The present invention is a method for determining the cores or building blocks of a heavy hydrocarbon system. The invention also includes a method of generating parent molecules from the cores or building blocks. In a preferred embodiment, the heavy hydrocarbon is a vacuum resid. Cores or building blocks are defined as non-paraffinic molecular structures that are bridged by weak bonds that can be dissociated by the controlled fragmentation as described in this invention. Weak bonds include aliphatic carbon-carbon bonds and aliphatic carbon-heteroatom bonds. Examples of cores and building blocks are shown in
Petroleum oils and high-boiling petroleum oil fractions are composed of many members of relatively few homologous series of hydrocarbons [6]. The composition of the total mixture, in terms of elementary composition, does not vary a great deal, but small differences in composition can greatly affect the physical properties and the processing required to produce salable products. Petroleum is essentially a mixture of hydrocarbons, and even the non-hydrocarbon elements are generally present as components of complex molecules predominantly hydrocarbon in character, but containing small quantities of oxygen, sulfur, nitrogen, vanadium, nickel, and chromium. Therefore, in the present invention petroleum and hydrocarbon will be used interchangeably.
One way to obtain building block information is to perform detailed characterization of the vacuum gas oil (VGO) of the corresponding resid. There are a number of issues with this approach in addition to analytical cost and time required for detailed characterization. First of all, VGO molecules do not represent all cores existing in the resid. Certain larger aromatic cores (>6 aromatic rings) and multi-heteroatom molecules cannot be found in VGO. Secondly, the building block distribution of resid may not be the same as that in VGO.
A vacuum gas oil is a crude oil fraction that boils between about 343° C. (650° F.) to 537° C. (1000° F.). A vacuum residuum is a residuum obtained by vacuum distillation of a crude oil and boils above a temperature about 537° C.
Another way of determining resid core structure is to crack resid structure by thermal or other selective dealkylation chemistry. Coking is a major problem in the thermal cracking approach because of the secondary reactions. Thermal cracking under hydrogen pressure may yield less coking but can still alter the building block structure by hydrodesulfurization. Quantitative assessment of building block distribution is very challenging.
Significant progress has been made in the determination of molecular formulas of heavy petroleum molecules. However, for the same molecular formula, different structures can be assigned. Heavy petroleum value and processability can be heavily affected by the assignment of core structures. There is not an easy method to generate the building block distribution. The present invention can dissociate petroleum molecules inside a mass spectrometer without forming coke. Building block information can be determined by the measurements of fragment ions.
The present invention is a method for the controlled fragmentation of a heavy hydrocarbon into the aromatic cores or building blocks. The method includes the steps of ionizing the hydrocarbon to form molecular ions or pseudo molecular ions, fragmenting the ions by breaking aliphatic C—C bond or C—X bond of the ions where X may be a heteroatom such as S, N and O. The invention also includes generating parent molecules from these building blocks.
Pseudo molecular ions include protonated ions, deprotonated ions, cation or anion adduct of parent molecule of the heavy petroleum or hydrocarbon sample.
The controlled fragmentation is performed by collision-induced dissociation (also called collision activated dissociation). The controlled fragmentation is also enhanced by multipole storage assisted dissociation.
a-37h shows the set of cores or building blocks.
The present invention describes a method of generating composition and structures of building blocks in heavy petroleum resid. The technology first generates parent petroleum molecule ion or pseudo molecular ions using various soft ionization methods. These parent ions are subjected to various fragmentation reactions within a mass spectrometer. Fragment ions are characterized in ultra-high resolution mode. Chemical building blocks of heavy resid and their concentrations can thus be determined. In a preferred embodiment, the present invention uses collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry (CID-FTICR-MS)
Petroleum parent molecule ions can be generated by various ionization methods including but not limited to atmospheric pressure photon ionization, atmospheric pressure chemical ionization, electrospray ionization, matrix assisted laser desorption ionization, field desorption ionization etc. All ionization methods can be operated under positive and negative conditions and generate different assemblies of molecule ions. These molecule ions are further fragmented inside a quadrupole ion trap or inside an ion cyclotron resonance cell individually or as a group. The fragment ions are analyzed under high resolution MS conditions. Core structures are assigned to these fragment products. They represent structures that cannot be further decomposed. These structures are the building blocks that can be used to reconstruct resid molecules.
