Determining a transit appliance for data traffic to a software service

Information

  • Patent Grant
  • 9948496
  • Patent Number
    9,948,496
  • Date Filed
    Wednesday, July 30, 2014
    10 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
Disclosed is a system and method for optimization of data transfer to a software service. In exemplary embodiments, a computer-implemented method for determining a transit appliance for data traffic to a software service through one or more interconnected networks comprising a plurality of network appliances, comprises determining performance metrics for each of the plurality of network appliances to at least one IP address associated with the software service, and selecting a transit appliance for data transfer to the IP address, the selected transit appliance based at least in part on the performance metrics.
Description
TECHNICAL FIELD

This disclosure relates generally to optimization of data transfer to a software service via a transit appliance.


BACKGROUND

The approaches described in this section could be pursued, but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


Data centers may be used to provide computing infrastructure by employing a number of computing resources and associated components, such as telecommunication equipment, networking equipment, storage systems, backup power supplies, environmental controls, and so forth. A data center may provide a variety of services (e.g., web applications, email services, and search engine services) for a number of customers simultaneously. To provide these services, the computing infrastructure of the data center may run various software applications and store business and operational data. The computing resources distributed throughout the data center may be physical machines and/or virtual machines running on a physical host.


Computing resources of a data center may transmit and receive data packets via one or more interconnected networks, such as a Wide Area Network (WAN). Physical switches and routers can be distributed throughout the WAN and configured to connect various network segments and route the data packets within the network environment. It may be desirable to optimize or otherwise transform the data packets transmitted and received via the WAN. Routing of the data packets for optimization may be performed by configuring physical switches, routers, and/or other network appliances, to reroute the data packets to a data optimization virtual machine. However, involving reconfiguration of physical network components in data optimization may be costly and require complex coordination of various organizations and departments.


Additionally, an increasing number of computing resources and services are being hosted in the cloud. Infrastructure as a Service (IaaS) allows an organization to outsource the equipment used to support operations. As such, a request for a service may be first routed to a server associated with the service, with the server being housed in an IaaS center.


Software as a Service (SaaS) is also increasingly prevalent as it allows a user to access software services from any computing terminal. Access times for a user to access the SaaS may vary depending on the location from which a user is trying to access the software service. As the access time increases, the user may perceive performance and usability problems with the service. Furthermore, the software service hosted as SaaS may have its necessary computing equipment located in one or more physical locations, including IaaS locations. As such, a user request for a software service may first travel through one or more interconnected networks to one or more IaaS centers and then to the SaaS, which can be located anywhere in the world. Because the data may have to travel substantial geographic distances from each intermediate point, this increases the response time to the end user as well as the opportunities for packet loss.


While there are many optimization techniques that can be accomplished in a WAN, many of these optimization techniques for data transfer across a network require symmetric network components. For example, if data packets are encoded on the transmitting end before transmission through the network, they must be decoded on the receiving end. To optimize data transfer to a particular software service, it is desirable to decode the data as close to the requested software service as possible.


Therefore, a mechanism is needed to find an optimal transit appliance for a requested software service based on network performance characteristics, so that a user can access a software service with the most efficiency.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


In exemplary embodiments, a computer-implemented method for selecting a transit appliance for data traffic to a software service through a network comprising a plurality of network appliances, comprises: measuring one or more performance metrics of data traffic from at least one of the plurality of network appliances to an IP address associated with a software service, the IP address for the software service having been retrieved from a service directory; determining a derived performance metric to be advertised to the plurality of network appliances, the derived performance metric based at least in part on the one or more measured performance metrics; advertising the derived performance metric among one or more of the plurality of network appliances; updating an advertised metric table at one or more of the plurality of network appliances with the derived performance metric received from at least one of the plurality of network appliances; and selecting a transit appliance for data traffic to the IP address associated with the software service, the selection based at least in part on the advertised performance metrics. The performance metric may be based on at least one of network latency, data loss, and round trip time. The software service to be accessed may be hosted in a cloud-based environment. One or more of the plurality of network appliances may also be hosted in a cloud-based environment.


In further exemplary embodiments, the above method steps may be stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the steps of the method. In yet further examples, subsystems or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A depicts an exemplary system environment for determining a transit appliance for transfer of data traffic to and from a software service.



FIG. 1B depicts an exemplary system environment for determining a transit appliance for transfer of data to and from a software service.



FIG. 2 illustrates an exemplary service directory from the portal.



FIG. 3 illustrates an exemplary measured metric table at an appliance.



FIG. 4 illustrates an exemplary advertised metric table at an appliance.



FIG. 5 is a process flow diagram illustrating an exemplary method for the determination of a transit appliance to a software service.



FIG. 6 shows an exemplary system environment suitable for implementing methods for optimization of data across one or more interconnected networks.



FIG. 7A is a process flow diagram illustrating an exemplary method for the transmission of data packets for a software service via a first appliance.



FIG. 7B is a process flow diagram illustrating an exemplary method for the transmission of data packets for a software service via a transit appliance.



FIG. 8 is a screenshot of an exemplary GUI for a user to select optimization of data traffic to and from particular software services.



FIG. 9 shows an exemplary global network of appliances in an overlay network.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations, in accordance with exemplary embodiments. These exemplary embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


The embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive, or computer-readable medium.


The embodiments described herein relate to computer-implemented methods for optimization of data transfer to a software service via a transit appliance.



FIG. 1A depicts an exemplary system environment for determining a transit appliance for transfer of data traffic to and from a software service across one or more interconnected networks 120, such as the Internet, or any other wide area network. In the exemplary embodiment, a user at computer 102a may access a software service, such as software service 110A, software service 110B, or software service 110N. While three software services are depicted here, there can be any number of software services. Data packets from the user at computer 102a may be transmitted via appliance 104a, which may also be referred to herein as the first appliance or ingress appliance for the request. Data packets from the user at computer 102b may be transmitted via appliance 104b, which is the first appliance or ingress appliance for that request.


The data packets from the user are then transmitted across the one or more interconnected networks 120, where there may be one or more peer appliances at different locations. In various embodiments as discussed herein, each of these peer appliances are in communication with each other, and form an overlay network that optimizes communication between the appliances. For example, the appliances may transfer data packets within the overlay network using one or more data transfer optimization techniques, such as compression/decompression, deduplication, TCP acceleration, performance enhancing proxy, packet reconstruction, error correction, or any other technique for optimizing data transfer between network appliances or devices.


Embodiments of the present disclosure provide for the selection of a transit appliance (also referred to herein as a second appliance or egress appliance), for each software service. The selected transit appliance (also referred to herein as the optimal transit appliance) may be the appliance which has the best network performance metrics for providing access to the requested software service, or component of the requested software service. In the exemplary embodiment depicted in FIG. 1A, the optimal transit appliance for software service 110A is appliance 106a, the optimal transit appliance for software service 110B is appliance 106b, and the optimal transit appliance for software service 110N is appliance 106n. As discussed further herein, appliances 106a, 106b, and 106n can be geographically located anywhere in the world. Furthermore, the optimal transit appliance for each software service may be updated periodically, and may change based on network conditions. While the optimal transit appliance is usually the appliance (sometimes referred to herein as peer appliance) that is geographically closest to the requested software service, it is not always. Therefore, the network performance characteristics are measured for an appliance to a software service.



