The present disclosure relates in general to electronic devices with user interfaces, (e.g., mobile devices, game controllers, instrument panels, etc.), and more particularly, an integrated haptic system for use in a system for mechanical button replacement in a mobile device, for use in haptic feedback for capacitive sensors, and/or other suitable applications.
Many traditional mobile devices (e.g., mobile phones, personal digital assistants, video game controllers, etc.) include mechanical buttons to allow for interaction between a user of a mobile device and the mobile device itself. However, such mechanical buttons are susceptible to aging, wear, and tear that may reduce the useful life of a mobile device and/or may require significant repair if malfunction occurs. Also, the presence of mechanical buttons may render it difficult to manufacture mobile devices to be waterproof. Accordingly, mobile device manufacturers are increasingly looking to equip mobile devices with virtual buttons that act as a human-machine interface allowing for interaction between a user of a mobile device and the mobile device itself. Similarly, mobile device manufacturers are increasingly looking to equip mobile devices with other virtual interface areas (e.g., a virtual slider, interface areas of a body of the mobile device other than a touch screen, etc.). Ideally, for best user experience, such virtual interface areas should look and feel to a user as if a mechanical button or other mechanical interface were present instead of a virtual button or virtual interface area.
Presently, linear resonant actuators (LRAs) and other vibrational actuators (e.g., rotational actuators, vibrating motors, etc.) are increasingly being used in mobile devices to generate vibrational feedback in response to user interaction with human-machine interfaces of such devices. Typically, a sensor (traditionally a force or pressure sensor) detects user interaction with the device (e.g., a finger press on a virtual button of the device) and in response thereto, the linear resonant actuator may vibrate to provide feedback to the user. For example, a linear resonant actuator may vibrate in response to user interaction with the human-machine interface to mimic to the user the feel of a mechanical button click.
However, there is a need in the industry for sensors to detect user interaction with a human-machine interface, wherein such sensors provide acceptable levels of sensor sensitivity, power consumption, and size. For example, in an actively driven sensor system, it may be desirable that a signal driver generate a driving signal at or near a resonant frequency of the sensor. Due to manufacturing designs and tolerances as well as environmental effects (such as temperature, humidity, movements in air gap over time) the resonant frequency of the sensor as well as the Q-factor of the sensor may be different for each individual sensor and can change over time. Thus, to ensure generation of driving signal at or near such resonant frequency, it may further be desirable to determine such resonant frequency and/or a quality factor of a sensor.
In accordance with the teachings of the present disclosure, the disadvantages and problems associated with use of a virtual button in a mobile device may be reduced or eliminated.
In accordance with embodiments of the present disclosure, a method for determining sensor parameters of an actively-driven sensor system may include performing an initialization operation to establish a baseline estimate of the sensor parameters, obtaining as few as three samples of a measured physical quantity versus frequency for the actively-driven sensor system, performing a refinement operation to provide a refined version of the sensor parameters based on the as few as three samples, iteratively repeating the refinement operation until the difference between successive refined versions of the sensor parameters is below a defined threshold, and outputting the refined sensor parameters as updated sensor parameters for the actively-driven sensor system.
In accordance with these and other embodiments of the present disclosure, a system may include an actively-driven sensor and a measurement circuit communicatively coupled to the actively-driven sensor and configured to perform an initialization operation to establish a baseline estimate of sensor parameters of the actively-driven sensor, obtain as few as three samples of a measured physical quantity versus frequency for the actively-driven sensor system, perform a refinement operation to provide a refined version of the sensor parameters based on the as few as three samples, iteratively repeat the refinement operation until the difference between successive refined versions of the sensor parameters is below a defined threshold, and output the refined sensor parameters as updated sensor parameters for the actively-driven sensor system.
Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
Enclosure 101 may comprise any suitable housing, casing, or other enclosure for housing the various components of mobile device 102. Enclosure 101 may be constructed from plastic, metal, and/or any other suitable materials. In addition, enclosure 101 may be adapted (e.g., sized and shaped) such that mobile device 102 is readily transported on a person of a user of mobile device 102. Accordingly, mobile device 102 may include but is not limited to a smart phone, a tablet computing device, a handheld computing device, a personal digital assistant, a notebook computer, a video game controller, or any other device that may be readily transported on a person of a user of mobile device 102.
Controller 103 may be housed within enclosure 101 and may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data, and may include, without limitation a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other digital or analog circuitry configured to interpret and/or execute program instructions and/or process data. In some embodiments, controller 103 interprets and/or executes program instructions and/or processes data stored in memory 104 and/or other computer-readable media accessible to controller 103.
Memory 104 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 104 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.
Microphone 106 may be housed at least partially within enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to convert sound incident at microphone 106 to an electrical signal that may be processed by controller 103, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies as based on sonic vibrations received at the diaphragm or membrane. Microphone 106 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical systems (MEMs) microphone, or any other suitable capacitive microphone.
Radio transmitter/receiver 108 may be housed within enclosure 101, may be communicatively coupled to controller 103, and may include any system, device, or apparatus configured to, with the aid of an antenna, generate and transmit radio-frequency signals as well as receive radio-frequency signals and convert the information carried by such received signals into a form usable by controller 103. Radio transmitter/receiver 108 may be configured to transmit and/or receive various types of radio-frequency signals, including without limitation, cellular communications (e.g., 2G, 3G, 4G, LTE, etc.), short-range wireless communications (e.g., BLUETOOTH), commercial radio signals, television signals, satellite radio signals (e.g., GPS), Wireless Fidelity, etc.
A speaker 110 may be housed at least partially within enclosure 101 or may be external to enclosure 101, may be communicatively coupled to controller 103, and may comprise any system, device, or apparatus configured to produce sound in response to electrical audio signal input. In some embodiments, a speaker may comprise a dynamic loudspeaker, which employs a lightweight diaphragm mechanically coupled to a rigid frame via a flexible suspension that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier.