Heavy petroleum is normally referred as 1000° F.+ petroleum fractions or the bottoms of vacuum distillation. It is generally believed that heavy petroleum are mostly made of cores or building blocks that can be found in lower boiling fractions, such as vacuum gas oils. The information of building block distribution has significant implications in resid quality evaluation, processability assessment and product quality determination after resid processing. For example,
One way to obtain building block information is to perform detailed characterization of VGO of corresponding resid. There are a number of issues with this approach in addition to analytical cost and time required for detailed characterization. First of all, VGO molecules do not represent all cores existed in resid. Certain larger aromatic cores (>6 aromatic rings) and multi-heteroatom molecules cannot be found in VGO. Secondly, the building block distribution of resid may not be the same as that in VGO.
Another way of determining resid core structure is to crack resid structure by thermal or other selective dealkylation chemistry. Coking is a major problem in the thermal cracking approach because of the secondary reaction. Thermal cracking under hydrogen pressure may yield less coking but can still alter the building block structure by hydrodesulfurization. Quantitative assessment of building block distribution is very challenging.
The present invention uses controlled fragmentation of parent molecule ions inside a mass spectrometer to determine cores or building block distribution of a petroleum resid. More specifically, various soft ionization methods, such as atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), electrospray ionization (ESI), matrix assisted laser desorption ionization (MALDI), field desorption ionization (FD) etc. were used to generate molecular ions or pseudo molecular ions. Ultra-high resolution mass spectrometry by FTICR-MS provides elemental formulas of all ions. Parent ions are then fragmented inside the mass spectrometer to generate building block information. Multiple dissociation technologies can be used to fragment molecular ions, including collision-induced dissociation (CID), surface-induced dissociation (SID), Infrared Multiphoton Dissociation (IRMPD), sustained off-resonance irradiation (SORT) etc. The location of the fragmentation can be in a quadrupole ion trap before the ICR cell or inside the ICR cell. Fragment ions were determined by ultra-high resolution mass spectrometer. Aromatic structures were assigned to these fragments. Building block distributions can thus be determined by the technique. For illustration purpose, APPI is used in this memo to ionize petroleum resid molecules. Molecular ions are fragmented in a quadrupole ion trap by CID using argon as neutral targets. Fragment ions were transferred into the ICR cell where they are analyzed in a ultra-high resolution mode.
A simplified view of CID-FTICR-MS experiments for resid core structure analyses is illustrated in
There are two locations in the 12 tesla Bruker FTICR-MS that fragmentation of molecule ions can be performed. The first location is the RF only quadrupole ion trap (collision cell). Fragmentation is induced or activated by multiple collisions of ions with neutral molecules (Ar) at a pressure of 10−2 mbar (CID) or with a surface (SID). The second location is the FTICR cell. Fragmentation mechanism is Infrared multiphoton dissociation (IRMPD). Another fragmentation technique that can be performed in the ICR cell is called sustained off-resonance irradiation (SORI). This memo describes CID reactions occurring in the collision cell region.
The 12 tesla Bruker FTICR-MS is equipped with electrospray ionization (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), matrix assisted laser desorption ionization (MALDI), field desorption (FD) ionization, Direct Analysis in Real Time (DART), atmospheric pressure solid analysis probe (ASAP). All the ionization techniques can produce molecular ions or pseudo molecular ions. Pseudo molecular ions are defined as protonated or deprotonated molecular ions, cation or anion adducts of molecular ions. These ions are then subjected to fragmentation techniques as aforementioned.