FIG. 1B depicts an exemplary system environment for determining a transit appliance for transfer of data to and from a software service across the one or more interconnected networks. In the exemplary embodiment, an end user accesses a software service, such as software service 110A, through computer 102. Computer 102 may be a desktop computer, laptop computer, handheld computing device, server, or any other type of computing device. While a single computer is depicted here, computer 102 may also be a cluster of computing devices.


The request for software service 110A from computer 102 is transmitted via appliance 104, which is in communication with computer 102 through a network 108. The network 108 may include one or more of the following: WAN, the Internet, Metropolitan Area Network (MAN), Backbone network, Storage Area Network (SAN), Advanced Intelligent Network (AIN), Local Area Network (LAN), Personal Area Network (PAN), and so forth.


Appliance 104 can be any type of hardware device, or software operational on a computing device. Appliance 104 may be located at the same geographical location as computer 102, or may be located in a remote location. Appliance 104 may be in communication with other appliances across the network, such as appliances 106, 116, and 112, regardless of geographical location of the appliances. While appliance 104 is in communication with three other appliances in the exemplary embodiment depicted in the figure, there may be any number of appliances in the system. The appliances together may form an overlay network over the one or more interconnected networks between computer 102 and software service 110A.


Each of the appliances in the system may further be in communication with a portal 114. Portal 114 comprises a database with a service directory for the various software services, the IP addresses/subnets associated with each software service, and one or more test methods for determining network performance characteristics for each appliance in relation to the IP addresses/subnets associated with each software service. Portal 114 is also discussed in further detail below with respect to later figures. Each appliance in the overlay network is in communication with the portal 114 and retrieves a copy of the service directory. In various embodiments, the service directory is stored locally at each appliance, and the local copy at each appliance is updated on a fixed periodic schedule, upon a change in the service directory, upon the direction of a network administrator, or other triggering event. Exemplary changes in the service directory include the addition of a new software service, deletion of a software service, a change in an associated IP address/subnet, or a change in a test method.


Software service 110A may have an exemplary IP subnet of a.b.c.d/24. An appliance may query an IP address from the IP subnet using the information from the portal service directory to determine network performance characteristic(s) for the transmission of data between that appliance and software service 110A. The performance metric comprises information such as latency, round trip time, data loss, or any other network performance characteristic. The appliance then stores the measured performance metric(s) for the IP address or subnet in a local network performance characteristics table or database, referred to herein as a measured metric table. The measured metric table is discussed in further detail below in connection with FIG. 3.



FIG. 2 shows an exemplary service directory 200 from the portal 114. In various embodiments, the service directory 200 provides a listing of the various software services that are available for optimized access through the overlay network of appliances. There can be any number of software services in the service directory, such as software service 110A, 110B, and 110N. Each software service can have one or more IP addresses or IP subnet associated with it. The IP addresses may be in IPv4, IPv6, or other network addressing systems. While the term “IP address” has been used throughout this disclosure, a person of ordinary skill in the art would understand that any other network addressing system besides IP is also within the scope of this disclosure.


The service directory 200 can provide a listing of each IP address or subnets associated with the software service, one or more test IP addresses, and one or more test methods for the IP addresses. In various embodiments, additional data associated with each software service is also stored in the service directory 200, as understood by a person of ordinary skill in the art. The service directory 200 can be updated on a fixed periodic schedule, upon certain trigger events, or as directed by a network administrator.


In the exemplary service directory 200 of FIG. 2, software service 110A has two exemplary IP subnets, 152.3.4.0/24 and 97.5.6.0/24. The subnets may be in different geographical locations. Each IP subnet has one or more test methods associated with it. The test method can be ping IP, http-ping IP, tcp-ping IP, or any other test method as understood by a person of ordinary skill in the art. Each test method denotes the mechanism whereby the appliance queries an IP address associated with the software service to determine network performance characteristic(s) for the transmission of data from that appliance to the software service. As understood by a person of ordinary skill in the art, the subnet may contain many IP addresses. The test method may sample one or more of the included IP addresses, as testing every IP address in the subnet may introduce more traffic and overhead for very little additional information. Also, one service may have different optimal transit nodes for different parts of the service.



FIG. 3 shows an exemplary measured metric table 300 stored at each appliance for collecting measured metrics from that appliance to each software service. For each software service, the IP address or subnet associated with that software service is noted, along with the test method(s) used. The listing of software services, IP address/subnet, and test method(s) may be retrieved by each appliance from the service directory 200 in portal 114. In various embodiments, the measured metric table 300 is updated on a periodic fixed schedule, upon direction by a network administrator, or upon another triggering event, such as a change or addition of a subnet. Upon receipt of new information or a new service directory 200 from the portal 114, the information may be merged into the measured metric table 300 such that previous information from the measured metric table is maintained, if still applicable. Additionally, while the measured metric table and all other tables are described herein as “tables”, the data can also be represented using other data structures, as understood by a person of ordinary skill in the art.


In exemplary embodiments, an appliance queries one or more IP addresses associated with each software service in the table using the one or more test methods and measures one or more network performance characteristics. These characteristics may be stored in the measured metric table 300 as the measured metric(s). A derived metric related to the measured metric(s) is also stored in the measured metric table 300. The derived metric is a calculated or selected metric value that may be advertised, along with the corresponding tested IP address or subnet, with other peer appliances in the overlay network.


In the exemplary embodiment of FIG. 3, software service 110A has two associated IP subnets. For the IP subnet 152.3.4.0/24, the appliance queries the IP address 152.3.4.5 using a ping test method and measures a network performance metric of 70 milliseconds. For the IP subnet 97.5.6.0/24, the appliance queries the IP address 97.5.6.50 using an http-ping test method and measures a metric of 80 milliseconds, and also queries the IP address 97.5.6.51 using a tcp-ping test method and measures a metric of 70 milliseconds. In various embodiments, each measured metric may be stored in the measured metric table 300 for a fixed period of time, upon expiry of which it may need to be measured again. Additionally, the measured metric table 300 may keep a rolling average or other statistical aggregation for each measured metric instead of only the latest measured value(s). The statistical aggregation may be reflected in the measured metric(s), derived metric, or an additional field in the measured metric table 300.


From the various measured metrics, a derived metric may be calculated or selected for each tested IP address or subnet. The derived metric may be an average, mean, median, or any other statistical or calculated value from the one or more measured metrics. In the exemplary embodiment of FIG. 3, the derived metric for the IP subnet 97.5.6.0/24 is based on a scaled average of the two measured metrics from the http-ping and tcp-ping test methods. The derived metric may be updated on a periodic fixed schedule, as directed by a network administrator, or upon a triggering event, such as a change in a measured metric value.


In exemplary embodiments, the derived metric is then advertised by an appliance with the other appliances in the overlay network. For example, in the exemplary system environment of FIG. 1B, appliance 104 advertises one or more of its derived metric(s) for the IP address/subnet associated with software service 110A, with the peer appliances 106, 116, and 112. Similarly, one or more of the other appliances 106, 116, and 112 may also advertise one or more of their derived metric(s) for the IP address/subnet associated with software service 110A with all other peer appliances in the network. In various embodiments, an appliance may advertise all of the derived metrics for a particular software service, or only advertise a derived metric that is closest to a specified value, or a derived metric representative of the most ideal network characteristics, such as the lowest value or highest value. The derived metrics may be advertised to the other peer appliances on a periodic schedule, as directed by a network administrator, or upon a triggering event, such as a change in a derived metric value. Furthermore, if the derived metric is below or above a certain threshold, it may not be advertised with the other peer appliances.



