CH2Cl group, by reaction with trimethylamine. The chloride counterion may be substituted by treating the block copolymer thus obtained in an ion-exchange column according to any known process. This reaction scheme makes it possible to synthesize numerous quaternary ammoniums simply and at low cost.


The block copolymers may be obtained by block polymerization, preferably by controlled block polymerization, optionally followed by one or more post-functionalizations.


According to a particular embodiment, the block copolymer described above is obtained by controlled block polymerization. The polymerization is advantageously chosen from controlled radical polymerization; for example atom transfer radical polymerization (ATRP); nitroxide-mediated radical polymerization (NMP: nitroxide-mediated polymerization); degenerative transfer processes such as degenerative iodine transfer polymerization (ITRP: iodine transfer radical polymerization) or reversible addition-fragmentation chain transfer radical polymerization (RAFT: reversible addition-fragmentation chain transfer); polymerizations derived from ATRP such as polymerizations using initiators for continuous activator regeneration (ICAR) or using activators regenerated by electron transfer (ARGET).


Mention will be made, by way of example, of the publication “Macromolecular Engineering by atom transfer radical polymerization” JACS, 136, 6513-6533 (2014), which describes a controlled block polymerization process for forming block copolymers.


The controlled block polymerization is typically performed in a solvent, under an inert atmosphere, at a reaction temperature generally ranging from 0 to 200° C., preferably from 50° C. to 130° C. The solvent may be chosen from polar solvents, in particular ethers such as anisole (methoxybenzene) or tetrahydrofuran, or apolar solvents, in particular paraffins, cycloparaffins, aromatic and alkylaromatic solvents containing from 1 to 19 carbon atoms, for example benzene, toluene, cyclohexane, methylcyclohexane, n-butene, n-hexane, n-heptane and the like.


For atom-transfer radical polymerization (ATRP), the reaction is generally performed under vacuum in the presence of an initiator, a ligand and a catalyst. As examples of ligands, mention may be made of N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), 2,2′-bipyridine (BPY) and tris(2-pyridylmethyl)amine (TPMA). Examples of catalysts that may be mentioned include: CuX, CuX2, with X═Cl, Br and complexes based on ruthenium Ru2+/Ru3+.


The ATRP polymerization is preferably performed in a solvent chosen from polar solvents.


According to the controlled block polymerization technique, it may also be envisaged to work under pressure.


According to a particular embodiment, the number of equivalents of monomer ma in block A and of monomer mb in block B reacted during the polymerization reaction are identical or different and independently from 2 to 40, preferably from 3 to 30, more preferentially from 4 to 20 and even more preferentially from 5 to 10. The term “number of equivalents” means the amounts (in moles) of material of the monomers ma of block A and of the monomers mb of block B during the polymerization reaction.


The number equivalents of monomer ma of block A is advantageously greater than or equal to that of the monomer mb of block B. In addition, the weight-average molar mass Mw of block A or of block B is preferably less than or equal to 15 000 g·mol−1, more preferentially less than or equal to 10 000 g·mol−1


The copolymer advantageously comprises at least one sequence of blocks AB, ABA or BAB in which said blocks A and B form a sequence without the presence of an intermediate block of different chemical nature.


Other blocks may optionally be present in the block copolymer described previously insofar as these blocks do not fundamentally change the nature of the block copolymer. However, block copolymers containing only blocks A and B will be preferred.


Advantageously, A and B represent at least 70% by mass, preferably at least 90% by mass, more preferentially at least 95% by mass and even more preferentially at least 99% by mass of the block copolymer.


According to a particular embodiment, the block copolymer is a diblock copolymer.


According to another particular embodiment, the block copolymer is a triblock copolymer containing alternating blocks comprising two blocks A and one block B (ABA) or comprising two blocks B and one block A (BAB).


According to a particular embodiment, the block copolymer also comprises an end chain I consisting of a cyclic or acyclic, saturated or unsaturated, linear or branched C1 to C32, preferably C4 to C24 and more preferentially C10 to C24 hydrocarbon-based chain.


The term “cyclic hydrocarbon-based chain” means a hydrocarbon-based chain of which at least part is cyclic, especially aromatic. This definition does not exclude hydrocarbon-based chains comprising both an acyclic part and a cyclic part.


The end chain I may comprise an aromatic hydrocarbon-based chain, for example benzene-based, and/or a saturated and acyclic, linear or branched hydrocarbon-based chain, in particular an alkyl chain.


The end chain I is preferably chosen from alkyl chains, which are preferably linear, more preferentially alkyl chains of at least 4 carbon atoms and even more preferentially of at least 12 carbon atoms.


For the ATRP polymerization, the end chain I is located in the end position of the block copolymer. It may be introduced into the block copolymer by means of the polymerization initiator. Thus, the end chain I may advantageously constitute at least part of the polymerization initiator and is positioned within the polymerization initiator so as to make it possible to introduce, during the first step of polymerization initiation, the end chain I in the end position of the block copolymer.


The polymerization initiator is chosen, for example, from the free-radical initiators used in the ATRP polymerization process. These free-radical initiators well known to those skilled in the art are described especially in the article “Atom-transfer radical polymerization: current status and future perspectives, Macromolecules, 45, 4015-4039, 2012”.


The polymerization initiator is chosen, for example, from carboxylic acid alkyl esters substituted with a halide, preferably a bromine in the alpha position, for example ethyl 2-bromopropionate, ethyl α-bromoisobutyrate, benzyl chloride or bromide, ethyl α-bromophenylacetate and chloroethylbenzene. Thus, for example, ethyl 2-bromopropionate may make it possible to introduce into the copolymer the end chain I in the form of a C2 alkyl chain and benzyl bromide in the form of a benzyl group.


For the RAFT polymerization, the transfer agent may conventionally be removed from the copolymer at the end of polymerization according to any known process.


According to one variant, the end chain I may also be obtained in the copolymer by RAFT polymerization according to the methods described in the article by Moad, G. and co., Australian Journal of Chemistry, 2012, 65, 985-1076. The end chain I may, for example, be introduced by aminolysis when a transfer agent is used, in particular transfer agents of thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate and trithiocarbonate type, for example S,S-bis(α,α′-dimethyl-α″-acetic acid) trithiocarbonate (BDMAT) or 2-cyano-2-propyl benzodithioate.


According to a particular embodiment, the block copolymer is a diblock copolymer. The block copolymer structure may be of the IAB or IBA type, advantageously IAB. The end chain I may be directly linked to block A or B according to the structure IAB or IBA, respectively, or may be connected via a bonding group, for example an ester, amide, amine or ether function. The bonding group then forms a bridge between the end chain I and block A or B.


