The invention relates to a device for magnetic resonance imaging of a body placed in an examination volume.
Furthermore, the invention relates to a method for MR imaging and to a computer program for an MR device.
In magnetic resonance imaging (MRI) pulse sequences consisting of RF pulses and switched magnetic field gradients are applied to an object (a patient) placed in a homogeneous magnetic field within an examination volume of an MR device. In this way, phase encoded magnetic resonance signals are generated, which are scanned by means of RF receiving antennas in order to obtain information from the object and to reconstruct images thereof. Since its initial development, the number of clinically relevant fields of application of MRI has grown enormously. MRI can be applied to almost every part of the body, and it can be used to obtain information about a number of important functions of the human body. The pulse sequence, which is applied during an MRI scan, plays a significant role in the determination of the characteristics of the reconstructed image, such as location and orientation in the object, dimensions, resolution, signal-to-noise ratio, contrast, sensitivity for movements, etcetera. An operator of an MRI device has to choose the appropriate sequence and has to adjust and optimize its parameters for the respective application.
An object having a magnetic susceptibility that deviates from the surrounding creates local inhomogeneities of the main magnetic field B0. This applies to metallic objects (such as surgical instruments, implants or other devices), iron-containing substances like deoxygenated blood, or iron oxide based contrast agents or labeled cells. The exploitation of this effect is an important tool for different MR imaging applications ranging from contrast agent (e.g. SPIO) detection to the localization of devices (catheters, implantable stents, etc.).
Susceptibility contrast enhanced MR imaging is usually performed via T2 or T2* weighted sequences. With these sequences the contrast is created by signal losses at the site of a local magnetic field disturbance. In the images generated by these known techniques, dark image features that are due to field inhomogeneities can not be distinguished from features that are due to other effects leading to signal losses.
Several concepts of converting the dark image contrast into a positive (bright) contrast have been proposed. For example, EP 1 471 362 A1 discloses an MR method that is based on a gradient echo (GE) imaging sequence. In accordance with this known technique a certain imbalance of switched magnetic field gradients or additional gradients are applied in order to generate an MR image showing positive (bright) contrast between background tissue and objects producing local magnetic field inhomogeneities. A drawback of this known technique is that in order to obtain optimal positive image contrast, either prior knowledge about the strength of the susceptibility gradients is required, or at least an elaborate and time-consuming optimization procedure has to be performed.
Therefore, it is readily appreciated that there is a need for an improved device for magnetic resonance imaging for the generation of images with positive (bright) susceptibility contrast. It is consequently an object of the invention to provide an MR device that enables susceptibility imaging without prior optimization for obtaining the optimal positive contrast. A further object of the invention is to provide an MR device, which is able to produce images with positive susceptibility contrast without the use of special or unconventional MR imaging sequences.
In accordance with the present invention, an MR device for magnetic resonance imaging of a body placed in an examination volume is disclosed, which comprises means for establishing a substantially homogeneous main magnetic field in the examination volume, means for generating switched magnetic field gradients superimposed upon the main magnetic field, means for radiating RF pulses towards the body, control means for controlling the generation of the magnetic field gradients and the RF pulses, means for receiving and sampling magnetic resonance signals, and reconstruction means for forming MR images from the signal samples. According to the invention, the device is arranged to
a) generate a series of MR echo signals by subjecting at least a portion of the body to an MR imaging sequence of RF pulses and switched magnetic field gradients,
b) acquire the MR echo signals for reconstructing an MR image data set therefrom,
c) calculate a gradient map by computing echo shift parameters from subsets of the MR image data set, the echo shift parameters indicating magnetic field gradient induced shifts of the echo positions in k-space, wherein each subset comprises a number of spatially adjacent pixel or voxel values of the MR image data set.
The MR device of the invention is arranged to acquire an MR image data set in steps a) and b) by means of a standard imaging sequence that is conventionally used for imaging of the anatomy of the examined body (e.g. a 3D gradient echo sequence). The acquired MR image data set thus contains the complete anatomical information. In addition, a gradient map is calculated in step c) from the anatomical image data set. The gradient map contains quantitative information about the local susceptibility induced magnetic field gradient strength. This information can be used, for example, to generate a corresponding positive contrast image or to localize a metallic object within the examination volume without any additional measurement.
The basic idea of the invention is to use the information with regard to local field inhomogeneity that is contained in each subset of spatially adjacent pixels or voxels of the reconstructed MR image data set. The invention is based upon the insight that local (susceptibility induced) gradients act in addition to the switched magnetic field gradients during imaging, the local gradients causing shifts of the echo signal maxima in k-space. In accordance with the invention, a local echo shift parameter is calculated from a corresponding subset of pixels or voxels. This echo shift parameter is indicative of a shift of the echo position in k-space, wherein this shift stems from the magnetic field gradients affecting the pixels or voxels of the respective subset. Thus, the local gradient strength can be concluded from the echo shift parameter.