FIG. 4 shows an exemplary advertised metric table 400 for collecting advertised metrics from the appliances in the overlay network. While FIGS. 2-4 have been described herein as a “table,” the data can be represented by other data structures as well, as understood by a person of ordinary skill in the art.


The advertised metric table 400 shows that for exemplary subnet a.b.c.d/24, peer appliance 104 has advertised a performance metric of 5, peer appliance 106 has an advertised performance metric of 20, peer appliance 116 has an advertised performance metric of 10, and peer appliance 112 has an advertised performance metric of 7.5. In various embodiments, a transit appliance for each IP subnet is selected based on the peer appliance with the lowest value advertised metric, the highest value advertised metric, or the advertised metric that is closest to a specified value. The specified value can be any value determined by a network administrator. In the exemplary embodiment of FIG. 4, the selected performance metric for subnet a.b.c.d/24 is the lowest value of 5, which corresponds to appliance 104. As such, appliance 104 is the optimal transit appliance to route data traffic through for the subnet a.b.c.d/24. In the exemplary embodiment of FIG. 4, the selected metric is noted by a box around the number. In other embodiments, the selected metric can be noted by any other means. Additionally, the advertised metric table 400 may optionally comprise one or more additional columns to note the peer appliance with the selected metric for the IP subnet as the optimal transit appliance, or to store any other information.


For exemplary subnet e.f.g.h/20, peer appliance 104 has an advertised metric of 15, peer appliance 106 has an advertised metric of 20, peer appliance 116 has an advertised metric of 10, and peer appliance 112 has an advertised metric of 8. If the selected performance metric is taken as represented by the lowest value, then peer appliance 112 is the selected transit appliance for the subnet e.f.g.h/20.


Advertised metric table 400 may be stored locally at each appliance, or stored in another central location that is accessible by all of the peer appliances, or stored and shared between appliances in other ways. In various embodiments, the table is updated on a periodic schedule, upon direction by a network administrator, or upon another triggering event, such as a change or addition of a subnet, peer appliance, or updated advertised metric. In various embodiments, each peer appliance's advertised metric may be stored in the advertised metric table 400 for a fixed period of time, upon expiry of which it may need to be updated. Additionally, the advertised metric table 400 may keep a rolling average or other statistical aggregation for each advertised metric instead of only the latest advertised values.


Now referring to FIG. 5, a flowchart 500 showing an exemplary method for the determination of a transit appliance to a software service is presented. The method may be performed by one or more peer appliances in the network. Additionally, steps of the method may be performed in varying orders or concurrently. Furthermore, various steps may be added, removed, or combined in the method and still fall within the scope of the present invention.


In step 510, an appliance retrieves information from the service directory 200. In step 520, the appliance measures performance metric(s) to one or more specified software services using the information from the service directory, such as the IP address or subnet for each software service and test method(s). From the measured metric(s), derived metric(s) are determined for each tested IP address, and the information is stored in the measured metric table 300 at the appliance in step 530. The appliance advertises a selected derived performance metric to the other peer appliances in step 540. As previously disclosed, the appliance may not advertise a derived performance metric if the derived performance metric is outside of a specified threshold. In step 550, the advertised metric table 400 at each peer appliance in the network is updated with the advertised performance metric if an updated advertised performance metric value was advertised. The optimal transit appliance for each software service is determined from the advertised metric table, as discussed above. The advertised metric may also have a time period for which it is valid, upon expiry of which it is calculated, selected, or advertised again.


Each step of the method may be performed at different times (asynchronously), even though it is depicted as a sequence in FIG. 5. For example, if the measured metric doesn't change for a particular appliance, then it may not be advertised in step 540. Additionally, each appliance in the network can perform each step of this method at varying times. Steps of the method may be performed on a periodic fixed schedule, at the direction of a network administration, or upon any other triggering event.



FIG. 6 shows an exemplary system environment suitable for implementing methods for optimization of data across one or more interconnected networks. Three software services are depicted in the exemplary embodiment of FIG. 6, software service 110A, 110B, and 110N. However, there can be any number of software services in communication with the various appliances of the overlay network. While two appliances are depicted in the exemplary system of FIG. 6, there can be any number of appliances in communication over one or more interconnected networks.


In the exemplary system of FIG. 6, an end user accesses a software service, such as software service 110N, through computer 102 by sending data packets to software service 110N via appliance 104 through network 606. As discussed above with respect to FIGS. 1A and 1B, computer 102 may be a desktop computer, laptop computer, handheld computing device, server, or any other type of computing device. While a single computer is depicted here, computer 102 may also be a cluster of computing devices. Also, network 606 may be any type of network, as discussed above with respect to network 108 of FIG. 1B.


Appliance 104 may extract the IP address for software service 110N from the destination IP address in the data packets it receives from the computer 102. Appliance 104 may then query its advertised metric table 400 for the peer appliance in the overlay network via which to direct the request for the software service based on the extracted IP address. The selected peer appliance may constitute the optimal transit appliance for the extracted IP address. If the advertised metric table 400 contains a transit appliance for the extracted IP address of the software service, appliance 104 directs the request via the transit appliance noted for the IP address. A row of the advertised metric table 400 is said to contain an IP address, if that IP address belongs inside the subnet that the row corresponds to. Furthermore, a user request for a software service may be directed through any number of network appliances, routers, switches, or other network devices before the request is routed to the software service, depending on the network path.


In the exemplary embodiment depicted in FIG. 6, appliance 104 determines that the optimal transit appliance for the extracted IP address associated with desired software service 110N is through appliance 106 located at service 118A. Service 118A may contain computing devices that enable software service 110N, or may be unrelated to software service 110N. By placing appliance 106 at IaaS service 118A, appliance 106 may be located close to software service 110N. As such, appliance 106 may have good network performance characteristics for data transfer to and from software service 110N and is likely to be a good transit appliance for software service 110N.


While services 118A, 118B, and 118N are depicted in FIG. 6 as exemplary cloud services within an IaaS location, they may be located outside of the cloud. Furthermore, appliance 106 may be located anywhere in the world, and may not necessarily be in an IaaS center. FIG. 6 depicts an exemplary embodiment where appliance 106 is the selected transit appliance for software service 110N and is located at an IaaS service.


In various embodiments, appliance 106 also performs network address translation (NAT) on the data before forwarding the software service request to software service 110N, such that the request for software service 110N appears to originate from appliance 106. This way, the reply from software service 110N is also routed back through the transit appliance 106.


In some cases, appliance 104 may determine that there is no optimal transit appliance for software service 110N, or the transit appliance is appliance 104. If there is no optimal transit appliance for software service 110N, the user request for software service 110N may be directed from appliance 104 to software service 110N over the network 620, without using the overlay of optimizing peer appliances. Network 620 can be any type of network, including a Wide Area Network (WAN), the Internet, and so forth. In various embodiments, default routing behavior is also stored in one or more routing tables. The routing tables can be stored in each appliance of the network, and/or in a central location accessible to all appliances.


Software service 110N may process the data packets received from appliance 106 and direct the reply to the appliance from which the request was forwarded, in this case appliance 106 located in Service 118A. Appliance 106 then performs network address translation on the data, to direct it to the appliance originating the request, appliance 104. From appliance 104 the reply is sent back to computer 102. In various embodiments, there may be any number of intermediate appliances between appliance 104 and software service 110N. Each intermediate appliance may perform network address translation to ensure that the reply is routed back through the network via the same path.