Force sensor 105 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for sensing a force, a pressure, or a touch (e.g., an interaction with a human finger) and generating an electrical or electronic signal in response to such force, pressure, or touch. In some embodiments, such electrical or electronic signal may be a function of a magnitude of the force, pressure, or touch applied to the force sensor. In these and other embodiments, such electronic or electrical signal may comprise a general purpose input/output signal (GPIO) associated with an input signal to which haptic feedback is given. Force sensor 105 may include, without limitation, a capacitive displacement sensor, an inductive force sensor (e.g., a resistive-inductive-capacitive sensor), a strain gauge, a piezoelectric force sensor, force sensing resistor, piezoelectric force sensor, thin film force sensor, or a quantum tunneling composite-based force sensor. For purposes of clarity and exposition in this disclosure, the term “force” as used herein may refer not only to force, but to physical quantities indicative of force or analogous to force, such as, but not limited to, pressure and touch.
Linear resonant actuator 107 may be housed within enclosure 101, and may include any suitable system, device, or apparatus for producing an oscillating mechanical force across a single axis. For example, in some embodiments, linear resonant actuator 107 may rely on an alternating current voltage to drive a voice coil pressed against a moving mass connected to a spring. When the voice coil is driven at the resonant frequency of the spring, linear resonant actuator 107 may vibrate with a perceptible force. Thus, linear resonant actuator 107 may be useful in haptic applications within a specific frequency range. While, for the purposes of clarity and exposition, this disclosure is described in relation to the use of linear resonant actuator 107, it is understood that any other type or types of vibrational actuators (e.g., eccentric rotating mass actuators) may be used in lieu of or in addition to linear resonant actuator 107. In addition, it is also understood that actuators arranged to produce an oscillating mechanical force across multiple axes may be used in lieu of or in addition to linear resonant actuator 107. As described elsewhere in this disclosure, a linear resonant actuator 107, based on a signal received from integrated haptic system 112, may render haptic feedback to a user of mobile device 102 for at least one of mechanical button replacement and capacitive sensor feedback.
Integrated haptic system 112 may be housed within enclosure 101, may be communicatively coupled to force sensor 105 and linear resonant actuator 107, and may include any system, device, or apparatus configured to receive a signal from force sensor 105 indicative of a force applied to mobile device 102 (e.g., a force applied by a human finger to a virtual button of mobile device 102) and generate an electronic signal for driving linear resonant actuator 107 in response to the force applied to mobile device 102. Detail of an example integrated haptic system in accordance with embodiments of the present disclosure is depicted in
Resonant phase sensing system 113 may be housed within enclosure 101, may be communicatively coupled to force sensor 105 and linear resonant actuator 107, and may include any system, device, or apparatus configured to detect a displacement of a mechanical member (e.g., mechanical member 305 depicted in
Although specific example components are depicted above in
DSP 202 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 202 may interpret and/or execute program instructions and/or process data stored in memory 204 and/or other computer-readable media accessible to DSP 202.
Memory 204 may be communicatively coupled to DSP 202, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 204 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to mobile device 102 is turned off.
Amplifier 206 may be electrically coupled to DSP 202 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 206 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 206 may include any suitable amplifier class, including without limitation, a Class-D amplifier.
In operation, memory 204 may store one or more haptic playback waveforms. In some embodiments, each of the one or more haptic playback waveforms may define a haptic response a(t) as a desired acceleration of a linear resonant actuator (e.g., linear resonant actuator 107) as a function of time. DSP 202 may be configured to receive a force signal VSENSE from resonant phase sensing system 113 indicative of force applied to force sensor 105. Either in response to receipt of force signal VSENSE indicating a sensed force or independently of such receipt, DSP 202 may retrieve a haptic playback waveform from memory 204 and process such haptic playback waveform to determine a processed haptic playback signal VIN. In embodiments in which amplifier 206 is a Class D amplifier, processed haptic playback signal VIN may comprise a pulse-width modulated signal. In response to receipt of force signal VSENSE indicating a sensed force, DSP 202 may cause processed haptic playback signal VIN to be output to amplifier 206, and amplifier 206 may amplify processed haptic playback signal VIN to generate a haptic output signal VOUT for driving linear resonant actuator 107.
In some embodiments, integrated haptic system 112A may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control. By providing integrated haptic system 112A as part of a single monolithic integrated circuit, latencies between various interfaces and system components of integrated haptic system 112A may be reduced or eliminated.
In operation, as a current I flows through inductive coil 302, such current may induce a magnetic field which in turn may induce an eddy current inside mechanical member 305. When a force is applied to and/or removed from mechanical member 305, which alters distance d between mechanical member 305 and inductive coil 302, the coupling coefficient k, variable electrical resistance 304, and/or variable electrical inductance 306 may also change in response to the change in distance. These changes in the various electrical parameters may, in turn, modify an effective impedance ZL of inductive coil 302.
As shown in
Processing IC 412 may be communicatively coupled to resistive-inductive-capacitive sensor 402 and may comprise any suitable system, device, or apparatus configured to implement a measurement circuit to measure phase information associated with resistive-inductive-capacitive sensor 402 and based on the phase information, determine a displacement of mechanical member 305 relative to resistive-inductive-capacitive sensor 402. Thus, processing IC 412 may be configured to determine an occurrence of a physical interaction (e.g., press or release of a virtual button) associated with a human-machine interface associated with mechanical member 305 based on the phase information.
As shown in
Phase shifter 410 may include any system, device, or apparatus configured to detect an oscillation signal generated by processing IC 412 (as explained in greater detail below) and phase shift such oscillation signal (e.g., by 45 degrees) such that at a normal operating frequency of system 400, an incident component of a sensor signal ϕ generated by preamplifier 440 is approximately equal to a quadrature component of sensor signal ϕ, so as to provide common mode noise rejection by a phase detector implemented by processing IC 412, as described in greater detail below.
Voltage-to-current converter 408 may receive the phase shifted oscillation signal from phase shifter 410, which may be a voltage signal, convert the voltage signal to a corresponding current signal, and drive the current signal on resistive-inductive-capacitive sensor 402 at a driving frequency with the phase-shifted oscillation signal in order to generate sensor signal ϕ which may be processed by processing IC 412, as described in greater detail below. In some embodiments, a driving frequency of the phase-shifted oscillation signal may be selected based on a resonant frequency of resistive-inductive-capacitive sensor 402 (e.g., may be approximately equal to the resonant frequency of resistive-inductive-capacitive sensor 402).