Atmospheric pressure photoionization (APPI) is the primary ionization method in our CID study of petroleum resid fractions. A counter current flow of dry gas (N2) of 3-8 L/min and a nebulizing gas of 1 to 3 L/min were employed to assist in the desolvation process. Nebulizing temperature was set at 450° C. Source pressure was maintained at 2 to 3 mBar to allow sufficient relaxation of ions. Molecule ions formed by APPI were collected by 2-stage ion funnels and accumulated first in an rf-only hexapole prior to injection into a quadrupole analyzer. The hexapole is operated at a voltage of 200 to 400 Vpp at a frequency of 5 MHz. Quadrupole mass analyzer were used to select masses of interests for the CID experiments. Ions passed quadrupole mass analyzer were accumulated in a collision cell comprised of a linear quadrupole operated in rf-only mode with Vpp set at 690 V. Collision cell pressure was controlled at ˜10−2 mbar with argon as the collision gas. Spectra were acquired from the co-addition of 20 to 100 transients comprised of 4 M data points acquired in the broadband mode. Time domain signals were apodized with a half-sine windowing function prior to a magnitude-mode Fourier transform. All aspects of pulse sequence control, data acquisition, and post acquisition processing were performed using Bruker Daltonics Compass apexControl 3.0.0 software in PC.
Fragmentation pattern are governed by center of mass collision energy (ECM in kcal/mol) which is defined to the lab collision energy (Elab in eV) by equation 1.
E
CM
=M
Ar/(MAr+Mion)×Elab×23.06 Equation 1
Where MAr is the mass of argon gas and Mion is the mass of a parent ion.
Petroleum molecules are made of cores of different structures.
Fragmentation can occur or enhanced when ion accumulated to certain concentrations in the collision cell. This phenomenon has been defined as Multipole Storage Assisted Dissociation (MSAD). We have clearly observed the MSAD effect in the CID of petroleum samples where fragmentation pattern has been found related to the ion accumulation and sample concentration. More efficient fragmentation can be achieved when all ions in the collision cell are subjected to collision at the same time. One hypothesis is that once ion density reaches the charge limit in the multipole, the Columbic force will push ion ensembles to spread out radially, enabling the ion to oscillate at higher magnitude. This would allow the coupling of the rf energy in the hexapole rods to the ions, effectively accelerating them to higher kinetic energy. Extensive fragmentation is caused by collisions of excited ions with the gas molecules in the collision cell (10−2 mbar). However, the fundamentals of the dissociation mechanism is the same as CID.
A practical implication of the MSAD effect is that concentrations and ion accumulation time need to be controlled to obtain reproducible results. For all petroleum samples, concentrations of the samples are prepared at ˜2 mg/10 cc (˜200 ppm W/V). Sample Infusion flow rate is maintained at 120 μL/hour. Since asphaltene samples have poor sensitivity, these samples are prepared at higher concentrations (˜500 ppm) and higher infusion flow rate (˜600 uL). Collision cell accumulation time is between 0.5 to 2 sec. Excitation energy (RF attenuation) is set to 14 to 20 to enhance low m/z detection. DOBA ARC4+ fraction is used to monitor the fragmentation consistency as shown in
The present invention includes a way of generating building blocks in heavy petroleum resid.
Z is defined as hydrogen deficiency as in general chemical formula CcH2c+ZNnSSOO. For example, all paraffin homologues fall into the same chemical formula CcH2c+2. Thus the Z-number of paraffins is +2. All benzothiophenes have the chemical formula CcH2c−10S. Its Z-number is −10. The more negative the Z-number, the more unsaturated the molecules.
With these building blocks determined, molecules can be generated using them. These molecules must satisfy the chemical class and Z requirements that result from the detection of the resid molecules by the FTICR-MS.
It is easier to create molecules if they are classified. Molecules are constructed that are saturates, aromatics, sulfides, polars, metal containing porphyrins and molecules containing large aromatics with 6 or more aromatic rings. For a saturate molecule, one uses only saturate cores. The aromatics classification is split into 4 classes: molecules with a maximum of one aromatic ring, molecules with a maximum of 2 aromatic rings and so forth. The aromatic ring class 4 includes those ring systems greater or equal to 4 aromatic rings. In building molecules, a core that meets the specification of the classification is chosen first. Additional cores are drawn from the pool of cores that would still make the classification using the abundance for that core. A molecule classified as a 3 ring aromatic would have as the first core a 3 ring aromatic. After that, the available cores would be the 1-3 ring aromatics, and the saturate cores. For a sulfide, the first of the cores must be a sulfide while any other cores comprising the molecule can be either sulfide, saturate or aromatic. Similarly, for a polar molecule, there must be one core that is either a basic nitrogen, acid or phenol (these are the “polar” cores). The other cores in a molecule can be chosen from the saturates and aromatics. For a metal containing porphyrin, the first core chosen must be the porphyrin. The rest of the cores can be chosen from the entire collection. Lastly, the classification of large aromatics requires a core which has at least 6 aromatic rings. Additional cores are selected from the entire collection. Note that the additional cores are chosen based on abundance which means that there will be significant number of cores that are saturates and small 1 and 2 ring aromatic cores in the constructed molecules.