FIG. 7A is an exemplary flow diagram 700A for the transmission of data packets for a software service through one or more interconnected networks via a first appliance. The method may be performed by one or more peer appliances in the network. Additionally, steps of the method may be performed in varying orders or concurrently. Furthermore, various steps may be added, removed, or combined in the method and still fall within the scope of the present invention.


At step 710, a first appliance (such as appliance 104) receives data packets sent by a user destined for a software service from computer 102. In step 720, the first appliance extracts the destination IP address for the software service from the received data packets. At step 730, the first appliance determines if the extracted destination IP address is in one of the subnets in the advertised metric table 400. If not, the first appliance transmits the data packets destined for the software service to the destination IP address for the software service via default routing behavior in step 740. If the destination IP address is in the advertised metric table 400, the first appliance queries the advertised metric table 400 for the selected transit appliance for the destination IP address, in step 750. While IP addresses are used in this example, the invention can also be applied to other network addressing types.


At step 760A, the first appliance may optionally optimize the data packets destined for the software service. Data optimization techniques may comprise compression/decompression, deduplication, TCP acceleration, performance enhancing proxy, packet reconstruction, error correction, or any other technique for optimizing data transfer between network appliances or devices. For simplification purposes, the term ‘optimization encoding’ is used in the figures. However, a person of ordinary skill in the art would understand that any optimization technique may be applied. Optimization encoding and decoding are symmetric transformations of data, such as compression/decompression, deduplication, etc. For example, data packets that are compressed at a first appliance need to be decompressed at a second appliance. At step 760B, the first appliance transmits the data packets for the software service to the optimal transit appliance with the selected performance metric. Optimization may be performed on a packet by packet basis, such that there is an encoded packet for each original packet, or optimization may be performed on parts of packets or across multiple packets, such that there is not a 1:1 correspondence between the original packets and the encoded packets.



FIG. 7B is an exemplary flow diagram 700B for the transfer of data packets for a software service through a transit appliance, also referred to as a second appliance. At step 770A, a second appliance (such as transit appliance 106 from FIG. 6) receives plain or encoded data packets representing data sent by a user destined for a software service from computer 102. At step 770B, the second appliance optionally applies optimization decoding of the data packets. If data packets from the first appliance were optimized in step 760A in any way, such as encoded, then the packets may be decoded at step 770B.


In step 772, the second appliance performs network address translation to change the source network address in the data packets to its own local network address. At step 774, the second appliance sends the modified data packets to the destination IP address of the requested software service. Response packets are received from the software service at step 776. The second appliance then maps the destination address from the response packets to the original user's IP address (such as the IP address of computer 102), at step 778. The data packets from the software service are then optionally encoded at step 780A by the second appliance. This may be a similar step to the optimization technique applied at the first appliance in step 760A, or a different optimization technique may be applied to the reply data packets. The data packets are transmitted back to the first appliance (or ingress appliance) at step 780B. The first appliance transmits the response data packets from the software service to computer 102.



FIG. 8 illustrates an exemplary screenshot of a graphical user interface (GUI) 800 for a user to select optimization of data traffic to and from particular software services. The GUI 800 may be shown on a display of a user device (not shown) such as a personal computer (PC), a tablet computer, a mobile device, or any other suitable device. In an example, the GUI 800 is shown on the display of the user device via a browser or some other software application.


In various embodiments, the GUI 800 has a listing in column 810 of software services that are available for optimization. The service listing in column 810 may be updated on a periodic fixed schedule, upon the direction of a network administrator, or upon a triggering event. Column 820 of the GUI is an optional column that can show one or more IP addresses or subnet associated with each service. For each service available for optimization, the GUI 800 can optionally also provide the selected transit appliance from the overlay network to the service, in column 830. In column 840, a network administrator or end user can select which service it would like to determine the optimal transit appliance for. In exemplary embodiments, an end user may choose to enable optimization only for services that are actually used, or for services that are used frequently. Even though only checkboxes are shown in the optimization table, other selectable items can be provided, such as radio buttons or the like.



FIG. 9 shows an exemplary global network of appliances in the overlay network. While there are only five appliances depicted in the figure, there can be any number of appliances connected to the overlay network, and they can be located in any geographic location around the world. A request for software service 110A may originate from computer 102 in any appliance location. Each appliance is in communication with portal 114, and maintains a copy of the service directory 200, a measured metric table 300, and an advertised metric table 400. Each appliance also is in communication with the other global appliances, and advertises its performance metric with the peer appliances. Furthermore, each appliance in the network may provide data optimization techniques. The transit appliance for software service 110A may be through any appliance in the global network. In exemplary embodiments, the transit appliance is the appliance geographically located closest to software service 110A, but does not have to be.