According to a particular embodiment, the block copolymer may also be functionalized at the chain end according to any known process, especially by hydrolysis, aminolysis and/or nucleophilic substitution.


The term “aminolysis” means any chemical reaction in which a molecule is split into two parts by reaction of an ammonia molecule with an amine. A general example of aminolysis consists in replacing a halogen of an alkyl group by reaction with an amine, with removal of hydrogen halide. Aminolysis may be used, for example, for an ATRP polymerization which produces a copolymer bearing a halide in the end position or for a RAFT polymerization to remove the thio, dithio or trithio bond introduced into the copolymer by the RAFT transfer agent.


An end chain I′ may thus be introduced by post-functionalization of the block copolymer obtained by controlled block polymerization of the monomers ma and mb described above.


The end chain I′ advantageously comprises a linear or branched, cyclic or acyclic C1 to C32, preferably C1 to C24 and more preferentially C1 to C10 hydrocarbon-based chain, even more preferentially and alkyl group, optionally substituted with one or more groups containing at least one heteroatom chosen from N and O, preferably N.


For an ATRP polymerization using a metal halide as catalyst, this functionalization may be performed, for example, by treating the copolymer IAB or IBA obtained by ATRP with a primary C1 to C32 alkylamine or a C1 to C32 alcohol under mild conditions so as not to modify the functions present on blocks A, B and I.


In formulae (IV) and (V) block A corresponds to the unit repeated n times and block B to the unit repeated p times. In addition, the group T may be constituted of the end chain I as described above and/or the group R4 may be constituted of the end chain I′ as described above.


The block copolymer described above is particularly advantageous when it is used as detergent additive in a liquid fuel for an internal combustion engine.


The term “detergent additive for liquid fuel” means an additive which is incorporated in small amount into the liquid fuel and produces an effect on the cleanliness of said motor when compared with said liquid fuel not specially supplemented with additive.


The liquid fuel is advantageously derived from one or more sources chosen from the group consisting of mineral, animal, plant and synthetic sources. Crude oil will preferably be chosen as mineral source.


The liquid fuel is preferably chosen from hydrocarbon-based fuels and fuels that are not essentially hydrocarbon-based, alone or as a mixture.


The term “hydrocarbon-based fuel” means a fuel constituted of one or more compounds constituted solely of carbon and hydrogen.


The term “fuel not essentially hydrocarbon-based” means a fuel constituted of one or more compounds not essentially constituted of carbon and hydrogen, i.e. which also contain other atoms, in particular oxygen atoms.


The hydrocarbon-based fuels especially comprise middle distillates with a boiling point of between 100 and 500° C. or lighter distillates with a boiling point in the gasoline range. These distillates may be chosen, for example, from the distillates obtained by direct distillation of crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates derived from the catalytic cracking and/or hydrocracking of vacuum distillates, distillates resulting from conversion processes such as ARDS (atmospheric residue desulfurization) and/or viscoreduction, and distillates derived from the upgrading of Fischer-Tropsch fractions. The hydrocarbon-based fuels are typically gasolines and gas oils (also known as diesel fuel).


The gasolines in particular comprise any commercially available fuel composition for spark ignition engines. A representative example that may be mentioned is the gasolines corresponding to standard NF EN 228. Gasolines generally have octane numbers that are high enough to avoid pinking. Typically, the fuels of gasoline type sold in Europe, in accordance with standard NF EN 228, have a motor octane number (MON) of greater than 85 and a research octane number (RON) of at least 95. Fuels of gasoline type generally have an RON of between 90 and 100 and an MON of between 80 and 90, the RON and MON being measured according to standard ASTM D 2699-86 or D 2700-86.


Gas oils (diesel fuels) in particular comprise all commercially available fuel compositions for diesel engines. A representative example that may be mentioned is the gas oils corresponding to standard NF EN 590.


Fuels that are not essentially hydrocarbon-based especially comprise oxygen-based compounds, for example distillates resulting from the BTL (biomass to liquid) conversion of plant and/or animal biomass, taken alone or in combination; biofuels, for example plant and/or animal oils and/or ester oils; biodiesels of animal and/or plant origin and bioethanols.


The mixtures of hydrocarbon-based fuel and of fuel that is not essentially hydrocarbon-based are typically gas oils of Bx type or gasolines of Ex type.


The term “gas oil of Bx type for diesel engines” means a gas oil fuel which contains x % (v/v) of plant or animal ester oils (including spent cooking oils) transformed via a chemical process known as transesterification, obtained by reacting this oil with an alcohol so as to obtain fatty acid esters (FAE). With methanol and ethanol, fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) are obtained, respectively. The letter “B” followed by a number indicates the percentage of FAE contained in the gas oil. Thus, a B99 contains 99% of FAE and 1% of middle distillates of fossil origin (mineral source), B20 contains 20% of FAE and 80% of middle distillates of fossil origin, etc. Gas oils of B0 type which do not contain any oxygen-based compounds are thus distinguished from gas oils of Bx type which contain x % (v/v) of plant oil esters or of fatty acid esters, usually the methyl esters (POME or FAME). When the FAE is used alone in engines, the fuel is designated by the term B100.


The term “gasoline of Ex type for spark ignition engines” means a gasoline fuel which contains x % (v/v) of oxygen-based compounds, generally ethanol, bioethanol and/or tert-butyl ethyl ether (TBEE).


The sulfur content of the liquid fuel is preferably less than or equal to 5000 ppm, preferably less than or equal to 500 ppm and more preferentially less than or equal to 50 ppm, or even less than 10 ppm and advantageously sulfur-free.


The block copolymer described above is used as detergent additive in the liquid fuel in a content advantageously of at least 10 ppm, preferably at least 50 ppm, more preferentially in a content from 10 to 5000 ppm, even more preferentially from 10 to 1000 ppm.


According to a particular embodiment, the use of a block copolymer as described previously in the liquid fuel makes it possible to maintain the cleanliness of at least one of the internal parts of the internal combustion engine and/or to clean-up at least one of the internal parts of the internal combustion engine.


The use of the block copolymer in the liquid fuel makes it possible in particular to limit or prevent the formation of deposits in at least one of the internal parts of said engine (“keep-clean” effect) and/or to reduce the existing deposits in at least one of the internal parts of said engine (“keep-clean” effect).


Thus, the use of the copolymer in the liquid fuel makes it possible, when compared with liquid fuel that is not specially supplemented, to limit or prevent the formation of deposits in at least one of the internal parts of said engine or to reduce the existing deposits in at least one of the internal parts of said engine.