To make a collection of saturate molecules, one would use only saturate cores.
Because the loop thru each chemical class is performed many times for all the different classifications, a large array is created, an array of about 10,000 unique molecules ranging in size from single core (the initial building blocks) to molecules containing 5 cores or building blocks as the maximum number of cores or building blocks has been set to 5. Duplicate molecules are removed as well.
Appendix I includes more details on the identification and quantification of aromatic building blocks.
Petroleum composition and structure below 1000° F. have been largely determined under the frame work of High Detailed Hydrocarbon Analysis (HDHA)1. Molecules in naphtha range are measured by high resolution GC PIONA (C4 to C12 paraffins, isoparaffins, olefins, naphtha and aromatics). Distillates are characterized by GC-Field Ionization High Resolution Time-of-Flight Mass spectrometry combined with GC-FID (normal paraffin) and SFC (Lumps of Paraffins, Naphthenes, 1-3 Ring Aromatics)2,3. Vacuum Gas Oil requires multi-dimensional LC separations (Silica Gel and Ring Class)4,5 followed by low or high resolution mass spectrometry and NMR. Various bulk property measurements were conducted on separated fractions. A model of composition is developed by reconciling all analytical information1-3.
Relative to 1000° F.− petroleum fractions, 1000° F.+ petroleum fractions are much more challenging to characterize because of the low volatility, low solubility, high heteroatom content, low H/C ratio and higher molecular weight of the samples. A research protocol for determination of petroleum composition and structure above 1000° F. has been recently developed by our group. A separation scheme similar to that of gas oil HDHA is developed for vacuum resid (VR) with an addition of de-asphaltene step. The separated fractions are subjected to analysis by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), NMR, XPS and other bulk analytical techniques. The process generates fifty to one hundred thousand molecules per crude.
The ultra-high resolution capability provides unambiguous identification of empirical formula for each mass peak detected by FTICR-MS. However, structure assignments are non-unique based on empirical formula. To make it even more complicated, there are multi-core structures in VR that are absent in 1000 F-petroleum.
All experiments were conducted on a 12 tesla Bruker Apex FTICR-MS equipped with electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). APPI is the primary ionization method in our CID study of aromatic ring class fractions, sulfides and asphaltenes. A counter current flow of dry gas (N2) of 3-8 L/min and a nebulizing gas of 1 to 3 L/min were employed to assist the desolvation process. Nebulizing temperature was set at 450° C. Source pressure was maintained at 2 to 3 mBar to allow sufficient relaxation of ions. Molecule ions formed by APPI were collected by 2-stage ion funnels and accumulated first in an rf-only hexapole prior to injection into a quadrupole analyzer. The hexapole is operated at a voltage of 200 to 400 Vpp at a frequency of 5 MHz. Quadrupole mass analyzer were used to select masses of interests for the CID experiments. Ions passed quadrupole mass analyzer were accumulated in a collision cell comprised of a linear quadrupole operated in rf-only mode with Vpp set at 690 V. Collision cell pressure was controlled at ˜10−2 mbar with argon as the collision gas. Spectra were acquired from the co-addition of 20 to 100 transients comprised of 4 M data points acquired in the broadband mode. Time domain signals were apodized with a half-sine windowing function prior to a magnitude-mode Fourier transform. All aspects of pulse sequence control, data acquisition, and post acquisition processing were performed using Bruker Daltonics Compass apexControl 3.0.0 software in PC.
There are two locations in Bruker FTICR-MS that fragmentation of molecule ions can be performed. The first location is the RF only quadrupole ion trap (collision cell). Fragmentation is induced or activated by multiple collisions of ions with neutral molecules (Ar) at a pressure of 10−2 mbar. Resolution of quadrupole mass filter before the collision cell is very limited. The second location is the FTICR cell. Fragmentation mechanism is Infrared multiphoton dissociation (IRMPD). Our focus of this report is on the CID reactions conducted in the collision cell region.
