The present disclosure relates generally to devices, methods, and systems for determining a cause of a fault in an HVAC system.
A heating, ventilation, and air conditioning (HVAC) system can be used to control the environment within a facility (e.g., building). For example, an HVAC system can include a number of components (e.g., equipment, sensors, operating panels, controllers, actuators, etc.) that can be used to control the air temperature of different zones (e.g., rooms, areas, spaces, and/or floors) of a facility, in order to keep the zones in a comfort state for their occupants.
During operation of an HVAC system, however, faults in the HVAC system (e.g., in different components of the HVAC system) may sometimes occur. Detecting and correcting faults in the HVAC system can be important to provide a comfortable environment for the occupants of the facility, to prevent the fault from causing further damage to the HVAC system, and/or to avoid inefficient operation of the HVAC system which may result in higher energy consumption, for example.
In order to quickly and effectively correct a fault in an HVAC system, the cause (e.g., root cause) of the fault must be determined. However, previous approaches may focus on the symptoms (e.g., operational conditions) that may result from (e.g., be caused by) the fault, rather than the cause of the fault itself. For instance, in previous approaches when a fault occurs, an alarm may be generated that includes only the symptoms of the fault, and not the cause of the fault. Accordingly, in such previous approaches, it can be difficult, time consuming, and/or costly to determine the cause of the fault, as the symptoms of the fault may not be immediately indicative of the root cause of the fault.
Devices, methods, and systems for determining a cause of a fault in a heating, ventilation, and air conditioning (HVAC) system are described herein. For example, an embodiment includes a memory, and a processor configured to execute executable instructions stored in the memory to receive operational data associated with an HVAC system, store the received operational data in a database, determine, upon a fault occurring in the HVAC system, a cause of the fault by applying the operational data in the database to a table that maps causes of possible faults that may occur in the HVAC system and symptoms corresponding to each respective possible fault, and provide the cause of the fault occurring in the HVAC system to a user.
Embodiments of the present disclosure can be used to determine the cause (e.g., the root cause) of a fault occurring in an HVAC system, and correct the fault, in an easier, cheaper, and/or less time consuming manner than previous approaches. For example, in embodiments of the present disclosure, the cause of a fault occurring in an HVAC system can be determined and provided to a user, in contrast with previous approaches in which only the symptoms of the fault, and not the cause of the fault itself, may be provided to the user. Accordingly, embodiments of the present disclosure can enable the fault to be corrected quickly and effectively, and thereby maintain a comfortable environment for the occupants of the facility, prevent the fault from causing further damage to the HVAC system, and/or avoid inefficient operation of the HVAC system which may result in higher energy consumption.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that mechanical, electrical, and/or process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 108 may reference element “08” in
As used herein, “a” or “a number of” something can refer to one or more such things, while “a plurality of” something can refer to more than one such things. For example, “a number of faults” can refer to one or more faults, while “a plurality of faults” can refer to more than one fault. Additionally, the designators “N” and “M” as used herein, particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included with a number of embodiments of the present disclosure.
The HVAC system can be used to control the environment within the facility. For example, the HVAC system can include a number of components that can be used to control the air temperature of different zones (e.g., rooms, areas, spaces, and/or floors) of a facility, in order to keep the zones in a comfort state for their occupants. The components of the HVAC system can include, for example, objects, control components (e.g., controllers), equipment (e.g., mechanical equipment), devices, networks, sensors, and/or actuators such as, for instance, valves such as heating and/or cooling valves, chillers (e.g., chiller plant), boilers (e.g., boiler plant), pumps such as hot water and/or chilled water pumps, fans, compressors, air dampers such as variable air volume (VAV) dampers, air handling units (AHUs) (e.g., AHU plant), coils such as heating and/or cooling coils, air filters, heat exchangers, and/or cooling towers, among other components. The HVAC system may also include connections (e.g., physical connections) between the components, such as a chain of equipment (e.g., duct work, pipes, ventilation, and/or electrical and/or gas distribution equipment) that connects the components, among other connections.
Further, the HVAC system can include (e.g., be divided into) a number of zones. The zones of the HVAC system can correspond to the zones of the facility, for example. An example of an HVAC system (e.g., of an AHU of an HVAC system) will be further described herein (e.g., in connection with
As shown in
Controller 102 can collect data, such as, for instance, real-time operational data, associated with the HVAC system. For example, controller 102 can receive the data from the components of the HVAC system, such as, for instance, sensors 104-1, . . . , 104-N illustrated in
As shown in
As shown in
As used herein, a “network” can provide a communication system that directly or indirectly links two or more computers and/or peripheral devices and allows users to access resources on other computing devices and exchange messages with other users. A network can allow users to share resources on their own systems with other network users and to access information on centrally located systems or on systems that are located at remote locations. For example, a network can tie a number of computing devices together to form a distributed control network (e.g., cloud).
A network may provide connections to the Internet and/or to the networks of other entities (e.g., organizations, institutions, etc.). Users may interact with network-enabled software applications to make a network request, such as to get a file or print on a network printer. Applications may also communicate with network management software, which can interact with network hardware to transmit information between devices on the network.