The susceptibility gradient map can be converted into a positive contrast image simply by assigning grey values to the echo shift parameters.
The device of the invention enables the derivation of the local magnetic field gradient distribution within the examination volume and the production of a positive susceptibility contrast image by mere post-processing of a conventional (2D or 3D) anatomical MR image data set. An optimal positive contrast imaging is achieved without the use of dedicated sequences and without additional optimization procedures.
Preferably, the device is further arranged in accordance with the invention to calculate the gradient map by computing Fourier transformations over the adjacent pixel or voxel values of each subset in step c). The echo shift parameters can then be computed by determining the positions of the maxima of the Fourier components for each subset. The positions of the maxima of the Fourier components correspond to the respective echo positions in k-space. Independent one-dimensional Fourier transformations may be computed over the adjacent pixel or voxel values in each spatial direction of the MR image data set. On this basis, the gradient map can be calculated by computing the strength and direction of the gradient from the echo shift parameters in the different spatial directions. In this way, the local gradient vectors are calculated. This allows for the analysis of the direction and of the distribution of anisotropy of the local magnetic field gradients.
In a practical embodiment of the invention, the gradient map may be calculated at a reduced spatial resolution as compared to the spatial resolution of the MR image data set. For example, if the echo shift parameters are calculated from subsets of n adjacent pixels or voxels, the spatial resolution of the susceptibility gradient map may be calculated at an n-fold lower resolution than the MR image data set.
It is a well-known fact that it is very important in MR imaging to establish a homogeneous main magnetic field B0 within the examination volume in order to be able to acquire accurate, undistorted images of the examined portion of the patient's body. A common way to provide a homogeneous main magnetic field is to generate a static magnetic field B0 by means of a main magnet and to generate an adjustable auxiliary magnetic field to compensate for inhomogeneities of the static magnetic field. The auxiliary magnetic field is generated by so-called shim coils whose shapes and current paths enable an effective compensation of inhomogeneities of the field generated by the main magnet. The process of correcting the static magnetic field B0 by passing the appropriate shim currents through the shim coils is usually referred to as shimming. The shim current values determining the shim currents passed through each shim coil are usually determined once during a preparation phase. Consequently, local magnetic field gradients induced, e.g., by dynamically changing susceptibility effects (patient motion) can not be compensated for by conventional shimming strategies. It is an insight of the invention that the gradient map obtained by the technique described herein before can advantageously be used to determine optimal shim current values for a region of interest. Thus, in accordance with the invention, shim current values are derived from the gradient map and corresponding shim currents are passed through the shim coils of the MR device for producing an auxiliary magnetic field to optimize the homogeneity of the main magnetic field within the examination volume. A user of the MR apparatus may interactively select a region of interest in which the shim of the main magnetic field is automatically determined from the acquired MR echo signals, i.e. no extra measurement is required. Shim current values for different regions can easily be determined from one and the same MR signal data set. This automatic shimming technique can advantageously be integrated in dynamic MR imaging methods and also real-time MR imaging methods in order to enable continuously updating the shim of the main magnetic field. Image distortions due to field imperfections are effectively minimized in this way, i.e. image quality is significantly improved.
In conventional MR systems, three-dimensional series polynomials, such as, e.g., Legendre polynomials, are used to model the auxiliary magnetic field generated by the shim coils, wherein each shim current value corresponds to one coefficient of the polynomial. A corresponding three-dimensional polynomial may be matched to the gradient map in accordance with a preferred embodiment of the invention, such that the shim current values can be derived directly from the coefficients of the polynomial. Inhomogeneities of the main magnetic field within the examination volume can be easily minimized in this way by using a conventional set of shim coils.
The invention not only relates to a device but also to a method for magnetic resonance imaging of at least a portion of a body placed in an examination volume of an MR device. The method comprises the following steps:
a) generating a series of MR echo signals by subjecting at least a portion of the body to an MR imaging sequence of RF pulses and switched magnetic field gradients,
b) acquiring the MR echo signals for reconstructing an MR image data set therefrom,
c) calculating a gradient map by computing echo shift parameters from subsets of the MR image data set, the echo shift parameters indicating susceptibility induced shifts of the echo positions in k-space, wherein each subset comprises a number of spatially adjacent pixel or voxel values of the MR image data set.
A computer program adapted for carrying out the imaging procedure of the invention can advantageously be implemented on any common computer hardware, which is presently in clinical use for the control of magnetic resonance scanners. The computer program can be provided on suitable data carriers, such as CD-ROM or diskette. Alternatively, it can also be downloaded by a user from an Internet server.
The enclosed drawings disclose preferred embodiments of the present invention. It should be understood, however, that the drawings are designed for the purpose of illustration only and not as a definition of the limits of the invention. In the drawings
In
Number | Date | Country | Kind |
---|---|---|---|
07100712.4 | Jan 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/050126 | 1/15/2008 | WO | 00 | 7/8/2009 |