Advantageously, the use of the copolymer in the liquid fuel makes it possible to observe both effects simultaneously, limitation (or prevention) and reduction of deposits (“keep-clean” and “clean-up” effects).


The deposits are distinguished as a function of the type of internal combustion engine and of the location of the deposits in the internal parts of said engine.


According to a particular embodiment, the internal combustion engine is a spark ignition engine, preferably with direct injection (DISI: direct-injection spark ignition engine). The deposits targeted are located in at least one of the internal parts of said spark ignition engine. The internal part of the spark ignition engine kept clean and/or cleaned up is advantageously chosen from the engine intake system, in particular the intake valves (IVD: intake valve deposit), the combustion chamber (CCD: combustion chamber deposit, or TCD: total chamber deposit) and the fuel injection system, in particular the injectors of an indirect injection system (PFI: port fuel injector) or the injectors of a direct injection system (DISI).


According to another particular embodiment, the internal combustion engine is a diesel engine, preferably a direct-injection diesel engine, in particular a diesel engine with a common-rail injection system (CRDI: common-rail direct injection). The deposits targeted are located in at least one of the internal parts of said diesel engine.


Advantageously, the deposits targeted are located in the injection system of the diesel engine, preferably located on an external part of an injector of said injection system, for example the fuel spray tip and/or on an internal part of an injector of said injection system (IDID: internal diesel injector deposits), for example on the surface of an injector needle.


The deposits may be constituted of coking-related deposits and/or deposits of soap and/or lacquering type.


The block copolymers as described previously may advantageously be used in the liquid fuel to reduce and/or prevent power loss due to the formation of said deposits in the internal parts of a direct-injection diesel engine, said power loss being determined according to the standardized engine test method CEC F-98-08.


The block copolymers as described previously may advantageously be used in the liquid fuel to reduce and/or prevent restriction of the fuel flow emitted by the injector of a direct-injection diesel engine during its functioning, said flow restriction being determined according to the standardized engine test method CEC F-23-1-01.


Advantageously, the use of the copolymer as described above makes it possible, when compared with liquid fuel that is not specially supplemented, to limit or prevent the formation of deposits on at least one type of deposit described previously and/or to reduce the existing deposits on at least one type of deposit described previously.


According to a particular embodiment, the use of the block copolymer described above also makes it possible to reduce the fuel consumption of an internal combustion engine.


According to another particular embodiment, the use of the block copolymer described above also makes it possible to reduce the pollutant emissions, in particular the particle emissions of an internal combustion engine.


Advantageously, the use of the block copolymer makes it possible to reduce both the fuel consumption and the pollutant emissions.


The block copolymer described above may be used alone, in the form of a mixture of at least two of said block copolymers or in the form of a concentrate.


The block copolymer may be added to the liquid fuel in a refinery and/or may be incorporated downstream of the refinery and/or optionally as a mixture with other additives in the form of an additive concentrate, also known by the common name “additive package”.


The block copolymer described above is used as a mixture an organic liquid in the form of a concentrate. The organic liquid is inert with respect to the block copolymer described above and miscible in the liquid fuel described previously. The term “miscible” describes the fact that the block copolymer and the organic liquid form a solution or a dispersion so as to facilitate the mixing of the block copolymer in the liquid fuels according to the standard fuel supplementation processes.


The organic liquid is advantageously chosen from aromatic hydrocarbon-based solvents such as the solvent sold under the name Solvesso, alcohols, ethers and other oxygen-based compounds and paraffinic solvents such as hexane, pentane or isoparaffins, alone or as a mixture.


The concentrate may advantageously comprise from 5% to 99% by mass, preferably from 10% to 80% and more preferentially from 25% to 70% of copolymer as described previously.


The concentrate may typically comprise from 1% to 95% by mass, preferably from 10% to 70% and more preferentially from 25% to 60% of organic liquid, the remainder corresponding to the copolymer, it being understood that the concentrate may comprise one or more block copolymers as described above.


In general, the solubility of the block copolymer in the organic liquids and the liquid fuels described previously will depend especially on the weight-average and number-average molar masses Mw and Mn, respectively, of the copolymer. The average molar masses Mw and Mn of the block copolymer will be chosen so that the copolymer is soluble in the liquid fuel and/or the organic liquid of the concentrate for which it is intended.


The average molar masses Mw and Mn of the block copolymer may also have an influence on the efficiency of this copolymer as a detergent additive. The average molar masses Mw and Mn will thus be chosen so as to optimize the effect of the block copolymer, especially the detergency effect (engine cleanliness) in the liquid fuels described above.


Optimizing the average molar masses Mw and Mn may be performed via routine tests accessible to those skilled in the art.


According to a particular embodiment, the copolymer advantageously has a weight-average molar mass (Mw) ranging from 500 to 30 000 g·mol−1, preferably from 1000 to 10 000 g·mol−1, more preferentially less than or equal to 4000 g·mol−1, and/or a number-average molar mass (Mn) ranging from 500 to 15 000 g·mol−1, preferably from 1000 to 10 000 g·mol−1, more preferentially less than or equal to 4000 g·mol−1. The number-average and weight-average molar masses are measured by size exclusion chromatography (SEC). The operating conditions of SEC, especially the choice of the solvent, will be chosen as a function of the chemical functions present in the block copolymer.


According to a particular embodiment, the block copolymer is used in the form of an additive concentrate in combination with at least one other fuel additive for an internal combustion engine other than the block copolymer described previously.


The additive concentrate may typically comprise one or more other additives chosen from detergent additives other than the block copolymer described above, for example from anticorrosion agents, dispersants, demulsifiers, antifoams, biocides, reodorants, proketane additives, friction modifiers, lubricant additives or oiliness additives, combustion promoters (catalytic combustion and soot promoters), agents for improving the cloud point, the flow point or the FLT (filterability limit temperature), anti-sedimentation agents, anti-wear agents and conductivity modifiers.