As shown in
The operational data received by computing device 108 can be stored in database 114. For instance, computing device 108 can continuously (e.g., in real time) receive the operational data, and continuously store the received operational data in database 114.
Mapping table 112 can map causes of possible faults that may occur in the HVAC system (e.g., in the equipment of the HVAC system) and symptoms corresponding to each respective possible fault. For example, mapping table 112 can include a list of possible faults that may occur in the HVAC system, such as, for instance, a list of possible root causes of faults that may occur in each type of equipment in the HVAC system, and an identification of the symptoms corresponding to each respective possible fault in the list.
As used herein, a fault in the HVAC system can include and/or refer to a component (e.g., equipment) of the HVAC system functioning improperly and/or causing abnormal behavior in the HVAC system and/or facility, and/or to an event that occurs to cause the component to function improperly or cause the abnormal behavior. For example, a fault in the HVAC system can include and/or refer to a component of the HVAC system breaking down, malfunctioning, ceasing to operate correctly, or operating in an unexpected manner. As an additional example, a fault can include and/or refer to abnormal (e.g., anomalous) behavior of the component.
As used herein, a symptom corresponding to a fault can include and/or refer to an operational condition(s) of the HVAC system that results from (e.g., is caused by) the fault. In contrast, as used herein, a cause of a fault can include and/or refer to the root cause of a fault that is causing a particular symptom or symptoms to occur. For instance, correcting the cause of a fault will result in the corresponding symptoms of the fault no longer occurring, but correcting the symptoms corresponding to a fault will not necessarily mean the fault itself has been corrected.
As an example, the cause of a fault occurring in the HVAC system may be a stuck cooling valve, while the symptoms corresponding to such a fault may include high discharge air temperature and an overheating AHU. Additional examples of the causes of possible faults and their corresponding symptoms will be further described herein.
The symptoms included in mapping table 112 can include, for example, a particular operational data point of the operational data in database 114 being higher or lower than a particular value (e.g. threshold), the difference between two particular operational data points of the operational data in database 114 being greater than or less than a particular value, and/or a particular operational data point of the operational data in database 114 being true or false. An example of mapping table 112 (e.g., of the mapping of causes of possible faults that may occur in the HVAC system and symptoms corresponding to each respective possible fault) will be further described herein (e.g., in connection with
Mapping table 112 can be generated (e.g., defined), for example, based on input received from a user. For instance, mapping table 112 can be generated based on the domain knowledge and/or expert experience of users associated with the setup (e.g., installation) and/or operation of the HVAC system, such as, for instance, a facility manager and/or engineer.
Upon a fault occurring in the HVAC system (e.g., in the equipment of the HVAC system), computing device 108 can determine a cause (e.g., the root cause) of the fault by applying the operational data stored in database 114 to mapping table 112. For example, computing device 108 can determine whether the operational data stored in database 114 matches the symptoms corresponding to any of the possible faults in mapping table 112, and determine, upon determining that the operational data matches the symptoms corresponding to one of the possible faults, that the cause of that possible fault in mapping table 112 is the cause of the fault occurring in the HVAC system. That is, the cause of the possible fault in mapping table 112 whose corresponding symptoms are determined to match the operational data stored in database 114 can be determined to the cause of the fault occurring in the HVAC system. Computing device 108 can determine whether the operational data stored in database 114 matches the symptoms corresponding to any of the possible faults in mapping table 112 sequentially (e.g., one by one), as will be further described herein (e.g., in connection with
In some embodiments, all the symptoms corresponding a possible fault in mapping table 112 need to match the operational data in database 114 in order for the cause of that possible fault to be determined to be the cause of the fault occurring in the HVAC system (e.g., the cause of a possible fault in mapping table 112 may not be determined to be the cause of the fault occurring in the HVAC system if the operational data matches some, but less than all, of that possible fault's corresponding symptoms). In such embodiments, computing device 108 can determine whether all the operational data stored in database 114 matches the symptoms corresponding to any of the possible faults in mapping table 112, and determine, upon determining that the operational data matches all the symptoms corresponding to one of the possible faults, that the cause of that possible fault in mapping table 112 is the cause of the fault occurring in the HVAC system. Such embodiments can reduce the noise impact and/or prevent false positives (e.g., an erroneous determination that the cause of a possible fault in mapping table 112 is the cause of the fault occurring in the HVAC system when, in fact, the cause of that possible fault is not the cause of the fault occurring in the HVAC system).
In some embodiments, the symptoms corresponding a possible fault in mapping table 112 need to match the operational data in database 114 for a particular amount (e.g., period) of time in order for the cause of that possible fault to be determined to be the cause of the fault occurring in the HVAC system (e.g., the cause of a possible fault in mapping table 112 may not be determined to be the cause of the fault occurring in the HVAC system if the operational data matches that possible fault's corresponding symptoms for less than that amount of time). In such embodiments, computing device 108 can determine whether the operational data stored in database 114 matches the symptoms corresponding to any of the possible faults in mapping table 112 for the particular amount of time, and determine, upon determining that the operational data matches the symptoms corresponding to one of the possible faults for that amount of time, that the cause of that possible fault in mapping table 112 is the cause of the fault occurring in the HVAC system. The particular amount of time can be, for instance, 15 minutes. Such embodiments can reduce the noise impact and/or prevent false positives.