Thus, methods and systems for determining a transit appliance for data traffic to and from a software service are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A computer-implemented method for selecting a peer egress appliance for data traffic to a software service through a network comprising a plurality of inter-connected ingress and egress network appliances, the method comprising: measuring one or more performance metrics of data traffic from at least two of the plurality of network appliances to an IP address associated with a software service, the IP address for the software service having been retrieved from a service directory;determining a derived performance metric for each network appliance to each IP address associated with the software service, the derived performance metric based at least in part on the measured one or more performance metrics;selectively advertising the derived performance metric by each network appliance among two or more of the plurality of network appliances;updating an advertised metric table at each of the plurality of network appliances with the derived performance metric received; andselecting a peer egress appliance for data traffic to the IP address associated with the software service, the selection based at least in part on the advertised derived performance metrics.
  • 2. The method of claim 1, wherein the service directory comprises a list of available software services, a corresponding at least one IP address for each of the available software services, and at least one test method for the at least one IP address for each of the available software services.
  • 3. The method of claim 1, wherein the performance metric is based on at least one of network latency, data loss, and round trip time.
  • 4. The method of claim 1, wherein the selectively advertising the derived performance metric by each network appliance among two or more of the plurality of network appliances occurs if the derived performance metric meets a predetermined threshold.
  • 5. The method of claim 1, wherein the service directory is updated at predetermined intervals.
  • 6. The method of claim 1, wherein the selected peer egress appliance for data traffic to the IP address associated with the software service is a network appliance from the plurality of network appliances that is geographically located closest to the software service.
  • 7. The method of claim 1, wherein the software service is hosted in at least two different geographic locations.
  • 8. The method of claim 7, wherein the advertised performance metric is based on an aggregate score for each of the geographic locations hosting the software service, each geographic location having a different IP address.
  • 9. The method of claim 1, wherein the software service is hosted in a cloud environment.
  • 10. The method of claim 1, wherein at least one of the plurality of network appliances is hosted in an Infrastructure as a Service cloud-based environment.
  • 11. A computer-implemented method for determining a peer transit appliance from a plurality of network appliances forming an overlay network for data traffic to a web-based software service, the method comprising: receiving data packets sent by a user and destined for a software service at a first appliance of the plurality of network appliances;extracting a destination IP address for the software service from the data packets;determining that the extracted destination IP address is in an advertised metric table at the first appliance, the advertised metric table comprising an advertised performance metric for each network appliance of the plurality of network appliances to each available software service;querying the advertised metric table at the first appliance for the peer transit appliance for the extracted destination IP address associated with the software service; andtransmitting the data packets to the peer transit appliance, the peer transit appliance being a second network appliance of the plurality of network appliances.
  • 12. The method of claim 11 further comprising: receiving the data packets for the software service at the second network appliance;modifying the received data packets at the second network appliance by applying network address translation; andtransmitting the modified data packets to the software service from the second network appliance.
  • 13. The method of claim 11, further comprising: receiving response data packets from the software service at the second network appliance;applying network address translation at the second network appliance to map a destination address from the response data packets to an original user's network address; andtransmitting the response data packets to the first appliance.
  • 14. The method of claim 11, wherein the determining that the extracted destination IP address is in an advertised metric table at the first appliance is based on determining that a network administrator has selected the software service for optimization through a user interface.
  • 15. A non-transitory processor-readable medium having embodied thereon instructions being executable by at least one processor to perform a method for optimization of network traffic to a software service within a wide area network, the method comprising: measuring one or more performance metrics of data traffic from at least two of a plurality of network appliances to an IP address associated with a software service, the IP address for the software service having been retrieved from a service directory;determining a derived performance metric for each network appliance to each IP address associated with the software service, the derived performance metric based at least in part on the one or more measured performance metrics;selectively advertising the derived performance metric by each network appliance among two or more of the plurality of network appliances;updating an advertised metric table at each of the plurality of network appliances with the derived performance metric received; andselecting a transit appliance for data traffic to the IP address associated with the software service, the selection based at least in part on the advertised derived performance metrics.
  • 16. A computer system for optimization of network traffic to a software service within a wide area network, the system comprising: a first appliance comprising at least one processor and a memory storing instructions, the instructions executable by the at least one processor to: retrieve a service directory from a portal, the service directory comprising information regarding a plurality of available software services,measure one or more performance metrics for data traffic to an IP address associated with a software service in the service directory,determine a derived performance metric to be advertised to a second appliance, the derived performance metric based at least in part on the one or more measured performance metrics,advertise the derived performance metric for data transfer to the IP address to the second appliance,receive an advertised performance metric for data traffic to the IP address associated with the software service from the second appliance, andupdate an advertised metric table at the first appliance with the advertised performance metric received from the second appliance.