Among these additives, mention may be made in particular of:

    • a) proketane additives, especially (but not limitingly) chosen from alkyl nitrates, preferably 2-ethylhexyl nitrate, aryl peroxides, preferably benzyl peroxide, and alkyl peroxides, preferably tert-butyl peroxide;
    • b) antifoam additives, especially (but not limitingly) chosen from polysiloxanes, oxyalkylated polysiloxanes and fatty acid amides derived from plants or animal oils. Examples of such additives are given in EP861882, EP663000 and EP736590;
    • c) cold flow improvers (CFI) chosen from copolymers of ethylene and of an unsaturated ester, such as ethylene/vinyl acetate (EVA), ethylene/vinyl propionate (EVP), ethylene/vinyl ethanoate (EVE), ethylene/methyl methacrylate (EMMA) and ethylene/alkyl fumarate copolymers described, for example, in U.S. Pat. No. 3,048,479, U.S. Pat. No. 3,627,838, U.S. Pat. No. 3,790,359, U.S. Pat. No. 3,961,961 and EP261957.
    • d) lubricant additives or anti-wear agents, especially (but not limitingly) chosen from the group constituted by fatty acids and ester or amide derivatives thereof, especially glyceryl monooleate, and monocyclic and polycyclic carboxylic acid derivatives. Examples of such additives are given in the following documents: EP680506, EP860494, WO98/04656, EP915944, FR2772783, FR2772784.
    • e) cloud point additives, especially (but not limitingly) chosen from the group constituted by long-chain olefin/(meth)acrylic ester/maleimide terpolymers, and fumaric/maleic acid ester polymers. Examples of such additives are given in FR2528051, FR2528051, FR2528423, EP112195, EP172758, EP271385 and EP291367;
    • f) detergent additives, especially (but not limitingly) chosen from the group constituted by succinimides, polyetheramines and quaternary ammonium salts; for example those described in U.S. Pat. No. 4,171,959 and WO2006135881.
    • g) cold workability polyfunctional additives chosen from the group constituted by polymers based on olefin and alkenyl nitrate as described in EP573490.


These other additives are generally added in an amount ranging from 100 to 1000 ppm (each).


The mole ratio and/or mass ratio between monomer mb and monomer ma and/or between block A and B in the block copolymer described above will be chosen so that the block copolymer is soluble in the fuel and/or the organic liquid of the concentrate for which it is intended. Similarly, this ratio may be optimized as a function of the fuel and/or of the organic liquid so as to obtain the best effect on the engine cleanliness.


Optimizing the mole ratio and/or mass ratio may be performed via routine tests accessible to those skilled in the art.


The mole ratio between monomer mb and monomer ma or between blocks A and B in the block copolymer described above advantageously ranges from 1:10 to 10:1, preferably from 1:2 to 2:1 and more preferentially from 1:0.5 to 0.5:2.


According to a particular embodiment, the mole ratio between the number of equivalents of apolar monomer (ma) and the number of equivalents of polar monomer (mb), or between blocks A and B as a molar percentage between the apolar monomer (ma) of block A and the polar monomer (mb) of block B, is preferably between 95:5 to 70:30, more preferentially from 85:15 to 70:30.


According to a particular embodiment, a fuel composition is prepared according to any known process by supplementing the liquid fuel described previously with at least one block copolymer as described above.


The combustion of this fuel composition comprising such a copolymer in an internal combustion engine produces an effect on the cleanliness of the engine when compared with the liquid fuel not specially supplemented and makes it possible in particular to prevent or reduce the fouling of the internal parts of said engine. The effect on the cleanliness of the engine is as described previously in the context of using the block copolymer.


According to a particular embodiment, combustion of the fuel composition comprising such a block copolymer in an internal combustion engine also makes it possible to reduce the fuel consumption and/or the pollutant emissions.


The block copolymer is preferably incorporated in small amount into the liquid fuel described previously, the amount of block copolymer being sufficient to produce a detergent effect as described above and thus to improve the engine cleanliness.


The fuel composition advantageously comprises at least 10 ppm, preferably at least 50 ppm, advantageously from 10 to 5000 ppm and more preferentially from 10 to 1000 ppm of the copolymer described above.


Besides the block copolymer described above, the fuel composition may also comprise one or more other additives other than the block copolymer according to the invention, chosen from the other known detergent additives, for example from anticorrosion agents, dispersants, demulsifiers, antifoams, biocides, reodorants, proketane additives, friction modifiers, lubricant additives or oiliness additives, combustion promoters (catalytic combustion and soot promoters), agents for improving the cloud point, the flow point or the FLT, anti-sedimentation agents, anti-wear agents and/or conductivity modifiers.


The additives different from the block copolymer according to the invention are, for example, the fuel additives listed above.


According to a particular embodiment, a process for maintaining the cleanliness (“keep-clean” effect) and/or for cleaning (“clean-up” effect) at least one of the internal parts of an internal combustion engine comprises the preparation of a fuel composition by supplementation of a fuel with one or more block copolymers as described above and combustion of said fuel composition in the internal combustion engine.


According to a particular embodiment, the internal combustion engine is a spark ignition engine, preferably with direct injection (DISI).


The internal part of the spark ignition engine that is kept clean and/or cleaned is preferably chosen from the engine intake system, in particular the intake valves (IVD), the combustion chamber (CCD or TCD) and the fuel injection system, in particular the injectors of an indirect injection system (PFI) or the injectors of a direct injection system (DISI).


According to another particular embodiment, the internal combustion engine is a diesel engine, preferably a direct-injection diesel engine, in particular a diesel engine with a common-rail injection system (CRDI).


The internal part of the diesel engine that is kept clean (keep-clean) and/or cleaned (clean-up) is preferably the injection system of the diesel engine, preferably an external part of an injector of said injection system, for example the fuel spray tip and/or one of the internal parts of an injector of said injection system, for example the surface of an injector needle.


The process for maintaining the cleanliness (“keep-clean” effect) and/or for cleaning (“clean-up” effect) comprises the successive steps of:

    • a) determination of the most suitable supplementation for the fuel, said supplementation corresponding to the selection of the block copolymer(s) described above to be incorporated in combination, optionally, with other fuel additives as described previously and the determination of the degree of treatment necessary to achieve a given specification relative to the detergency of the fuel composition.
    • b) incorporation into the fuel of the selected block copolymer(s) in the amount determined in step a) and, optionally, of the other fuel additives.


The block copolymer(s) may be incorporated into the fuel, alone or as a mixture, successively or simultaneously.


Alternatively, the block copolymer(s) may be used in the form of a concentrate or of an additive concentrate as described above.


Step a) is performed according to any known process and falls within the common practice in the field of fuel supplementation. This step involves defining at least one representative characteristic of the detergency properties of the fuel composition.


The representative characteristic of the detergency properties of the fuel will depend on the type of internal combustion engine, for example a diesel or spark ignition engine, the direct or indirect injection system and the location in the engine of the deposits targeted for cleaning and/or maintaining the cleanliness.