Once the cause of the fault occurring in the HVAC system has been determined, computing device 108 can provide the cause of the fault to a user (e.g., a technician, operator, or facility manager of the HVAC system), and/or can correct (e.g., take action to correct) the cause of the fault. For example, computing device 108 can generate an alarm for the fault occurring in the HVAC system that includes the determined cause of the fault, and send (e.g., transmit) the alarm to a device 110-1, . . . , 110-M of the user via network 106, as illustrated in
In some embodiments, computing device 108 can determine whether the fault occurring in the HVAC system is a critical fault that may need a fast action and/or response. In such embodiments, the alarm generated by computing device 108 and sent to device 110-1, . . . , 110-M can include an indication of whether the fault is such a critical fault.
Computing device 108 may receive input for correcting (e.g., instructions on how to correct) the cause of the fault from the user, and correct the cause of the fault responsive to receiving the input. For instance, computing device 108 may receive the input from device 110-1, . . . , 110-M via network 106 (e.g., the user may enter the input into device 110-1, . . . , 110-M, which may then transmit the input to computing device 108 via network 106).
As shown in
During the operation of AHU 215, faults may occur in the components of AHU 215. For example, filters 226-1 and/or 226-2 may become dirty or clogged, dampers 228-1 and/or 228-2 may become stuck, strainer 236 may become clogged, valve 238 may become stuck or clogged, coil 234 become clogged, and/or motors 232-1 and/or 232-2 may trip, among other faults. Such faults may result in (e.g., cause) symptoms such as, for instance, motors 220-1 and/or 220-2 operating at a high current, high vibration, and/or wrong rotation, the supply water to coil 234 being too hot or too cold, coil 234 leaking water, coil 234 under or over cooling the air, and/or the air supplied to the zones of the HVAC system being an improper temperature (e.g., too hot or too cold) and/or being supplied at an improper flow (e.g., pressure).
As shown in
For instance, in the example illustrated in
As previously described in connection with
At block 452, method 450 includes generating a mapping table. The mapping table can be, for example, mapping table 112 and/or 312 previously described in connection with
At block 454, method 450 includes receiving operational data associated with the HVAC system. The operational data can be received from controller 102 previously described in connection with
At block 456, method 450 includes storing the operational data. The operational data can be stored in database 114 previously described in connection with
At block 458, method 450 includes applying the operational data to the mapping table for a root cause of a possible fault in the table. Applying the operational data to the mapping table for a possible root cause of a possible fault in the table can include, for example, determining whether the operational data matches the symptoms corresponding to the root cause of that possible fault in the mapping table, as previously described herein and illustrated at block 460 of method 450. If it is determined that the operational data matches the symptoms corresponding to the root cause of that possible fault, method 450 proceeds to block 462. If it is determined that the operational data does not match the symptoms corresponding to the root cause of that possible fault, method 450 proceeds to block 464.
At block 462, method 450 includes generating an alarm that includes the root cause of that possible fault. Although not shown in
At block 464, method 450 includes determining whether the operational data has been applied to the mapping table for all possible root causes of all possible faults in the mapping table. If it is determined that the operational data has been applied to the mapping table for all possible root causes of all possible faults in the mapping table, method 450 returns to block 454. If it is determined that the operational data has not been applied to the mapping table for all possible root causes of all possible faults in the mapping table, method 450 returns to block 458, where the operational data is applied to the mapping table for a different possible root cause of a possible fault in the table. In such a manner, method 450 can determine whether the operational data matches the symptoms corresponding to each respective possible root cause of the possible faults in mapping table 112 sequentially (e.g., one by one).
As shown in
Memory 572 can be volatile or nonvolatile memory. Memory 572 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory. For example, memory 572 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM) and/or phase change random access memory (PCRAM)), read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disk read-only memory (CD-ROM)), flash memory, a laser disk, a digital versatile disk (DVD) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
Further, although memory 572 is illustrated as being located in computing device 508, embodiments of the present disclosure are not so limited. For example, memory 572 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection).
As shown in
In some embodiments, user interface 576 can be a graphical user interface (GUI) that can include a display (e.g., a screen) that can provide and/or receive information to and/or from the user of computing device 508. The display can be, for instance, a touch-screen (e.g., the GUI can include touch-screen capabilities). As an additional example, user interface 576 can include a keyboard and/or mouse the user can use to input information into computing device 508. Embodiments of the present disclosure, however, are not limited to a particular type(s) of user interface.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a Non-Provisional of U.S. Provisional Application No. 62/580,282, filed Nov. 1, 2017, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62580282 | Nov 2017 | US |