Preamplifier 440 may receive sensor signal ϕ and condition sensor signal ϕ for frequency mixing, with mixer 442, to an intermediate frequency Δf combined by combiner 444 with an oscillation frequency generated by VCO 416, as described in greater detail below, wherein intermediate frequency Δf is significantly less than the oscillation frequency. In some embodiments, preamplifier 440, mixer 442, and combiner 444 may not be present, in which case PGA 414 may receive sensor signal ϕ directly from resistive-inductive-capacitive sensor 402. However, when present, preamplifier 440, mixer 442, and combiner 444 may allow for mixing sensor signal ϕ down to a lower intermediate frequency Δf which may allow for lower-bandwidth and more efficient ADCs and/or which may allow for minimization of phase and/or gain mismatches in the incident and quadrature paths of the phase detector of processing IC 412.
In operation, PGA 414 may further amplify sensor signal ϕ to condition sensor signal ϕ for processing by the coherent incident/quadrature detector. VCO 416 may generate an oscillation signal to be used as a basis for the signal driven by voltage-to-current converter 408, as well as the oscillation signals used by mixers 420 and 422 to extract incident and quadrature components of amplified sensor signal ϕ. As shown in
In the incident channel, mixer 420 may extract the incident component of amplified sensor signal ϕ, low-pass filter 424 may filter out the oscillation signal mixed with the amplified sensor signal ϕ to generate a direct current (DC) incident component, and ADC 428 may convert such DC incident component into an equivalent incident component digital signal for processing by amplitude and phase calculation block 431. Similarly, in the quadrature channel, mixer 422 may extract the quadrature component of amplified sensor signal ϕ, low-pass filter 426 may filter out the phase-shifted oscillation signal mixed with the amplified sensor signal ϕ to generate a direct current (DC) quadrature component, and ADC 430 may convert such DC quadrature component into an equivalent quadrature component digital signal for processing by amplitude and phase calculation block 431.
Amplitude and phase calculation block 431 may include any system, device, or apparatus configured to receive phase information comprising the incident component digital signal and the quadrature component digital signal and based thereon, extract amplitude and phase information.
DSP 432 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In particular, DSP 432 may receive the phase information and the amplitude information generated by amplitude and phase calculation block 431 and based thereon, determine a displacement of mechanical member 305 relative to resistive-inductive-capacitive sensor 402, which may be indicative of an occurrence of a physical interaction (e.g., press or release of a virtual button or other interaction with a virtual interface) associated with a human-machine interface associated with mechanical member 305 based on the phase information. DSP 432 may also generate an output signal indicative of the displacement. In some embodiments, such output signal may comprise a control signal for controlling mechanical vibration of linear resonant actuator 107 in response to the displacement.
The phase information generated by amplitude and phase calculation block 431 may be subtracted from a reference phase ϕref by combiner 450 in order to generate an error signal that may be received by low-pass filter 434. Low-pass filter 434 may low-pass filter the error signal, and such filtered error signal may be applied to VCO 416 to modify the frequency of the oscillation signal generated by VCO 416, in order to drive sensor signal ϕ towards reference phase ϕref. As a result, sensor signal ϕ may comprise a transient decaying signal in response to a “press” of a virtual button (or other interaction with a virtual interface) associated with system 400 as well as another transient decaying signal in response to a subsequent “release” of the virtual button (or other interaction with a virtual interface). Accordingly, low-pass filter 434 in connection with VCO 416 may implement a feedback control loop that may track changes in operating parameters of system 400 by modifying the driving frequency of VCO 416.
Frequency and quality factor calculation engine 452 may comprise any system, device, or apparatus configured to, as described in greater detail below, calculate a resonant frequency f0 and/or a quality factor Q associated with resistive-inductive-capacitor sensor 402, such as those caused by drift of physical parameters (e.g., aging, temperature, etc.) of force sensor 105, mechanical member 305, resonant phase sensing system 113, etc. Although
Although the foregoing contemplates use of closed-loop feedback for sensing of displacement, the various embodiments represented by
Although the foregoing contemplates use of a coherent incident/quadrature detector as a phase detector for determining phase information associated with resistive-inductive-capacitive sensor 402, a resonant phase sensing system 112 may perform phase detection and/or otherwise determine phase information associated with resistive-inductive-capacitive sensor 402 in any suitable manner, including, without limitation, using only one of the incident path or quadrature path to determine phase information.
In some embodiments, an incident/quadrature detector as disclosed herein may include one or more frequency translation stages that translate the sensor signal into direct-current signal directly or into an intermediate frequency signal and then into a direct-current signal. Any of such frequency translation stages may be implemented either digitally after an analog-to-digital converter stage or in analog before an analog-to-digital converter stage.
In addition, although the foregoing contemplates measuring changes in resistance and inductance in resistive-inductive-capacitive sensor 402 caused by displacement of mechanical member 305, other embodiments may operate based on a principle that any change in impedance based on displacement of mechanical member 305 may be used to sense displacement. For example, in some embodiments, displacement of mechanical member 305 may cause a change in a capacitance of resistive-inductive-capacitive sensor 402, such as if mechanical member 305 included a metal plate implementing one of the capacitive plates of capacitor 406.
Although DSP 432 may be capable of processing phase information to make a binary determination of whether physical interaction associated with a human-machine interface associated with mechanical member 305 has occurred and/or ceased to occur, in some embodiments, DSP 432 may quantify a duration of a displacement of mechanical member 305 to more than one detection threshold, for example to detect different types of physical interactions (e.g., a short press of a virtual button versus a long press of the virtual button). In these and other embodiments, DSP 432 may quantify a magnitude of the displacement to more than one detection threshold, for example to detect different types of physical interactions (e.g., a light press of a virtual button versus a quick and hard press of the virtual button).
Although
Accordingly, using the systems and methods described above, a resistive-inductor-capacitive sensor is provided wherein part of the inductive component is exposed to the user in the form of a metal plate of a region of a chassis or enclosure (e.g., enclosure 101). As such, displacements in the metal plate or enclosure may correlate to changes in measured phase or amplitude.