For direct-injection diesel engines, the representative characteristic of the detergency properties of the fuel may correspond, for example, to the power loss due to the formation of deposits in the injectors or restriction of the fuel flow emitted by the injector during the functioning of said engine.


The representative characteristic of the detergency properties may also correspond to the appearance of lacquering-type deposits on the injector needle (IDID).


Methods for evaluating the detergency properties of fuels have been widely described in the literature and fall within the general knowledge of a person skilled in the art. Nonlimiting examples that will be mentioned include the tests standardized or acknowledged by the profession or the following methods described in the literature:


For direct-injection diesel engines:

    • the method DW10, standardized engine test method CEC F-98-08, for measuring the power loss of direct-injection diesel engines
    • The method XUD9, standardized engine test method CEC F-23-1-01 Issue 5 for measuring the restriction of fuel flow emitted by the injector
    • the method described by the Applicant in patent application WO 2014/029770, pages 17 to 20, for the evaluation of lacquering deposits (IDID), this method being cited by way of example and/or incorporated by reference into the present patent application.


For indirect-injection spark ignition engines:

    • the Mercedes Benz M102E method, standardized test method CEC F-05-A-93, and
    • the Mercedes Benz M111 method, standardized test method CEC F-20-A-98. These methods make it possible to measure the intake valve deposits (IVD), the tests generally being performed on a Eurosuper gasoline corresponding to standard EN228.


For direct-injection spark ignition engines:

    • the method described by the Applicant in the article “Evaluating Injector Fouling in Direct Injection Spark Ignition Engines”, Mathieu Arondel, Philippe China, Julien Gueit; Conventional and future energy for automobiles; 10th international colloquium; Jan. 20-22, 2015, pages 375-386 (Technische Akademie Esslingen par Techn. Akad. Esslingen, Ostfildern), for the evaluation of the coking deposits on the injector, this method being cited by way of example and or incorporated by reference into the present patent application.
    • the method described in US20130104826 for the evaluation of the coking deposits on the injector, this method being cited by way of example and/or incorporated by reference into the present patent application.


The determination of the amount of copolymer to be added to the fuel composition to achieve the specification (step a) described previously) will typically be performed by comparison with the fuel composition not containing the copolymer according to the invention, the specification given relative to the detergency possibly being, for example, a target power loss value according to the method DW10 or a flow restriction value according to the method XUD9 mentioned above.


The amount of block copolymer may also vary as a function of the nature and origin of the fuel, in particular as a function of the content of compounds bearing n-alkyl, isoalkyl or n-alkenyl substituents. The nature and origin of the fuel may also be a factor to be taken into consideration for step a).


The process for maintaining the cleanliness (keep-clean) and/or for cleaning (clean-up) may also comprise an additional step after step b) of checking the target reached and/or of adjusting the amount of supplementation with the copolymer(s) as detergent additive.


EXAMPLES
Example 1: Synthesis of Block Copolymers of Formula (IV) by Atom-Transfer Radical Polymerization (ATRP)

Starting Materials:

    • Monomer ma: octadecyl acrylate (CAS 4813-57-4) or dodecyl acrylate (CAS 2156-97-0),
    • Monomer mb: styrene (CAS 100-42-5), or N,N,N-trimethylammonium vinylbenzene chloride (CAS 26616-35-3),
    • Initiator I: octadecyl 2-bromopropionate,
    • Catalyst: copper bromide (CAS 7787-70-4),
    • Ligand: 1,1,4,7,10,10-hexamethyltriethylenetetramine (CAS 3083-10-1).


Nomenclature


For the nomenclature of the copolymers, use will be made of the letter A for the acrylate block with, as a subscript, the value of n, and, as a superscript, the number of carbon atoms in the chain R2.


For block B, use will be made of the letter B with, as a subscript, the value of p, and, as a superscript, “aq” indicating that the block contains a quaternary ammonium function or “ps” for a polystyrene block.


For the end chain, use will be made of the letter I with the carbon number of the chain T as a subscript.


The letter b before each name indicates the fact that the copolymer is a block copolymer.


Synthesis of octadecyl 2-bromopropionate

12 g of octadecanol (44 mmol, 1 eq) and 7.4 g of triethylamine (53 mmol, 1.2 eq) are dissolved in 110 mL of cryodistilled THF. 5.81 mL of 2-bromopropionyl bromide (55 mmol, 1.25 eq) are dissolved in 10 mL of cryodistilled THF. At 0° C., the 2-bromopropionyl bromide solution is added dropwise to the octadecanol solution. The solution is placed under magnetic stirring at 0° C. for 2 hours and then at room temperature for 12 hours. The THF is evaporated off on a rotary evaporator and the octadecyl 2-bromopropionate is dissolved in 100 mL of dichloromethane. The organic phase is washed twice with aqueous 10% hydrochloric acid solution, three times with water, twice with aqueous 1M sodium hydroxide solution and then three times with water. The organic phase is dried with sodium sulfate. The solvent is evaporated off on a rotary evaporator and the octadecyl 2-bromopropionate is then dried under vacuum. Mass yield=98%.



1H NMR (400 MHz, 293 K, ppm in CDCl3): δ 4.35 (q, 1H, e), 4.15 (m, 2H, d), 1.80 (d, 3H, f), 1.65 (tt, 2H, c), 1.24 (m, 30H, b), 0.87 (t, 3H, a).


Synthesis of a dodecyl acrylate/N,N,N-trimethylammonium vinylbenzene chloride Block Copolymer IAB





    • A solution of initiator I is prepared by dissolving 1 equivalent of octadecyl 2-bromopropionate (1 g, 405 g·mol−1) in 4 mL of anisole. The solution is degassed by sparging with nitrogen before use.

    • A monomer ma/catalyst/ligand solution is obtained by dissolving in 8 mL of anisole 14 equivalents of dodecyl acrylate (8.30 g, 240 g·mol−1), 0.4 equivalent of copper bromide (142 mg, 143 g·mol−1) and 0.4 equivalent of 1,1,4,7,10,10-hexamethyltriethylenetetramine (227 mg, 230 g·mol−1), and the solution thus obtained is then degassed by sparging with nitrogen.