  • 17. The system of claim 16, wherein the first appliance is further configured to determine a transit appliance for network traffic to the software service from the advertised metric table, the transit appliance having a best advertised performance metric.
  • 18. The system of claim 16, wherein the service directory further comprises a corresponding at least one IP address for each of the plurality of software services, and at least one test method for the at least one IP address.
  • 19. The system of claim 16, wherein the performance metric is based on at least one of network latency, data loss, and round trip time.
  • 20. The system of claim 16, wherein the advertised performance metric is based on an aggregate score for at least two different geographical locations that host the software service.
US Referenced Citations (455)
Number Name Date Kind
4494108 Langdon, Jr. et al. Jan 1985 A
4558302 Welch Dec 1985 A
4612532 Bacon et al. Sep 1986 A
5023611 Chamzas et al. Jun 1991 A
5243341 Seroussi et al. Sep 1993 A
5307413 Denzer Apr 1994 A
5357250 Healey et al. Oct 1994 A
5359720 Tamura et al. Oct 1994 A
5373290 Lempel et al. Dec 1994 A
5483556 Pillan et al. Jan 1996 A
5532693 Winters et al. Jul 1996 A
5592613 Miyazawa et al. Jan 1997 A
5611049 Pitts Mar 1997 A
5627533 Clark May 1997 A
5635932 Shinagawa et al. Jun 1997 A
5652581 Furlan et al. Jul 1997 A
5659737 Matsuda Aug 1997 A
5675587 Okuyama et al. Oct 1997 A
5710562 Gormish et al. Jan 1998 A
5748122 Shinagawa et al. May 1998 A
5754774 Bittinger et al. May 1998 A
5802106 Packer Sep 1998 A
5805822 Long et al. Sep 1998 A
5883891 Williams et al. Mar 1999 A
5903230 Masenas May 1999 A
5955976 Heath Sep 1999 A
6000053 Levine et al. Dec 1999 A
6003087 Housel, III et al. Dec 1999 A
6054943 Lawrence Apr 2000 A
6081883 Popelka et al. Jun 2000 A
6084855 Soirinsuo et al. Jul 2000 A
6175944 Urbanke et al. Jan 2001 B1
6191710 Waletzki Feb 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6308148 Bruins et al. Oct 2001 B1
6311260 Stone et al. Oct 2001 B1
6339616 Kovalev Jan 2002 B1
6374266 Shnelvar Apr 2002 B1
6434641 Haupt et al. Aug 2002 B1
6434662 Greene et al. Aug 2002 B1
6438664 McGrath et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6463001 Williams Oct 2002 B1
6489902 Heath Dec 2002 B2
6493698 Beylin Dec 2002 B1
6570511 Cooper May 2003 B1
6587985 Fukushima et al. Jul 2003 B1
6614368 Cooper Sep 2003 B1
6618397 Huang Sep 2003 B1
6633953 Stark Oct 2003 B2
6643259 Borella et al. Nov 2003 B1
6650644 Colley et al. Nov 2003 B1
6653954 Rijavec Nov 2003 B2
6667700 McCanne et al. Dec 2003 B1
6674769 Viswanath Jan 2004 B1
6718361 Basani et al. Apr 2004 B1
6728840 Shatil et al. Apr 2004 B1
6738379 Balazinski et al. May 2004 B1
6769048 Goldberg et al. Jul 2004 B2
6791945 Levenson et al. Sep 2004 B1
6842424 Key et al. Jan 2005 B1
6856651 Singh Feb 2005 B2
6859842 Nakamichi et al. Feb 2005 B1
6862602 Guha Mar 2005 B2
6910106 Sechrest et al. Jun 2005 B2
6963980 Mattsson Nov 2005 B1
6968374 Lemieux et al. Nov 2005 B2
6978384 Milliken Dec 2005 B1
7007044 Rafert et al. Feb 2006 B1
7020750 Thiyagaranjan et al. Mar 2006 B2
7035214 Seddigh et al. Apr 2006 B1
7047281 Kausik May 2006 B1
7069268 Burns et al. Jun 2006 B1
7069342 Biederman Jun 2006 B1
7110407 Khanna Sep 2006 B1
7111005 Wessman Sep 2006 B1
7113962 Kee et al. Sep 2006 B1
7120666 McCanne et al. Oct 2006 B2
7145889 Zhang et al. Dec 2006 B1
7177295 Sholander et al. Feb 2007 B1
7197597 Scheid et al. Mar 2007 B1
7200847 Straube et al. Apr 2007 B2
7215667 Davis May 2007 B1
7242681 Van Bokkelen et al. Jul 2007 B1
7243094 Tabellion et al. Jul 2007 B2
7266645 Garg et al. Sep 2007 B2
7278016 Detrick et al. Oct 2007 B1
7318100 Demmer et al. Jan 2008 B2
7366829 Luttrell et al. Apr 2008 B1
7380006 Srinivas et al. May 2008 B2
7383329 Erickson Jun 2008 B2
7383348 Seki et al. Jun 2008 B2
7388844 Brown et al. Jun 2008 B1
7389357 Duffle, III et al. Jun 2008 B2
7389393 Karr et al. Jun 2008 B1
7417570 Srinivasan et al. Aug 2008 B2
7417991 Crawford et al. Aug 2008 B1
7420992 Fang et al. Sep 2008 B1
7428573 McCanne et al. Sep 2008 B2
7451237 Takekawa et al. Nov 2008 B2
7453379 Plamondon Nov 2008 B2
7454443 Ram et al. Nov 2008 B2
7457315 Smith Nov 2008 B1
7460473 Kodama et al. Dec 2008 B1
7471629 Melpignano Dec 2008 B2
7532134 Samuels et al. May 2009 B2
7555484 Kulkarni et al. Jun 2009 B2
7571343 Xiang et al. Aug 2009 B1
7571344 Hughes et al. Aug 2009 B2
7587401 Yeo et al. Sep 2009 B2
7596802 Border et al. Sep 2009 B2
7619545 Samuels et al. Nov 2009 B2
7620870 Srinivasan et al. Nov 2009 B2
7624446 Wilhelm Nov 2009 B1
7630295 Hughes et al. Dec 2009 B2
7633942 Bearden et al. Dec 2009 B2
7639700 Nabhan et al. Dec 2009 B1
7643426 Lee et al. Jan 2010 B1
7644230 Hughes et al. Jan 2010 B1
7676554 Malmskog et al. Mar 2010 B1
7698431 Hughes Apr 2010 B1
7702843 Chen et al. Apr 2010 B1
7714747 Fallon May 2010 B2
7746781 Xiang Jun 2010 B1
7764606 Ferguson et al. Jul 2010 B1
7810155 Ravi Oct 2010 B1
7827237 Plamondon Nov 2010 B2
7849134 McCanne et al. Dec 2010 B2
7853699 Wu et al. Dec 2010 B2
7873786 Singh et al. Jan 2011 B1
7917599 Gopalan et al. Mar 2011 B1
7925711 Gopalan et al. Apr 2011 B1
7941606 Pullela et al. May 2011 B1
7945736 Hughes et al. May 2011 B2
7948921 Hughes et al. May 2011 B1
7953869 Demmer et al. May 2011 B2
7970898 Clubb et al. Jun 2011 B2
7975018 Unrau et al. Jul 2011 B2
8069225 McCanne et al. Nov 2011 B2
8072985 Golan et al. Dec 2011 B2
8090027 Schneider Jan 2012 B2
8095774 Hughes et al. Jan 2012 B1
8140757 Singh et al. Mar 2012 B1
8171238 Hughes et al. May 2012 B1
8209334 Doerner Jun 2012 B1
8225072 Hughes et al. Jul 2012 B2
8271325 Silverman Sep 2012 B2
8307115 Hughes Nov 2012 B1
8312226 Hughes Nov 2012 B2
8352608 Keagy et al. Jan 2013 B1
8370583 Hughes Feb 2013 B2
8386797 Danilak Feb 2013 B1
8392684 Hughes Mar 2013 B2
8442052 Hughes May 2013 B1
8447740 Huang et al. May 2013 B1
8473714 Hughes et al. Jun 2013 B2
8489562 Hughes et al. Jul 2013 B1
8516158 Wu et al. Aug 2013 B1
8565118 Shukla et al. Oct 2013 B2
8595314 Hughes Nov 2013 B1
8613071 Day et al. Dec 2013 B2
8681614 McCanne et al. Mar 2014 B1
8699490 Zheng et al. Apr 2014 B2
8700771 Ramankutty et al. Apr 2014 B1
8706947 Vincent Apr 2014 B1
8725988 Hughes et al. May 2014 B2
8732423 Hughes May 2014 B1
8738865 Hughes et al. May 2014 B1
8743683 Hughes Jun 2014 B1
8755381 Hughes et al. Jun 2014 B2
8775413 Brown et al. Jul 2014 B2
8811431 Hughes Aug 2014 B2
8850324 Clemm et al. Sep 2014 B2
8885632 Hughes et al. Nov 2014 B2
8929380 Hughes et al. Jan 2015 B1
8929402 Hughes Jan 2015 B1
8930650 Hughes et al. Jan 2015 B1
9003541 Patidar Apr 2015 B1
9036662 Hughes May 2015 B1
9054876 Yagnik Jun 2015 B1
9092342 Hughes et al. Jul 2015 B2
9130991 Hughes Sep 2015 B2
9131510 Wang Sep 2015 B2
9143455 Hughes Sep 2015 B1
9152574 Hughes et al. Oct 2015 B2
9171251 Camp et al. Oct 2015 B2
9191342 Hughes et al. Nov 2015 B2
9202304 Baenziger et al. Dec 2015 B1
9253277 Hughes et al. Feb 2016 B2
9306818 Aumann Apr 2016 B2
9307442 Bachmann et al. Apr 2016 B2
9363309 Hughes Jun 2016 B2
9397951 Hughes Jul 2016 B1
9438538 Hughes et al. Sep 2016 B2
9549048 Hughes Jan 2017 B1
9584403 Hughes et al. Feb 2017 B2
9584414 Sung et al. Feb 2017 B2
9613071 Hughes Apr 2017 B1
9626224 Hughes et al. Apr 2017 B2
9647949 Varki et al. May 2017 B2
9712463 Hughes et al. Jul 2017 B1
9717021 Hughes et al. Jul 2017 B2
20010026231 Satoh Oct 2001 A1