As mentioned in the Background section of this application, for an actively-driven sensor system, it may be desirable that a signal driver (e.g., voltage-to-current converter 408) generate a signal at the resonant frequency of the sensor. Due to manufacturing designs and tolerances as well as environmental effects (e.g., temperature, humidity, movements in air gap over time, other changes in mechanical structures, etc.), resonant frequency f0 and/or quality factor Q of resistive-inductive-capacitive sensor 402 may be different from each individual sensor and may change over time. There are many reasons to operate resistive-inductive-capacitive sensor 402 at or near resonant frequency f0, including without limitation:
Accordingly, as described in detail below, frequency and quality factor calculation engine 452 may be configured to determine resonant frequency f0 and quality factor Q of resistive-inductive-capacitive sensor 402, and to adjust the drive frequency of a driving signal for resistive-inductive-capacitive sensor 402 (e.g., driven by voltage-to-current converter 408 accordingly). As a result, system 400 may measure relevant parameters, estimate changed values of the sensor parameters, and make some internal adjustments to “re-center” VCO 416 and drive circuitry of system 400 to the optimal values for resistive-inductive-capacitive sensor 402.
In some embodiments, frequency and quality factor calculation engine 452 may employ a heuristic approach to determine resonant frequency f0 and quality factor Q of resistive-inductive-capacitive sensor 402.
Frequency and quality factor calculation engine 452 may be configured to, based on these observations, correct estimated resonant frequency fest based on differences of amplitudes and correct quality factor Q based on average amplitudes.
At step 702, frequency and quality factor calculation engine 452 may obtain three sample measurements of amplitude versus frequency for resistive-inductive-capacitive sensor 402: (a) one at an estimated resonant frequency fest minus a delta frequency Δf, wherein delta frequency Δf equals the estimated resonant frequency fest divided by two times quality factor Q (Δf=fest/2Q); (b) one at the estimated resonant frequency fest; and (c) one at the estimated resonant frequency fest plus the delta frequency Δf.
At step 704, frequency and quality factor calculation engine 452 may perform detection of a peak amplitude from the three sample measurements. For example, if the amplitude measurement at either of fest−Δf or fest+Δf yields a greater amplitude than the amplitude measurement at fest, then frequency and quality factor calculation engine 452 may determine that a peak has not been found. At step 706, if the peak has been found, method 700 may proceed to step 710. Otherwise, method 700 may proceed to step 708.
At step 708, as a result of no peak being found, frequency and quality factor calculation engine 452 may update estimated resonant frequency fest. For example, if the amplitude measurement at fest−Δf yielded a greater amplitude than the amplitude measurement at fest, then frequency and quality factor calculation engine 452 may decrease estimated resonant frequency fest by a predetermined amount. As another example, if the amplitude measurement at fest+Δf yielded a greater amplitude than the amplitude measurement at fest, then frequency and quality factor calculation engine 452 may increase estimated resonant frequency fest by a predetermined amount.
After completion of step 708, method 700 may proceed to step 722 which (as explained below) may result in steps 702 through 708 repeating until frequency and quality factor calculation engine 452 finds the peak as described above.
At step 710, as a result of the peak being found, frequency and quality factor calculation engine 452 may proceed to a second phase of operation of the heuristic approach in which quality factor Q and estimated resonant frequency fest may be refined, as discussed below in reference to
f1=fest(1−1/2Q)=fest−Δf (for which amplitude A1 is determined);
f2=fest (for which amplitude A0 is determined); and
f3=fest(1+1/2Q)=fest+Δf (for which amplitude A2 is determined).
The second phase of operation of the heuristic approach may begin at step 710 wherein frequency and quality factor calculation engine 452 may update quality factor Q. For example, frequency and quality factor calculation engine 452 may update quality factor Q in accordance with:
where Qnew is a newly-calculated value for quality factor Q, Qprevious is the previous value for quality factor Q, Qslp is a Q factor learn rate, a magnorm is a normalized magnitude given by:
A speed of convergence to correct quality factor Q may depend on Q factor learn rate Qslp. Q factor learn rate Qslp may be set to a fixed value or frequency and quality factor calculation engine 452 may adapt Q factor learn rate Qslp on-the-fly to ensure fastest convergence. For example, a Q factor learn rate estimator may be implemented by frequency and quality factor calculation engine 452 to calculate Q factor learn rate Qslp as follows:
where Qact is the actual quality factor of resistive-inductive-capacitive sensor 402.
For example, with reference to
Accordingly, frequency and quality factor calculation engine 452 may use the foregoing scheme to determine an optimum value for Q factor learn rate Qslp. Selecting a value for Q factor learn rate Qslp smaller than an optimum value may lead to an over-damped response while selecting a value for Q factor learn rate Qslp.
At step 712, frequency and quality factor calculation engine 452 may determine whether the newly-calculated value Qnew for quality factor Q is within a predetermined range. If the newly-calculated value Qnew is outside the pre-determined range, method 700 may proceed to step 714. Otherwise, method 700 may proceed to step 716.
At step 714, in response to the newly-calculated value Qnew for quality factor Q being outside the predetermined range, which may denote an error condition, frequency and quality factor calculation engine 452 may flag the error. After completion of step 714, method 700 may end.
At step 716, frequency and quality factor calculation engine 452 may update estimated resonant frequency fest. For example, frequency and quality factor calculation engine 452 may update estimated resonant frequency fest in accordance with:
where fest is the newly-calculated value for estimated resonant frequency fest, fprevious is the previous value for estimated resonant frequency fest, and fslp is a frequency learn rate.
A speed of convergence to correct estimated resonant frequency fest may depend on frequency learn rate fslp Frequency learn rate fslp may be set to a fixed value or frequency and quality factor calculation engine 452 may adapt frequency learn rate fslp on-the-fly to ensure fastest convergence. For example, a frequency learn rate estimator may be implemented by frequency and quality factor calculation engine 452 to calculate frequency learn rate fslp as follows:
where f0 is the actual resonant frequency of resistive-inductive-capacitive sensor 402.
For example, with reference to
From
As mentioned previously, in some embodiments, frequency learn rate fslp may be fixed. A negative-sloping frequency learn rate fslp at frequencies above resonant frequency f0. may be seen because amplitude magnitude may not be perfectly symmetric about resonant frequency f0 due to a presence of a transfer function zero formed by inductance and series resistance of resistive-inductive-capacitive sensor 402.