    • A monomer mb/catalyst/ligand solution is obtained by dissolving in 4 mL of anisole 6 equivalents of N,N,N-trimethylammonium vinylbenzene chloride (3.14 g, 212 g·mol−1), 0.4 equivalent of copper bromide (142 mg, 143 g·mol−1) and 0.4 equivalent of 1,1,4,7,10,10-hexamethyltriethylenetetramine (227 mg, 230 g·mol−1). The initiator solution is added under a stream of nitrogen to the monomer ma/catalyst/ligand solution. The mixture is placed under vacuum, with magnetic stirring, at 90° C., protected from light. The reaction progress is monitored by 1H NMR spectroscopy (Brücker 400 MHz spectrometer). After 25 hours of reaction, all of the dodecyl acrylate is consumed. After degassing by sparging with nitrogen, the monomer mb/catalyst/ligand solution is then added to the reaction medium. After 52 hours at 90° C., the reaction is quenched by plunging the flask into liquid nitrogen. 100 mL of tetrahydrofuran are added to the reaction medium and the solution thus obtained is then passed through a basic alumina column. The solvent is evaporated off on a rotary evaporator; 8.46 g (mass yield of 68%) of the block copolymer b-I18A1814Baq6 are obtained after precipitation from 400 mL of cold methanol, centrifugation and drying under vacuum.






1H NMR (400 MHz, 293 K, ppm in CDCl3): δ 7-8 (m, Ar), 4 (m, d), 2.85 (m, e), 1.58 (m, c), 1.25 (m, b), 0.88 (t, a).


Other block copolymers of formula (IV) described previously were synthesized according to the same protocol as example 1, but by varying the ratios and/or the nature of the monomers ma and mb. The characteristics of the block copolymers obtained are collated in table 1 below:

























TABLE 1




















Mn(3)
Yield(4)


Ref.(1)
m
n
p
T
R
R2
R3
R4(2)
R5
R6
R7
R8
R9
X
g · mol−1
(%)































b-I18A1814Baq6
1
14
6
—C18H37
H
—C18H37
Formula
Br
—CH3
H
—CH3
—CH3
—CH3
Cl
7000
68









(VI)


b-I18A1213Baq4
1
13
4
—C18H37
H
—C12H25
Formula
Br
—CH3
H
—CH3
—CH3
—CH3
Cl
4200
43









(VI)


b-I18A187Bps13
1
7
13
—C18H37
H
—C18H37
H
Br
—CH3
H




6900
81


b-I18A186Bps9
1
6
9
—C18H37
H
—C18H37
H
Br
—CH3
H




4000
69






(1)The values of m, n and p are determined by 1H NMR spectroscopy (Bruker 400 MHz spectrometer).




(2)There may be mixtures of copolymers in which R4 = Br and/or H and/or OH and/or group derived from spurious recombination phenomena during the radical polymerization.




(3)Number-average molar mass Mn determined by size exclusion chromatography (SEC).







For samples b-I containing a quaternary b-I18A1814Baq6 and b-I18A1213Baq4 containing a quaternary ammonium, the molar masses are measured with a Viscotek GPC Max TDA 305 machine from Malvern, equipped with two PLGel Mixed C gel columns from Agilent and an ionizing radiation detector. The solvent used is chloroform (+1% of triethylamine) and the flow rate is set at 1 mL·min−1. Calibration is performed with polystyrene standard samples of low dispersities.


For the other samples, the values are measured with a Varian machine equipped with Tosohaas TSK gel columns and an ionizing radiation detector. The solvent used is THF and the flow rate is set at 1 mL·min−1. Calibration is performed with polystyrene standard samples of low dispersities.



(4) Mass Yield

Example 2: Synthesis of Block Copolymers of Formula (V) by Reversible Addition-Fragmentation Chain-Transfer (RAFT) Radical Polymerization

Reaction Products:

    • Polymerization initiator: α,α′-Azoisobutyronitrile, AIBN, (CAS 78-67-1)
    • Transfer agent: 98% S,S0-dibenzyl trithiocarbonate, DBTTC (CAS 26504-29-0). DBTTC is used as a solution at 50% by mass in ethyl acetate.
    • Monomer ma: 98% dodecyl acrylate, DDA (CAS 2156-97-0, M=240.38 g/mol),
    • 90% 4-Chloromethylstyrene, CMS (CAS 1592-20-7, M=152.62 g/mol),
    • 99% N,N-dimethylethylamine, DMEA: (CAS 598-56-1)
    • 99.5% n-butylamine (CAS 109-73-9)


Step 1—Synthesis of the Block Copolymers C1 Using DDA and CMS


Copolymerization


DDA (53.9 g; 224.5 mmol), xylene (25 g), DBTTC at 50% by mass in ethyl acetate (1.901 g; 3.27 mmol) and AIBN (358 mg; 2.18 mmol) are placed in a Schlenk tube equipped with a magnetic bar. The reaction medium is degassed and placed under a nitrogen atmosphere. The medium is heated at 100° C. with stirring for 24 hours. CMS (9.595 g; 62.8 mmol) degassed beforehand is then added dropwise slowly from a dropping funnel under a nitrogen atmosphere. The medium is left stirring at 100° C. for 72 hours. Reaction monitoring is performed by 1H NMR spectroscopy. The conversion of the DDA is monitored by integration of the —OCH2 methylenes of the DDA monomer (δ (ppm): 4.1 (t, 2H)) in comparison with the integration of the —OCH2 methylenes of the polymerized DDA units (δ (ppm): 4.0 (m, 2H)) and the conversion of the CMS is monitored by integration of the CH2Cl methylenes of the CMS monomer (δ (ppm): 4.58 (s, 2H)) in comparison with the integration of the —CH2Cl methylenes (δ (ppm): 4.51 (m, 2H)).


After checking the conversion by NMR, the medium is cooled to room temperature. The solvent is evaporated off under reduced pressure.


The number-average molecular mass (Mn), the weight-average molecular mass (Mw) and the dispersity (D) of the copolymer are measured by SEC equipped with a differential refractometer (RI: refractive index) detector and with calibration with polymethyl methacrylate (PMMA). 66 g of copolymer are obtained (Mn: 8410 g/mol; Mw: 11 980 g/mol; D: 1.43)


The degree of conversion of each of the monomers is determined by 1H NMR and the DDA/CMS mole ratio is deduced therefrom by also taking into account the amounts of monomers introduced (conversion: DDA=95%; CMS=19%; DDA/CMS mole ratio: 95/5).