20010054084 Kosmynin Dec 2001 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020010702 Ajtai et al. Jan 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020061027 Abiru et al. May 2002 A1
20020065998 Buckland May 2002 A1
20020071436 Border et al. Jun 2002 A1
20020078242 Viswanath Jun 2002 A1
20020101822 Ayyagari et al. Aug 2002 A1
20020107988 Jordan Aug 2002 A1
20020116424 Radermacher et al. Aug 2002 A1
20020129158 Zhang et al. Sep 2002 A1
20020129260 Benfield et al. Sep 2002 A1
20020131434 Vukovic et al. Sep 2002 A1
20020150041 Reinshmidt et al. Oct 2002 A1
20020163911 Wee et al. Nov 2002 A1
20020169818 Stewart et al. Nov 2002 A1
20020181494 Rhee Dec 2002 A1
20020188871 Noehring et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20030002664 Anand Jan 2003 A1
20030009558 Ben-Yehezkel Jan 2003 A1
20030012400 McAuliffe et al. Jan 2003 A1
20030046572 Newman et al. Mar 2003 A1
20030123481 Neale et al. Jul 2003 A1
20030123671 He et al. Jul 2003 A1
20030131079 Neale et al. Jul 2003 A1
20030133568 Stein et al. Jul 2003 A1
20030142658 Ofuji et al. Jul 2003 A1
20030149661 Mitchell et al. Aug 2003 A1
20030149869 Gleichauf Aug 2003 A1
20030204619 Bays Oct 2003 A1
20030214502 Park et al. Nov 2003 A1
20030214954 Oldak et al. Nov 2003 A1
20030233431 Reddy et al. Dec 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040047308 Kavanagh et al. Mar 2004 A1
20040083299 Dietz et al. Apr 2004 A1
20040086114 Rarick May 2004 A1
20040088376 McCanne et al. May 2004 A1
20040114569 Naden et al. Jun 2004 A1
20040117571 Chang et al. Jun 2004 A1
20040123139 Aiello et al. Jun 2004 A1
20040158644 Albuquerque et al. Aug 2004 A1
20040179542 Murakami et al. Sep 2004 A1
20040181679 Dettinger et al. Sep 2004 A1
20040199771 Morten et al. Oct 2004 A1
20040202110 Kim Oct 2004 A1
20040203820 Billhartz Oct 2004 A1
20040205332 Bouchard et al. Oct 2004 A1
20040243571 Judd Dec 2004 A1
20040250027 Heflinger Dec 2004 A1
20040255048 Lev Ran et al. Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050053094 Cain et al. Mar 2005 A1
20050055372 Springer, Jr. et al. Mar 2005 A1
20050055399 Savchuk Mar 2005 A1
20050071453 Ellis Mar 2005 A1
20050091234 Hsu et al. Apr 2005 A1
20050111460 Sahita May 2005 A1
20050131939 Douglis et al. Jun 2005 A1
20050132252 Fifer et al. Jun 2005 A1
20050141425 Foulds Jun 2005 A1
20050171937 Hughes et al. Aug 2005 A1
20050177603 Shavit Aug 2005 A1
20050190694 Ben-Nun et al. Sep 2005 A1
20050207443 Kawamura et al. Sep 2005 A1
20050210151 Abdo et al. Sep 2005 A1
20050220019 Melpignano Oct 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050235119 Sechrest et al. Oct 2005 A1
20050240380 Jones Oct 2005 A1
20050243743 Kimura Nov 2005 A1
20050243835 Sharma et al. Nov 2005 A1
20050256972 Cochran et al. Nov 2005 A1
20050278459 Boucher et al. Dec 2005 A1
20050283355 Itani et al. Dec 2005 A1
20050286526 Sood et al. Dec 2005 A1
20060013210 Bordogna et al. Jan 2006 A1
20060026425 Douceur et al. Feb 2006 A1
20060031936 Nelson et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060039354 Rao et al. Feb 2006 A1
20060045096 Farmer et al. Mar 2006 A1
20060059171 Borthakur et al. Mar 2006 A1
20060059173 Hirsch et al. Mar 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060136913 Sameske Jun 2006 A1
20060143497 Zohar et al. Jun 2006 A1
20060195547 Sundarrajan et al. Aug 2006 A1
20060195840 Sundarrajan et al. Aug 2006 A1
20060212426 Shakara et al. Sep 2006 A1
20060218390 Loughran et al. Sep 2006 A1
20060227717 van den Berg et al. Oct 2006 A1
20060250965 Irwin Nov 2006 A1
20060268932 Singh et al. Nov 2006 A1
20060280205 Cho Dec 2006 A1
20070002804 Xiong et al. Jan 2007 A1
20070008884 Tang Jan 2007 A1
20070011424 Sharma et al. Jan 2007 A1
20070038815 Hughes Feb 2007 A1
20070038816 Hughes et al. Feb 2007 A1
20070038858 Hughes Feb 2007 A1
20070050475 Hughes Mar 2007 A1
20070076693 Krishnaswamy Apr 2007 A1
20070081513 Torsner Apr 2007 A1
20070097874 Hughes et al. May 2007 A1
20070110046 Farrell et al. May 2007 A1
20070115812 Hughes May 2007 A1
20070127372 Khan et al. Jun 2007 A1
20070130114 Li et al. Jun 2007 A1
20070140129 Bauer et al. Jun 2007 A1
20070150497 De La Cruz et al. Jun 2007 A1
20070174428 Lev Ran et al. Jul 2007 A1
20070179900 Daase et al. Aug 2007 A1
20070195702 Yuen et al. Aug 2007 A1
20070195789 Yao Aug 2007 A1
20070198523 Hayim Aug 2007 A1
20070226320 Hager et al. Sep 2007 A1
20070237104 Alon et al. Oct 2007 A1
20070244987 Pedersen et al. Oct 2007 A1
20070245079 Bhattacharjee et al. Oct 2007 A1
20070248084 Whitehead Oct 2007 A1
20070258468 Bennett Nov 2007 A1
20070263554 Finn Nov 2007 A1
20070276983 Zohar et al. Nov 2007 A1
20070280245 Rosberg Dec 2007 A1
20080005156 Edwards et al. Jan 2008 A1
20080013532 Garner et al. Jan 2008 A1
20080016301 Chen Jan 2008 A1
20080028467 Kommareddy et al. Jan 2008 A1
20080031149 Hughes et al. Feb 2008 A1
20080031240 Hughes et al. Feb 2008 A1
20080071818 Apanowicz et al. Mar 2008 A1
20080095060 Yao Apr 2008 A1
20080133536 Bjorner et al. Jun 2008 A1
20080133561 Dubnicki et al. Jun 2008 A1
20080184081 Hama et al. Jul 2008 A1
20080205445 Kumar et al. Aug 2008 A1
20080222044 Gottlieb et al. Sep 2008 A1
20080229137 Samuels et al. Sep 2008 A1
20080243992 Jardetzky et al. Oct 2008 A1
20080267217 Colville et al. Oct 2008 A1
20080300887 Chen et al. Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080320151 McCanne et al. Dec 2008 A1
20090006801 Shultz et al. Jan 2009 A1
20090024763 Stepin et al. Jan 2009 A1
20090037448 Thomas Feb 2009 A1
20090060198 Little Mar 2009 A1
20090063696 Wang et al. Mar 2009 A1
20090080460 Kronewitter, III et al. Mar 2009 A1
20090089048 Pouzin Apr 2009 A1
20090092137 Haigh et al. Apr 2009 A1
20090100483 McDowell Apr 2009 A1
20090158417 Khanna et al. Jun 2009 A1
20090175172 Prytz et al. Jul 2009 A1
20090204961 DeHaan et al. Aug 2009 A1
20090234966 Samuels et al. Sep 2009 A1
20090245114 Vijayaraghavan Oct 2009 A1
20090265707 Goodman et al. Oct 2009 A1
20090274294 Itani Nov 2009 A1
20090279550 Romrell et al. Nov 2009 A1
20090281984 Black Nov 2009 A1
20100005222 Brant et al. Jan 2010 A1
20100011125 Yang et al. Jan 2010 A1
20100020693 Thakur Jan 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070605 Hughes et al. Mar 2010 A1
20100077251 Liu et al. Mar 2010 A1
20100082545 Bhattacharjee et al. Apr 2010 A1
20100085964 Weir et al. Apr 2010 A1
20100115137 Kim et al. May 2010 A1
20100121957 Roy et al. May 2010 A1
20100124239 Hughes May 2010 A1
20100131957 Kami May 2010 A1
20100169467 Shukla et al. Jul 2010 A1
20100177663 Johansson et al. Jul 2010 A1
20100225658 Coleman Sep 2010 A1
20100232443 Pandey Sep 2010 A1
20100242106 Harris Sep 2010 A1
20100246584 Ferguson et al. Sep 2010 A1
20100290364 Black Nov 2010 A1
20100318892 Teevan et al. Dec 2010 A1
20100333212 Carpenter et al. Dec 2010 A1
20110002346 Wu Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110113472 Fung et al. May 2011 A1
20110154169 Gopal et al. Jun 2011 A1
20110154329 Arcese et al. Jun 2011 A1
20110181448 Koratagere Jul 2011 A1
20110219181 Hughes et al. Sep 2011 A1
20110225322 Demidov et al. Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110299537 Saraiya et al. Dec 2011 A1
20120036325 Mashtizadeh et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120218130 Boettcher et al. Aug 2012 A1
20120221611 Watanabe et al. Aug 2012 A1
20120230345 Ovsiannikov Sep 2012 A1
20120239872 Hughes et al. Sep 2012 A1