At step 718, frequency and quality factor calculation engine 452 may determine whether the newly-calculated value of estimated resonant frequency fest is within a predetermined range. If the newly-calculated of estimated resonant frequency fest is outside the pre-determined range, method 700 may proceed to step 720. Otherwise, method 700 may proceed to step 722.
At step 720, in response to the newly-calculated estimated resonant frequency fest being outside the predetermined range, which may denote an error condition, frequency and quality factor calculation engine 452 may flag the error. After completion of step 720, method 700 may end.
At step 722, frequency and quality factor calculation engine 452 may perform a “check iteration” step wherein a change in each of estimated resonant frequency fest and quality factor Q occurring during the then-present iteration through the loop of method 700 is below respective thresholds. In addition, frequency and quality factor calculation engine 452 may determine if the number of iterations of the loop of method 700 has exceeded a maximum iteration count to prevent the loop from executing without bound. At step 724, frequency and quality factor calculation engine 452 may determine whether the results of the comparisons of the check iteration step warrant executing the loop of method 700 again. If the results of the comparisons of the check iteration step warrant executing the loop of method 700 again, method 700 may proceed again to step 702. Otherwise, method 700 may end.
Although
Method 700 may be implemented using system 400 or any other system operable to implement method 700. In certain embodiments, method 700 may be implemented partially or fully in software and/or firmware embodied in computer-readable media.
In certain embodiments, variations to the heuristics approach described above may be employed. For example, in some embodiments, more than three measurement points (e.g., A1a, A1b, A2a, and A2b in addition to A0, A1, and A2) may be used for either of the peak detection or parameter update phases of method 700 in order to provide more accurate estimates. Further, in these and other embodiments, the measurement points may not be equally spaced or symmetric around the estimated resonant frequency.
In addition, in these and other embodiments, the frequency values chosen may be dynamic instead of static. For example, in some embodiments, amplitude and phase values of a previous iteration may be used to determine the new frequency measurement values (e.g., the frequency values themselves and/or the number of frequency measurement values). As a specific example, if a previous iteration showed amplitude values indicating the system was significantly above the resonance value (e.g., monotonically decreasing amplitude with increasing frequency), frequency and quality factor calculation engine 452 may choose the frequency values for the subsequent iteration to be frequencies less than that of the previous iteration.
In these and other embodiments, frequency and quality factor calculation engine 452 may use phase information in lieu of or in addition to amplitude information in order to achieve faster convergence.
In these and other embodiments, frequency and quality factor calculation engine 452 may perform the peak detection/update phase and/or the parameter update phase in a reduced number of iterations by using a more sophisticated function of the amplitude values, phase values, or both at the various frequency values.
In these and other embodiments, frequency and quality factor calculation engine 452 may use a binary search during peak detection.
In some embodiments, frequency and quality factor calculation engine 452 may employ a system identification and curve fit approach to determine resonant frequency f0 and quality factor Q of resistive-inductive-capacitive sensor 402. To illustrate, system 400 may have a specific transfer function. In many cases, resistive-inductive-capacitive sensor 402 is likely to be the main contributor to that transfer function. If the transfer function is known, frequency and quality factor calculation engine 452 may obtain data samples and use them to estimate the sensor parameters of interest such as quality factor Q and resonant frequency f0. Frequency and quality factor calculation engine 452 may use different characteristics of the transfer function (e.g., amplitude, phase, quadrature components, etc.) to perform such estimation.
The system identification and curve fit approach may be outlined as follows. Frequency and quality factor calculation engine 452 may determine sensor output amplitude and/or phase for at least three distinct driving frequencies. While as few as three driving frequencies may be used, more drive frequencies may be used. Frequency and quality factor calculation engine 452 may further fit a transfer function to the measured magnitude and/or phase. For example, a transfer function Z(s) of an ideal resistive-inductive-capacitive network may take the form of:
Frequency and quality factor calculation engine 452 may use any suitable curve fit or parameters estimation method, including without limitation the Nelder-Mead method, Broyden's Method, or the Levenberg-Marquardt algorithm. Frequency and quality factor calculation engine 452 may determine a “goodness of the fit” by an error function which may be either minimized or maximized by the above-described curve fit method. Examples of an error function may include, without limitation, sum of least square error and sum of absolute value of error.
At step 1102, frequency and quality factor calculation engine 452 may initially estimate sensor parameters (e.g., estimated quality factor Qest and estimated resonant frequency fest) to provide a baseline to begin the system identification and curve fit approach.
At step 1104, frequency and quality factor calculation engine 452 may obtain a fixed number (e.g., as few as three) of samples of the transfer function curve (e.g., amplitude and/or phase versus frequency) for system 400. Preferably, the samples obtained may be at or near resonant frequency f0. In addition or alternatively, preferably a number of samples obtained should be at least one more than the order of the equation being fit (e.g., three or more samples for a second-order transfer function). In addition, preferably a number of samples obtained should be at least one more than the number of sensor parameters (e.g., three or more samples for two sensor parameters of quality factor Q and estimated resonant frequency fest).
In order to ensure that the sample points have been selected appropriately, frequency and quality factor calculation engine 452 may check one or more conditions before proceeding with a sensor parameter estimation. For example, for a three-point curve fit:
Thus, the selected sample points may be initially probed or sampled, and the selected points are validated to ensure that suitable points have been selected. If not, frequency and quality factor calculation engine 452 may update the sample points. In a preferred implementation, frequency and quality factor calculation engine 452 may be operable to repeat the sampling operation for a number of iterations or for values within a threshold limit, above which the method is halted and an interrupt generated for an associated system or controller, for example to generate a device error or prompt a more general device reset or recalibration.
At step 1106, frequency and quality factor calculation engine 452 may process the samples obtained using a chosen curve fit method using the estimated sensor parameters (estimated quality factor Qest and estimated resonant frequency fest) in order to calculate sensor outputs. At step 1108, frequency and quality factor calculation engine 452 may compare calculated sensor outputs with measured results using an error function, as described above.