Cleavage by Aminolysis


66 g of the copolymer obtained previously are dissolved in 300 mL of THF in a round-bottomed flask. The medium is degassed and stirred at room temperature under a nitrogen atmosphere. n-Butylamine (3.24 mL, 10 eq/trithiocarbonate) is added to the medium in a single portion. The solution is stirred at room temperature for 24 hours. The volatile matter is then evaporated off under reduced pressure at 50° C. 66 g of copolymer C1 are obtained (Mn: 6700 g/mol; Mw: 10 810 g/mol; D: 1.49)


Other block copolymers were synthesized according to the same protocol as step 1 described above, but by varying the DDA/CMS mole ratio and the molar masses. The operating conditions and the characteristics of the block copolymers obtained after step 1 are collated in tables 2 and 3 below:














TABLE 2









Number of moles

Degree of




(mmol)

conversion(6)
DDA/CMS














n-butyl
Mn(5)
Mw(5)

(%)
mole


















Ref.
DDA
DBTTC
AIBN
CMS
amine
g/mol
g/mol
D
DDA
CMS
ratio





















C1
224.5
3.27
2.18
62.8
32.78
6700
10810
1.49
95
19
95/5


C2
205
3
2
38.13
29.34
6481
10180
1.47
95.5
49
92/8


C3
206
2.06
1.27
39.5
20.64
8402
14260
1.58
96
29
95/5


C4
206
2.06
1.27
60.5
20.64
8110
13800
1.56
96
27
92/8


C5(7)
206
2.06
1.27
60.5
20.64
6860
13190
1.80
92
49
 86/14






(5)Mn and Mw determined by SEC, with a Waters Alliance 2695 machine equipped with two PLGel Mixed B 10 μm gel columns and a Waters 2414 RI detector. The solvent used is THF stabilized with BHT (1 g/l) and the flow rate is set at 1 mL. min−1. Calibration is performed with Easivial PS-H polystyrene standard samples (results given as PMMA equivalent according to the Mark-Houwink relationship).




(6)Degree of conversion calculated from the analysis of the 1H NMR measurements taken with a Bruker Ascend 400 MHz spectrometer (293 K, ppm in CDCl3).




(7)Addition of an additional 30 mg of AIBN and heating for a further 72 hours at 100° C.
























TABLE 3














Mn(5)
DDA/CMS


Ref.(7)
m
n
p
T
R1
R2
R3
R4
g/mol
mole ratio

























C1
0
26
2
—SH
H
—C12H25
—CH2Cl
CH2—C6H5
6700
95/5


C2
0
25
4
—SH
H
—C12H25
—CH2Cl
CH2—C6H5
6481
92/8


C3
0
33
3
—SH
H
—C12H25
—CH2Cl
CH2—C6H5
8402
95/5


C4
0
31
4
—SH
H
—C12H25
—CH2Cl
CH2—C6H5
8110
92/8


C5
0
25
6
—SH
H
—C12H25
—CH2Cl
CH2—C6H5
6871
 86/14






(7)The values n and p are determined from the degree of conversion and from the starting number of moles (determination of the mole ratio of the two monomers) and from the molar masses Mn of the copolymer determined by SEC. The values are rounded up to a whole number.







Step 2—Synthesis of Block Copolymers AB of Formula (V) by Quaternization Reaction


Post-Functionalization


66 g of copolymer C1 are dissolved in 300 mL of THF in a round-bottomed flask equipped with a condenser and a magnetic stirrer. The medium is degassed and stirred at room temperature under a nitrogen atmosphere. DMEA (6 mL/5 eq/CMS) is added to the reaction medium in a single portion. The solution is stirred at 50° C. for 24 hours. The volatile matter is then evaporated off under reduced pressure at 50° C.


Purification/Ion Exchange


The copolymer obtained previously is precipitated from methanol. The precipitate is dissolved in 400 mL of toluene. The solution is washed three times with 200 mL of saturated sodium acetate solution and once with 200 mL of ultra-purified water. The organic phase is evaporated, allowing the removal of the residual water by azeotropic entrainment. The copolymer is dissolved in 200 mL of toluene and filtered through a Büchner filter. The volatile matter is evaporated off and the copolymer is dried under vacuum. 53.0 g of RAFT1-b-A1226Baq2 block copolymer are obtained.


The copolymer is analysed by 1H NMR in the presence of 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB) to assay the residual toluene (14% by mass). The 1H NMR results show the complete disappearance of the resonance of the CH2 of the CMS block at 4.51 ppm. Two broad multiplets are then seen at 3.24 and 4 ppm corresponding to the methyl and ethyl groups of the quaternary ammonium group present in the copolymer RAFT1-b-A1226Baq2.


The characteristics of the block copolymers obtained after step 2 are collated in table 4 below:

















TABLE 4












Mn**
DDA/CMS


Ref.
Cx
R3
R7
R8
R9
X
(g/mol)
mole ratio







RAFT1-b-A1226Baq2
C2
Formula
—CH3
—CH3
—CH2CH3
CH3CO2
6700
95/5




(VI)


RAFT2-b-A1225Baq4
C1
Formula
—CH3
—CH3
—CH2CH3
CH3CO2
6481
92/8




(VI)


RAFT3-b-A1233Baq3
C3
Formula
—CH3
—CH3
—CH2CH3
CH3CO2
8402
95/5




(VI)


RAFT4-b-A1231Baq4
C4
Formula
—CH3
—CH3
—CH2CH3
CH3CO2
8110
92/8




(VI)


RAFT5-b-A1225Baq6
C5
Formula
—CH3
—CH3
—CH2CH3
CH3CO2
6871
 86/14




(VI)





**It is considered that the post-functionalization and ion exchange steps have little influence on the Mn of the final block copolymer. It is considered that the Mn variation is thus negligible between the copolymer obtained on conclusion of step 2 and that obtained on conclusion of step 1.






XUD9 Engine Test—Determination of the Loss of Flow Rate


The XUD9 test makes it possible to determine the restriction of the flow of a gas oil emitted by the injector of a prechamber diesel engine during its functioning, according to the standardized engine test method CEC F-23-1-01.


The object of this XUD9 test is to evaluate the ability of the gas oil and/or of the additive and/or of the additive composition tested to maintain the cleanliness, “keep-clean” effect, of the injectors of a four-cylinder Peugeot XUD9 A/L injection and prechamber diesel engine, in particular to evaluate its ability to limit the formation of deposits on the injectors.


The tests were performed on a virgin gas oil (GOM B7) corresponding to standard EN590 containing 7% (vol/vol) or (v/v) of fatty acid methyl ester (FAME) and said supplemented gas oil GOM B7, abbreviated as GOMx at two contents of additive treatment: 50 ppm and 250 ppm by mass of solids.