A simplified view of CID-FTICR-MS experiments for resid core structure analyses are illustrated in
E
CM
=M
Ar/(MAr+Mion)*Elab*23.06 Equation 1
Where MAr is the mass of argon gas and Mion is the mass of a parent ion. Energy breakdown curves are plotted by normalizing sums of major products signal to 1 million.
For petroleum samples, we choose to send all ions into the FTICR cell and subject them to collisions with argon gas. The fragments are consequently analyzed by FTICR-MS in ultra-high resolution mode. Collision energy has been fixed at 30V for vacuum resid and 20V for gas oils (see discussions).
Model compounds are synthesized internally or purchased from a commercial source. Table 2 summarized the model compounds that have been subjected to CID experiments and purpose of the experiments. Some are mixtures of compounds with different alkyl substitutions. In most model compound experiments, we use quadrupole mass filter to isolate molecule ion before CID.
VR samples were generated from crude distillation assay. A total of four VRs were characterized by CID. In addition, we also analyzed three gas oil HDHA fractions to help us understand CID chemistry on petroleum molecules. The samples are summarized in Table 3.
Collision-Induced Dissociation (CID) has been widely applied in mass spectrometric characterization of organic molecules and mixtures. The fundamentals of CID mechanism, kinetics and dynamics have been extensively studied. CID is normally considered a two step process. The first step involves Collisional activation of parent ion to an excited state, which subsequently going through a unimolecular ion dissociation process. The fragmentation pathways are governed by internal energy deposition and ion structures as given in RRKM theory or quasi-equilibrium theory (QET) and is independent of ionization process that are used to create parent ions. For a two core system, the process can be depicted in
Hence, writing an Arrhenius unimolecular rate expression, k=A×exp(−E/kT), and assuming the pre-exponential frequency factors for reaction 1 and 2, one obtains
Ln(k1/k2)=(E2−Ei)/kT≈ΔIP/kT Equation 3
Thus, the abundances of cores that carry charges are roughly determined by their relative ionization potentials. This is generally referred as Steven's rule in mass spectrometry. If core components of a resid molecule are very different in their ionization potential, it is expected that CID products will favor the core that has the lowest ionization potential. Response factor calibration thus becomes necessary. More detailed fragmentation mechanisms can be found in McLafferty's book on interpretation of mass spectra6
Collision energy of a single collision event is controlled by the lab collision energy, the mass of analyte ion and mass of neutral molecule. The energy deposition is normally less than that provided by the center of mass collision energy. Single collision only occurs in higher vacuum environment and found very limited applications in practical analyses because of low fragmentation efficiency. In the case of linear quadrupole ion trap, ion residence time are long (0.1 to 10 ms) and pressure is high (˜10−2 mBar), multiple collisions are occurring which lead to much higher energy deposition than that defined by lab collision energy. Internal energy distribution has been found very much like Boltzmann distributions, implying that the process is thermal in nature. The differences are that there is no bimolecular reaction between analyte ions in CID due to charge expulsion in CID process. Thus polynuclear aromatic growth (coking) in thermal process is largely minimized. More details on CID energy deposition have been summarized by Laskin and Futrell7.
CID fragmentation can be enhanced when ion accumulated to certain concentrations in the collision cell. This phenomenon has been named as Multipole Storage Assisted Dissociation (MSAD)8. We have clearly observed MSAD effect in the CID of petroleum samples where fragmentation pattern has been found related the ion accumulation and sample concentration. In most of our experiments, Q1 is open to let all ions into the collision cell. Molecule ions are more easily fragmented than if ions are isolated. We attribute this to the MSAD effect. Current theory of MSAD is that once ion density reaches the charge limit in the multipole, the Columbic force will push ion ensembles to spread out radially, enabling the ion to oscillate at higher magnitude. This would allow the coupling of the rf energy in the hexapole rods to the ions, effectively accelerating them to higher kinetic energy. Extensive fragmentation is caused by collisions of excited ions with the gas molecules in the collision cell (10−2 mbar). However, the fundamental of the dissociation process is the same as CID.