20130018722 Libby Jan 2013 A1
20130018765 Fork et al. Jan 2013 A1
20130031642 Dwivedi et al. Jan 2013 A1
20130044751 Casado et al. Feb 2013 A1
20130058354 Casado et al. Mar 2013 A1
20130080619 Assuncao et al. Mar 2013 A1
20130086236 Baucke et al. Apr 2013 A1
20130094501 Hughes Apr 2013 A1
20130103655 Fanghaenel et al. Apr 2013 A1
20130117494 Hughes et al. May 2013 A1
20130121209 Padmanabhan et al. May 2013 A1
20130141259 Hazarika et al. Jun 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130250951 Koganti Sep 2013 A1
20130263125 Shamsee et al. Oct 2013 A1
20130282970 Hughes et al. Oct 2013 A1
20130343191 Kim et al. Dec 2013 A1
20140052864 Van Der Linden et al. Feb 2014 A1
20140075554 Cooley Mar 2014 A1
20140101426 Senthurpandi Apr 2014 A1
20140108360 Kunath et al. Apr 2014 A1
20140114742 Lamontagne Apr 2014 A1
20140123213 Vank et al. May 2014 A1
20140181381 Hughes et al. Jun 2014 A1
20140269705 DeCusatis et al. Sep 2014 A1
20140279078 Nukala Sep 2014 A1
20140379937 Hughes et al. Dec 2014 A1
20150074291 Hughes Mar 2015 A1
20150074361 Hughes et al. Mar 2015 A1
20150078397 Hughes et al. Mar 2015 A1
20150120663 Le Scouarnec et al. Apr 2015 A1
20150143505 Border et al. May 2015 A1
20150170221 Shah Jun 2015 A1
20150281099 Banavalikar Oct 2015 A1
20150281391 Hughes et al. Oct 2015 A1
20150334210 Hughes Nov 2015 A1
20160014051 Hughes et al. Jan 2016 A1
20160034305 Shear Feb 2016 A1
20160093193 Silvers Mar 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160255542 Hughes et al. Sep 2016 A1
20160380886 Blair et al. Dec 2016 A1
20170111692 An et al. Apr 2017 A1
20170149679 Hughes et al. May 2017 A1
20170187581 Hughes et al. Jun 2017 A1
20170359238 Hughes et al. Dec 2017 A1
Foreign Referenced Citations (3)
Number Date Country
1507353 Feb 2005 EP
H05-061964 Mar 1993 JP
WO0135226 May 2001 WO
Non-Patent Literature Citations (58)
Entry
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14 pages.
Singh et al. ; “Future of Internet Security—IPSEC”; 2005; pp. 1-8.
Muthitacharoen, Athicha et al., “A Low-bandwidth Network File System,” 2001, in Proc. of the 18th Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187.
“Shared LAN Cache Datasheet”, 1996, <http://www.lancache.com/slcdata.htm>.
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000.
Hong, B et al. “Duplicate data elimination in a SAN file system”, In Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE.
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, In Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST).
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference.
You, L. L. et al., “Deep Store an Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st Intl. Conf. on Data Eng.,Tokyo, Japan, Apr. 5-8, 2005, pp. 12.
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. <http://webglimpse.net/pubs/TR93-33.pdf>. Also appears in the 1994 winter USENIX Technical Conference.
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001.
Definition memory (n), Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). Copy not provided in IPR2013-00402 proceedings.
Definition appliance, 2c, Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). Copy not provided in IPR2013-00402 proceedings.
Newton, “Newton's Telecom Dictionary”, 17th Ed., 2001, pp. 38, 201, and 714.
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008).
Final Written Decision, dated Jun. 9, 2015, Inter Partes Review Case No. IPR2014-00245.
“Business Wire, ““Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls”” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1 (last visited Aug. 8, 2014)).”
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014)).
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&isSearch=true&pageSize=3&page=2 (last visited Aug. 8, 2014)).
Riverbed, “The Riverbed Optimization System (RiOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS_4_0.pdf (last visited Aug. 8, 2014)).
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)).
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403.
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402.
Final Office Action, dated Jan. 11, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011.
Final Office Action, dated Sep. 18, 2015, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014.
Final Office Action, dated Dec. 21, 2015, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015.
Non-Final Office Action, dated Aug. 11, 2015, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015.
Non-Final Office Action, dated Aug. 18, 2015, U.S. Appl. No. 14/543,781, filed Nov. 17, 2014.
Notice of Allowance, dated Oct. 5, 2015, U.S. Appl. No. 14/734,949, filed Jun. 9, 2015.
Advisory Action, dated Nov. 25, 2015, U.S. Appl. No. 13/482,321, filed May 29, 2012.
Non-Final Office Action, dated Dec. 15, 2015, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014.
Non-Final Office Action, dated Dec. 16, 2015, U.S. Appl. No. 14/859,179, filed Sep. 18, 2015.
Non-Final Office Action, dated Jan. 12, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014.
Notice of Allowance, dated Feb. 8, 2016, U.S. Appl. No. 14/543,781, filed Nov. 17, 2014.
Non-Final Office Action, dated Aug. 10, 2016, U.S. Appl. No. 15/148,933, filed May 6, 2016.
Notice of Allowance, dated Aug. 24, 2016, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015.
Non-Final Office Action, dated Aug. 26, 2016, U.S. Appl. No. 13/621,534, filed Sep. 17, 2012.
Final Office Action, dated Oct. 4, 2016, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016.
Non-Final Office Action, dated Oct. 6, 2016, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014.
Corrected Notice of Allowability, dated Mar. 7, 2016, U.S. Appl. No. 14/543,781, filed Nov. 17, 2014.
Notice of Allowance, dated Feb. 16, 2016, U.S. Appl. No. 14/248,167, filed Apr. 8, 2014.
Notice of Allowance, dated Mar. 2, 2016, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015.
Corrected Notice of Allowability, dated Mar. 14, 2016, U.S. Appl. No. 14/677,841, filed Apr. 2, 2015.
Advisory Action, dated Mar. 21, 2016, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015.
Non-Final Office Action, dated May 3, 2016, U.S. Appl. No. 14/679,965, filed Apr. 6, 2015.
Non-Final Office Action, dated May 6, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011.
Notice of Allowance, dated Jun. 3, 2016, U.S. Appl. No. 14/859,179, filed Sep. 18, 2015.
Non-Final Office Action, dated Jun. 15, 2016, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016.
Final Office Action, dated Jul. 19, 2016, U.S. Appl. No. 14/479,131, filed Sep. 5, 2014.
Non-Final Office Action, dated Jul. 25, 2016, U.S. Appl. No. 14/067,619, filed Oct. 30, 2013.
Final Office Action, dated Jul. 26, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014.
Noice of Allowance, dated Nov. 16, 2016, U.S. Appl. No. 13/288,691, filed Nov. 3, 2011.
Notice of Allowance, dated Nov. 23, 2016, U.S. Appl. No. 14/067,619, filed Oct. 30, 2013.
Notice of Allowance, dated Dec. 5, 2016, U.S. Appl. No. 14/477,804, filed Sep. 4, 2014.
Advisory Action, dated Jan. 9, 2017, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016.
Final Office Action, dated Feb. 17, 2017, U.S. Appl. No. 15/148,933, filed May 6, 2016.
Notice of Allowance, dated Mar. 22, 2017, U.S. Appl. No. 13/621,534, filed Sep. 17, 2012.
Notice of Allowance, dated Mar. 23, 2017, U.S. Appl. No. 15/091,533, filed Apr. 5, 2016.