The test is started with a four-cylinder Peugeot XUD9 A/L injection and prechamber diesel engine equipped with clean injectors, the flow rate of which was determined beforehand. The engine follows a determined test cycle for 10 hours and 3 minutes (repetition of the same cycle 134 times). At the end of the test, the flow rate of the injectors is again evaluated. The amount of fuel required for the test is 60 liters. The loss of flow rate is measured on the four injectors. The results are expressed as a percentage loss of flow rate for various needle lifts. Usually, the fouling values are compared at a needle lift of 0.1 mm since they are more discriminating and more precise and repeatable (repeatability <5%). The change in loss of flow rate before/after test makes it possible to deduce the percentage loss of flow rate. Taking into account the repeatability of the test, a significant detergent effect can be asserted for a reduction in the loss of flow rate, i.e. a gain in flow rate of greater than 10 points (>10%) relative to a virgin fuel.


The results are collated in table 5 below:














TABLE 5







Treatment

Loss of
Gain in




content

flow
flow



Block
(ppm by
Mn**
rate*
rate*


Ref.
copolymers
mass)
(g/mol)
(%)
(%)




















GOM B7

0

70.8
0


GOM1
RAFT1-b-A1226Baq2
250
6700
59.8
11


GOM2
RAFT2-b-A1225Baq4
250
6481
49.4
21.4


GOM3
RAFT3-b-A1233Baq3
250
8402
49.7
21.1


GOM4
RAFT4-b-A1231Baq4
250
8110
23.1
47.7


GOM5
RAFT5-b-A1225Baq6
250
6871
15.6
55.2


GOM B7

0

72
0


GOM4
RAFT4-b-A1231Baq4
50
8110
51.1
20.9


GOM5
RAFT5-b-A1225Baq6
50
6871
56.3
15.7





*mean for the four injectors






It is observed that the fuels GOM1 to GOM5 have a noteworthy effect on limiting the fouling of the XUD9 injectors.


The gas oil compositions GOM1 to GOM5 supplemented with the copolymer according to the present invention show a loss of flow rate less than that of the GOM B7 tested. At a supplementation level of 250 ppm, supplementation of GOM B7 with the copolymer according to the invention makes it possible to obtain a mean loss of flow rate of less than 60% and a mean gain in flow rate of greater than 10%.


In particular, the block copolymers RAFT4-b-A1231Baq4 and RAFT5-b-A1225Baq6 are particularly efficient as detergent additive, even at a low supplementation level. The measurements give for GOM5 and GOM6 a mean loss of flow rate of less than 60% at a supplementation level of 50 ppm and less than 25% at a supplementation level of 250 ppm, and also a mean gain in flow rate of greater than 10% at a supplementation level of 50 ppm and greater than 40% at a supplementation level of 250 ppm.


The copolymers according to the invention have noteworthy properties as detergent additive in a liquid fuel, in particular in a gas oil or gasoline fuel.


The block copolymers according to the invention are particularly noteworthy especially since they are efficient as detergency additive for a wide range of liquid fuels and/or for one or more types of engine specification and/or against one or more types of deposit which become formed in the internal parts of internal combustion engines.

Claims
  • 1-33. (canceled)
  • 34. A method comprising supplementing a liquid fuel for internal combustion engines with a copolymer detergent additive, said block copolymer comprising: at least one block A of formula (I) below:
  • 35. The method as claimed in claim 34, wherein block B is represented by formula (II) in which G is a substituted aryl group.
  • 36. The method as claimed in claim 35, wherein the group R is chosen from groups containing at least one primary, secondary or tertiary amine function.
  • 37. The method as claimed in claim 36, wherein the group R is chosen from the group consisting of: —NH2; groups containing at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function; heterocyclic groups containing from 3 to 34 atoms and at least one nitrogen atom.
  • 38. The method as claimed in claim 37, wherein the group R represents a heterocyclic group also comprising at least one element chosen from: an oxygen atom, a carbonyl group and one or more unsaturations.
  • 39. The method as claimed in claim 35, wherein the group R is chosen from trialkylammonium groups.
  • 40. The method as claimed in claim 34, wherein the block copolymer comprises: a block A consisting of a chain of structural units derived from an alkyl acrylate or alkyl methacrylate monomer (ma), anda block B consisting of a chain of structural units derived from a styrenyl monomer (mb) chosen from styrene and styrene derivatives in which the aromatic nucleus is substituted with at least the group R or with at least one linear or branched C1 to C12 hydrocarbon-based chain.
  • 41. The method as claimed in claim 40, wherein the monomer (ma) is chosen from C1 to C34 alkyl acrylates and methacrylates.
  • 42. The method as claimed in claim 40, wherein the monomer (mb) is chosen from (vinylbenzyl)trialkylammonium isomers, alone or as a mixture.
  • 43. The method as claimed in claim 34, wherein the block copolymer is represented by formula (IV) or (V) below:
  • 44. The method as claimed in claim 34, wherein the block copolymer is a diblock copolymer.
  • 45. The method as claimed in claim 34, wherein the block copolymer is a triblock copolymer containing alternating blocks comprising two blocks A and one block B (ABA) or comprising two blocks B and one block A (BAB).
  • 46. The method as claimed in claim 34, wherein the block copolymer is used in a liquid fuel chosen from hydrocarbon-based fuels and fuels that are not essentially hydrocarbon-based, alone or as a mixture.
  • 47. The method as claimed in claim 34, wherein the block copolymer is used as a mixture with an organic liquid in the form of a concentrate, said organic liquid being inert with respect to the block copolymer and miscible in the fuel.
  • 48. The method as claimed in claim 47, wherein the block copolymer is used in the form of an additive concentrate in combination with at least one fuel additive for an internal combustion engine other than said block copolymer.
  • 49. The method as claimed in claim 34, wherein the block copolymer is used in the liquid fuel to: keep clean or to clean-up at least one of the internal parts of an internal combustion engine, orlimit or prevent the formation of deposits in at least one of the internal parts of an internal combustion engine, orreduce the existing deposits in at least one of the internal parts of said engine.
  • 50. The method as claimed in claim 34, for: reducing the fuel consumption of internal combustion engines, orreducing the pollutant emissions of internal combustion engines.
  • 51. The method as claimed in claim 34, wherein the internal combustion engine is a spark ignition engine.
  • 52. The method as claimed in claim 34, wherein the internal combustion engine is diesel engine.
  • 53. A process for keeping clean or for cleaning at least one of the internal parts of an internal combustion engine, comprising at least the following steps: the preparation of a fuel composition by supplementation of a fuel with one or more block copolymers as defined in claim 34, andcombustion of said fuel composition in said internal combustion engine.
Priority Claims (1)
Number Date Country Kind
1558830 Sep 2015 FR national
PCT Information
Filing Document Filing Date Country Kind
PCT/FR2016/052326 9/15/2016 WO 00