At step 1110, frequency and quality factor calculation engine 452 may determine if the error function is within a predetermined tolerance. If the frequency and quality factor calculation engine 452 determines that the error function is within the predetermined tolerance, method 1100 may end, and the most-recently updated sensor parameters (e.g., estimated quality factor Qest and estimated resonant frequency fest) may be established as the final estimates of the sensor parameters. On the other hand, if frequency and quality factor calculation engine 452 determines that the error function is not within the predetermined tolerance, method 1100 may proceed again to step 1112.
At step 1112, frequency and quality factor calculation engine 452 may update the estimated sensor parameters (e.g., estimated quality factor Qest and estimated resonant frequency fest) in an attempt to reduce the error function on the next iteration of steps 1106-1110. After completion of step 1112, method 1100 may proceed again to step 1106.
Although
Method 1100 may be implemented using system 400 or any other system operable to implement method 1100. In certain embodiments, method 1100 may be implemented partially or fully in software and/or firmware embodied in computer-readable media.
In at least one aspect, the presence of parasitics may create secondary resonance points in system 400. To prevent inaccurate results, additional checks may be performed. For example, the amplitude of the signal at the estimated resonance frequency f0 may be measured and compared with the sensor impedance. If the amplitude is too low, e.g., below a defined threshold, this could be as a result of a secondary resonance within the system (or a higher than desired error in the final result).
Additionally or alternatively, the phase of the measured signal at the estimated resonance frequency f0 may be compared with the sensor phase at resonance. If the measured signal phase at resonance is too low, e.g., below a defined threshold, this could be as a result of a secondary resonance within the system (or a higher than desired error in the final result).
In at least a further aspect, the measured amplitude and phase from the phase detector may be used to validate the accuracy of the estimated quality factor Q and/or resonance frequency f0. In such systems, the algorithm may be re-run with different frequency sample points and/or additional sample points.
Accordingly, there is described a sensor system having a system for updating a quality factor Q and resonant frequency f0 of a sensor system (e.g., sensor system 400), to accommodate for changes in sensor performance due to time, changes in ambient or environmental conditions, and/or due to external interference.
It will be understood that the above-described methods may be implemented in a suitable controller or processor as shown in the above figures. The controller may be provided as an integral part of the sensor system, for example processing IC 412 of
It will further be understood that the above-describe methods may be implemented as part of a trained machine-learning module, for example a machine-learning module trained to estimate updated values for quality factor Q and/or resonance frequency f0 based on monitored data points or probe points, as described above.
It should be apparent to those skilled in the art that while this is being taught in terms of a particular inductive sensor system, any sensor system in which a quality factor Q and/or a resonant frequency f0 of the sensor system may require correction may benefit from the methods and systems taught herein.
As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.
Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.
To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
The present disclosure claims priority to U.S. Provisional Patent Application Ser. No. 63/044,065, filed Jun. 25, 2020, which is incorporated by reference herein in its entirety. The present disclosure also relates to U.S. patent application Ser. No. 16/267,079, filed Feb. 4, 2019, U.S. patent application Ser. No. 16/422,543, filed May 24, 2019, U.S. patent application Ser. No. 16/866,175, filed May 4, 2020, all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4268822 | Olsen | May 1981 | A |
4888554 | Hyde et al. | Dec 1989 | A |
5286941 | Bel | Feb 1994 | A |
5361184 | El-Sharkawi et al. | Nov 1994 | A |
5567920 | Watanabe et al. | Oct 1996 | A |
5661269 | Fukuzaki et al. | Aug 1997 | A |
5715529 | Kianush et al. | Feb 1998 | A |
5898136 | Katsurahira | Apr 1999 | A |
6231520 | Maezawa | May 2001 | B1 |
6283859 | Carlson et al. | Sep 2001 | B1 |
6380923 | Fukumoto et al. | Apr 2002 | B1 |
6473708 | Watkins et al. | Oct 2002 | B1 |
7173410 | Pond | Feb 2007 | B1 |
7965276 | Martin et al. | Jun 2011 | B1 |
8144126 | Wright | Mar 2012 | B2 |
8174352 | Parpia | May 2012 | B2 |
8346487 | Wright | Jan 2013 | B2 |
8384378 | Feldkamp et al. | Feb 2013 | B2 |
8421446 | Straubinger et al. | Apr 2013 | B2 |
8428889 | Wright | Apr 2013 | B2 |
8457915 | White et al. | Jun 2013 | B2 |
8674950 | Olson | Mar 2014 | B2 |
8970230 | Narayanasamy et al. | Mar 2015 | B2 |
9070856 | Rose et al. | Jun 2015 | B1 |
9164605 | Pirogov et al. | Oct 2015 | B1 |
9707502 | Bonifas et al. | Jul 2017 | B1 |
10168855 | Baughman et al. | Jan 2019 | B2 |
10372328 | Zhai | Aug 2019 | B2 |
10571307 | Acker | Feb 2020 | B2 |