Model compound experiments were conducted to answer a number of important questions about CID chemistry. We would like to know the weak versus strong bonds in CID process, the impact of CID on naphthenic ring structures, products distribution, especially the core distribution. The understanding will help us to rationalize results of petroleum samples.
Overall we conclude that single core aromatics preserve aromatic structures in CID. In other words Z-numbers are preserved. Primary reactions are de-alkylations to shorter chain products. Because rearrangement reaction can happen in ion dissociation process, we observed multiple substituted aromatics were dealkylated down to C1 substituted structures which are rare in thermal chemistry.
The even mass product ion (m/z 156) is produced by hydrogen rearrangement followed by α cleavage (reaction scheme 3). This reaction occurs even at CID off condition (note minor m/z 156 peak at zero collision energy). Another product, m/z 181, appears to be from cyclization of alkyl side-chains. Both reaction schemes 3 and 4 causes change in Z-number of constituting cores. In general, alkyl linked multicore structures will cleave under CID conditions result in Z-reduction of original structures. Primary product retains the Z-number of constituting cores.
Resid multi-cores may contain aromatic cores of different core sizes and sulfur and nitrogen-containing aromatics. To evaluate the impact of these factors on CID product distribution, 3 model compounds were synthesized and evaluated by CID-FTICR-MS. These are Naphthalene-C14-Pyrene, Phenanthrene-C14-Dibenzothiophene and Phenanthrene-C14-Carbazole.
To evaluate relative responses of these aromatic cores, we summed up all ions from corresponding cores and compared their relative abundances in the high energy area where fragmentation pattern has been stabilized. The results are summarized in Table 1. Ionization potential is also listed in the table. Pyrene has a higher response than naphthalene because of lower ionization potential. Phenanthrene and DBT has very close response as expected by their close ionization potential and very similar molecular mass. Carbazole response is much higher than phenanthrene in part due to lower IP of carbazole. The more important factor may be that carbazole can form a more stable ions by re-arranging the proton on the nitrogen atom as shown in reaction scheme 5.
We have known that CID process will not break aromatic bond and bi-aryl bond. It is not known if CID will break C1, C2 and aromatic sulfur linkages.
One important question about CID is its impact on naphthenic ring structures. The model compound tested here is a C9 alkyl diaromatic sterane containing both 5 and 6 member ring naphthenic structures. As shown in
CID of petroleum fraction is more complicated than that of model compounds. In addition to collision energy, a number of factors have been found affecting CID product distribution primarily caused by MSAD effect as explained in the overview of CID fundamentals. The effect of MSAD is more pronounced in the CID of petroleum sample because there are much more ions in the collision cell and much higher charge density compared to model compound experiments. Consequently, fragmentation pattern are affected by ion accumulation time and concentrations of the samples. Ions are delivered into ICR cell using a series of static lenses. Molecular weight distribution has been found affected by beam steering voltage, flight time from steering lens to the cell and ICR excitation energy. For modeling purpose, it is critical to have a set of conditions that will produce consistent fragmentation pattern. For vacuum resid samples, collision energy is set at 30 eV. Vacuum resid molecules ionized by APPI have a molecular weight range from 400 to 1200 Da and peaks around 700 Da. This translates into an average CM collision energy of about 37 kcal/mol. Based on model compound study, this energy should convert most of the molecules into C1 to C3 substituted cores. VGO molecules ionized by APPI have an average molecular weight about 450 Da. To get similar CM collision energy, lab energy is set at 20 eV for CID of VGO samples.
For all VR DAO fractions, concentrations of the samples are prepared at ˜2 mg/10 cc (˜200 ppm W/V). Sample Infusion flow rate is maintained at 120 μL/hour. Since asphaltene samples have poor sensitivity, these samples are prepared at higher concentrations (˜500 ppm) and higher infusion flow rate (˜600 μL). Collision cell accumulation time is between 0.5 to 2 sec. Excitation energy (RF attenuation) is set to 14 to 20 to enhance low m/z detection. DOBA ARC4 fraction is used to monitor the fragmentation consistency as shown in
Our first set of CID experiments was performed on DOBA aromatic ring class fractions.