10599247 | Winokur et al. | Mar 2020 | B2 |
10624691 | Wiender et al. | Apr 2020 | B2 |
10642435 | Maru et al. | May 2020 | B2 |
10725549 | Marijanovic et al. | Jul 2020 | B2 |
10726715 | Hwang et al. | Jul 2020 | B2 |
10795518 | Kuan et al. | Oct 2020 | B2 |
10866677 | Haraikawa | Dec 2020 | B2 |
10908200 | You et al. | Feb 2021 | B2 |
10921159 | Das et al. | Feb 2021 | B1 |
10935620 | Das et al. | Mar 2021 | B2 |
10942610 | Maru et al. | Mar 2021 | B2 |
10948313 | Kost et al. | Mar 2021 | B2 |
11079874 | Lapointe et al. | Aug 2021 | B2 |
11092657 | Maru | Aug 2021 | B2 |
11204670 | Maru et al. | Dec 2021 | B2 |
11294503 | Westerman | Apr 2022 | B2 |
11474135 | Maru | Oct 2022 | B2 |
11507199 | Melanson | Nov 2022 | B2 |
11537242 | Das | Dec 2022 | B2 |
11579030 | Li | Feb 2023 | B2 |
20010045941 | Rosenberg et al. | Nov 2001 | A1 |
20030038624 | Hilliard et al. | Feb 2003 | A1 |
20050192727 | Shostak et al. | Sep 2005 | A1 |
20050258826 | Kano et al. | Nov 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060025897 | Shostak et al. | Feb 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070047634 | Kang et al. | Mar 2007 | A1 |
20070080680 | Schroeder et al. | Apr 2007 | A1 |
20070198926 | Joguet et al. | Aug 2007 | A1 |
20070268265 | XiaoPing | Nov 2007 | A1 |
20070296593 | Hall et al. | Dec 2007 | A1 |
20070296709 | GuangHai | Dec 2007 | A1 |
20080007534 | Peng et al. | Jan 2008 | A1 |
20080024456 | Peng et al. | Jan 2008 | A1 |
20080088594 | Liu et al. | Apr 2008 | A1 |
20080088595 | Liu et al. | Apr 2008 | A1 |
20080142352 | Wright | Jun 2008 | A1 |
20080143681 | XiaoPing | Jun 2008 | A1 |
20080150905 | Grivna et al. | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080312857 | Sequine | Dec 2008 | A1 |
20090008161 | Jones et al. | Jan 2009 | A1 |
20090009195 | Seguine | Jan 2009 | A1 |
20090058430 | Zhu | Mar 2009 | A1 |
20090140728 | Rollins et al. | Jun 2009 | A1 |
20090251216 | Giotta et al. | Oct 2009 | A1 |
20090278685 | Potyrailo et al. | Nov 2009 | A1 |
20090302868 | Feucht et al. | Dec 2009 | A1 |
20090308155 | Zhang | Dec 2009 | A1 |
20100019777 | Balslink | Jan 2010 | A1 |
20100045360 | Howard et al. | Feb 2010 | A1 |
20100114505 | Wang et al. | May 2010 | A1 |
20100153845 | Gregorio et al. | Jun 2010 | A1 |
20100211902 | Unsworth et al. | Aug 2010 | A1 |
20100231239 | Tateishi et al. | Sep 2010 | A1 |
20100238121 | Ely | Sep 2010 | A1 |
20100328249 | Ningrat et al. | Dec 2010 | A1 |
20110005090 | Lee et al. | Jan 2011 | A1 |
20110214481 | Kachanov et al. | Sep 2011 | A1 |
20110216311 | Kachanov et al. | Sep 2011 | A1 |
20110267302 | Fasshauer | Nov 2011 | A1 |
20110285667 | Poupyrev et al. | Nov 2011 | A1 |
20110291821 | Chung | Dec 2011 | A1 |
20110301876 | Yamashita | Dec 2011 | A1 |
20130018489 | Grunthaner et al. | Jan 2013 | A1 |
20130076374 | Huang | Mar 2013 | A1 |
20130106756 | Kono et al. | May 2013 | A1 |
20130106769 | Bakken et al. | May 2013 | A1 |
20130269446 | Fukushima et al. | Oct 2013 | A1 |
20140002113 | Schediwy et al. | Jan 2014 | A1 |
20140028327 | Potyrailo et al. | Jan 2014 | A1 |
20140137585 | Lu et al. | May 2014 | A1 |
20140225599 | Hess | Aug 2014 | A1 |
20140253107 | Roach et al. | Sep 2014 | A1 |
20140267065 | Levesque | Sep 2014 | A1 |
20140278173 | Elia et al. | Sep 2014 | A1 |
20150022174 | Nikitin | Jan 2015 | A1 |
20150027139 | Lin et al. | Jan 2015 | A1 |
20150077094 | Baldwin et al. | Mar 2015 | A1 |
20150084874 | Cheng et al. | Mar 2015 | A1 |
20150293695 | Schonleben et al. | Oct 2015 | A1 |
20150329199 | Golborne et al. | Nov 2015 | A1 |
20150355043 | Steeneken | Dec 2015 | A1 |
20160018940 | Lo et al. | Jan 2016 | A1 |
20160048256 | Day | Feb 2016 | A1 |
20160117084 | Ording | Apr 2016 | A1 |
20160162031 | Westerman et al. | Jun 2016 | A1 |
20160169717 | Zhitomirsky | Jun 2016 | A1 |
20160179243 | Schwartz | Jun 2016 | A1 |
20160231860 | Elia | Aug 2016 | A1 |
20160231874 | Baughman et al. | Aug 2016 | A1 |
20160241227 | Hirata | Aug 2016 | A1 |
20160252403 | Murakami | Sep 2016 | A1 |
20160305997 | Wiesbauer et al. | Oct 2016 | A1 |
20160357296 | Picciotto et al. | Dec 2016 | A1 |
20170023429 | Straeussnigg et al. | Jan 2017 | A1 |
20170077735 | Leabman | Mar 2017 | A1 |
20170093222 | Joye et al. | Mar 2017 | A1 |
20170097437 | Widmer et al. | Apr 2017 | A1 |
20170140644 | Hwang et al. | May 2017 | A1 |
20170147068 | Yamazaki et al. | May 2017 | A1 |
20170168578 | Tsukamoto et al. | Jun 2017 | A1 |
20170169674 | Macours | Jun 2017 | A1 |
20170184416 | Kohlenberg et al. | Jun 2017 | A1 |
20170185173 | Ito et al. | Jun 2017 | A1 |
20170187541 | Sundaresan et al. | Jun 2017 | A1 |
20170237293 | Faraone et al. | Aug 2017 | A1 |
20170242505 | Vandermeijden et al. | Aug 2017 | A1 |
20170282715 | Fung et al. | Oct 2017 | A1 |
20170322643 | Eguchi | Nov 2017 | A1 |
20170328740 | Widmer et al. | Nov 2017 | A1 |
20170371380 | Oberhauser et al. | Dec 2017 | A1 |
20170371381 | Liu | Dec 2017 | A1 |
20170371473 | David et al. | Dec 2017 | A1 |
20180019722 | Birkbeck | Jan 2018 | A1 |
20180020288 | Risbo et al. | Jan 2018 | A1 |
20180055448 | Karakaya et al. | Mar 2018 | A1 |
20180059793 | Hajati | Mar 2018 | A1 |
20180067601 | Winokur et al. | Mar 2018 | A1 |
20180088064 | Potyrailo et al. | Mar 2018 | A1 |
20180088702 | Schutzberg et al. | Mar 2018 | A1 |
20180097475 | Djahanshahi et al. | Apr 2018 | A1 |
20180135409 | Wilson et al. | May 2018 | A1 |