Since composition and structure of petroleum molecules in vacuum gas oil range have been well characterized under the framework of HDHA, it is useful to compare CID of VGO and VR.
To further compare VGO and VR structures, we studied a high sulfur and high asphaltene vacuum resid, Maya. The product distribution of ARC1 to 4+ and sulfide fractions are given in
CID of Maya ARC 1 fractions produce benzene, naphtheno benzene and dinaphtheno benzene as the most abundant hydrocarbon cores (
Overall, our conclusion is that DAO fractions are made of core types that are existing in vacuum gas oils. ARC4+ fractions of VGO may also contain multi-cores but at much lower abundance.
Asphaltene in this work is defined as n-heptane insolubles. VR asphaltene content has a wide range from 0 (e.g. Doba and Rangdong) to 38 percent (e.g. Maya). Asphaltene fraction represents the most complicated portion of petroleum. It is high boiling (˜50% molecules have boiling points greater than 1300 F). It contains multi-hetero atoms and various functionalities.
In late 2005, we conducted a series of thermal experiments on VR DAO and asphaltenes using a prep-scale MCR apparatus. The headspace liquids were collected and analyzed by Micro-Hydrocarbon Analysis3. One of the vacuum resids is Cold Lake which is also characterized in this work by CID-FTICR technique. To compare the results of the two characterizations, we combined CID-FTICR data by the weight of ARC and Sulfide fractions. Only aromatic compounds are compared as APPI cannot ionize saturate molecules. The MHA data of DAO liquid are lumped by their Z-distribution. The two data sets were compared in
A comparison of CID-FTICR and MCR-MHA of Cold Lake asphaltene fractions are shown in
The presentation uses CID-FTICR-MS technology to determine structures of vacuum resid. The multi-core nature of vacuum resid is confirmed. Multi-core features are more pronounced in higher aromatic ring classes and asphaltene fractions. A wide range of model compounds were synthesized to understand CID chemistry and interpretation of resid composition. Model compound experiments demonstrated de-alkylation of single core structures and conservation of Z-number (or core structures). 35 to 40 kcal/mol of center of mass collision energy allows de-alkylation of resid molecules to C1-C4 substituted cores. Hetero-core types were studied to evaluate relative efficiency in core production. In general, Steven's rule applies to the process. The core that has lower ionization potential is more likely to carry charges. C1 and aromatic sulfide bond cannot be broken by CID while C2 linkages can be easily broken. Naphthenic ring opening and addition of an olefin bond has been observed. However, Z-number is conserved in the process. Aromatic ring closure was observed for aromatic sulfide which may cause overestimate of thiophenes, benzothiophenes and dibenzothiophenes when interpreting CID results of sulfide fractions.
Vacuum resid and vacuum gas oil fractions were characterized in parallel to understand the structures of vacuum resid. CID of DAO fractions yield products that have similar Z range as did VGO although abundances of the cores are different. This result implies that DAO fractions are made of cores that are existing in VGO. CID of DOBA ARC4+ and Sulfides generates product that has Z-range very different from VGO, mainly because DOBA cannot be de-asphaltened by n-heptane. Thus ARC4+ and sulfide fractions likely contain more condensed structures. CID of asphaltene fractions yields polarized Z-distributions. Namely, both condensed and light aromatic building blocks were observed. The Z-numbers of −52 imply up to 8 aromatic rings structures that cannot be further decomposed by CID.
The results from CID-FTICR-MS experiments were compared with the composition derived from micro-hydrocarbon analysis (MHA) of MCR liquid from Cold Lake vacuum resid. The Z-distributions of DAO between the two experiments are very similar, indicating CID chemistry has similarities to thermal chemistry. The results on asphaltene are very different, CID-FTICR-MS sees much more condensed aromatic structures while MHA-MCR only see aromatics up to 6 aromatic rings. The differences are partially due to the boiling point limitation of GC. In addition, CID process does not form coke and thus provides a more complete picture on the core distributions.
This is a Non-Provisional Application based on Provisional Application 61/423,788 filed Dec. 16, 2010.
Number | Date | Country | |
---|---|---|---|
61423788 | Dec 2010 | US |