20180182212 | Li et al. | Jun 2018 | A1 |
20180183372 | Li et al. | Jun 2018 | A1 |
20180189647 | Calvo | Jul 2018 | A1 |
20180195881 | Acker | Jul 2018 | A1 |
20180221796 | Bonifas et al. | Aug 2018 | A1 |
20180229161 | Maki et al. | Aug 2018 | A1 |
20180231485 | Potyrailo et al. | Aug 2018 | A1 |
20180260049 | O'Lionaird et al. | Sep 2018 | A1 |
20180260050 | Unseld et al. | Sep 2018 | A1 |
20180321748 | Rao et al. | Nov 2018 | A1 |
20180364731 | Liu | Dec 2018 | A1 |
20190052045 | Metzger et al. | Feb 2019 | A1 |
20190179146 | De Nardi | Jun 2019 | A1 |
20190197218 | Schwartz | Jun 2019 | A1 |
20190204929 | Attari et al. | Jul 2019 | A1 |
20190235629 | Hu et al. | Aug 2019 | A1 |
20190286263 | Bagheri et al. | Sep 2019 | A1 |
20190302161 | You et al. | Oct 2019 | A1 |
20190302193 | Maru et al. | Oct 2019 | A1 |
20190302890 | Marijanovic et al. | Oct 2019 | A1 |
20190302922 | Das et al. | Oct 2019 | A1 |
20190302923 | Maru et al. | Oct 2019 | A1 |
20190326906 | Camacho Cardenas et al. | Oct 2019 | A1 |
20190339313 | Vandermeijden | Nov 2019 | A1 |
20190377468 | Micci et al. | Dec 2019 | A1 |
20200006495 | Siemieniec et al. | Jan 2020 | A1 |
20200064160 | Maru et al. | Feb 2020 | A1 |
20200133455 | Sepehr et al. | Apr 2020 | A1 |
20200177290 | Reimer et al. | Jun 2020 | A1 |
20200191761 | Potyrailo et al. | Jun 2020 | A1 |
20200271477 | Kost et al. | Aug 2020 | A1 |
20200271706 | Wardlaw et al. | Aug 2020 | A1 |
20200271745 | Das et al. | Aug 2020 | A1 |
20200272301 | Duewer et al. | Aug 2020 | A1 |
20200319237 | Maru et al. | Oct 2020 | A1 |
20200320966 | Clark et al. | Oct 2020 | A1 |
20200373923 | Walsh et al. | Nov 2020 | A1 |
20200382113 | Beardsworth et al. | Dec 2020 | A1 |
20200386804 | Das et al. | Dec 2020 | A1 |
20210064137 | Wopat et al. | Mar 2021 | A1 |
20210140797 | Kost et al. | May 2021 | A1 |
20210149538 | LaPointe et al. | May 2021 | A1 |
20210152174 | Yancey et al. | May 2021 | A1 |
20210361940 | Yeh et al. | Nov 2021 | A1 |
20210396610 | Li et al. | Dec 2021 | A1 |
20210404901 | Kost et al. | Dec 2021 | A1 |
20210405764 | Hellman et al. | Dec 2021 | A1 |
20220075500 | Chang et al. | Mar 2022 | A1 |
20220268233 | Kennedy | Aug 2022 | A1 |
20220307867 | Das et al. | Sep 2022 | A1 |
20220308000 | Das et al. | Sep 2022 | A1 |
20220404409 | Maru | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
10542884 | Mar 2016 | CN |
106471708 | Mar 2017 | CN |
107076623 | Aug 2017 | CN |
209069345 | Jul 2019 | CN |
4004450 | Aug 1991 | DE |
602004005672 | Dec 2007 | DE |
102015215330 | Feb 2017 | DE |
102015215331 | Feb 2017 | DE |
1697710 | Apr 2007 | EP |
2682843 | Jan 2014 | EP |
2394295 | Apr 2004 | GB |
2573644 | Nov 2019 | GB |
2582065 | Sep 2020 | GB |
2582864 | Oct 2020 | GB |
2586722 | Feb 2022 | GB |
2006246289 | Sep 2006 | JP |
20130052059 | May 2013 | KR |
0033244 | Jun 2000 | WO |
20061354832 | Dec 2006 | WO |
2007068283 | Jun 2007 | WO |
2016032704 | Mar 2016 | WO |
2021101722 | May 2021 | WO |
2021101723 | May 2021 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/045554, dated Oct. 17, 2019. |
Combined Search and Examination Report, UKIPO, Application No. GB1904250.6, dated Sep. 10, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022518, dated May 24, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/022578, dated May 27, 2019. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2019/021838, dated May 27, 2019. |
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2001341.3, dated Jun. 29, 2020. |
First Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Jun. 2, 2021. |
First Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Jul. 8, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059113, dated Feb. 23, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/059101, dated Mar. 9, 2021. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018886, dated Jun. 10, 2022. |
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2201194.4, dated Jul. 1, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/018475, dated Aug. 2, 2022. |
First Office Action, China National Intellectual Property Administration, Application No. 202010105829.3, dated Apr. 12, 2022. |
Examination Report under Section 18(3), UKIPO, Application No. GB2015439.9, dated May 10, 2022. |
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2020-7029597, dated Jul. 29, 2022. |
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2111666.0, dated Feb. 11, 2022. |
Examination Report under Section 18(3), UKIPO, Application No. GB2101804.9, dated Feb. 25, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/012721, dated Apr. 26, 2022. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Apr. 13, 2022. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/035695, dated Sep. 9, 20201. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022689.9, dated Oct. 27, 2021. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980022693.5, dated Dec. 14, 2021. |
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB2215005.6, dated Apr. 11, 2023. |
Gao, Shuo, et al., Piezoelectric vs. Capactivie Based Force Sensing in Capacitive Touch Panels, IEEE Access, vol. 4, Jul. 14, 2016. |
Second Office Action, China National Intellectual Property Administration, Application No. 201980054799.3, dated May 24, 2023. |
Number | Date | Country | |
---|---|---|---|
20210404901 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63044065 | Jun 2020 | US |