This application is a Paris Convention Filing under 35 U.S.C. §119 and claims priority to and benefit from German Application DE 10 2008 024 215.2-22, filed on May. 19, 2008.
The invention relates to a method of determining and reconstructing changes in load on lifting gear. In particular, it relates to the field of lifting gear used on cranes, especially mobile cranes, and also lifting gear as a whole (e.g. crane/mobile crane), as well as the components directly or indirectly affected by the load change.
Methods of determining and reconstructing changes in load are generally used as a means of logging operation of the lifting gear. They are used to reconstruct accidents or for calculating charges based on payload. This information is also used as a basis for calculating structural strain on the lifting gear.
As known from the prior art, such load changes are determined by detecting the picking up of a load and setting down of a load. These load changes are detected with the assistance of additional information, such as actuation functions for example, which enable the lifting or lowering of a load to be anticipated. When plotted load curves have to be broken down for evaluation purposes, this breakdown is done on the basis of such additional information (actuation information) or on the basis of external events, such as the bridging of a safety device for example. In this respect, it is specifically assumed that the action of picking up a load is necessarily followed by the action of setting down a load and vice versa. The data sets created in this manner are stored in a data logger as a rule, with a view to detecting load situations subsequently and reconstructing them if necessary. These methods known from the prior art enable an evaluation interval to be considered on the basis of discrete time within thresholds known to the system, namely pick up load—set down load—pick up load, etc. . . (
Accordingly, the objective of this invention is to propose a method of determining changes in load on lifting gear which at least partially overcomes the disadvantages of the prior art. In particular, the intention is to enable a reliable reconstruction of load changes so that calculations based on them can be optimised.
This objective is achieved by the invention on the basis of a method of determining changes in load on lifting gear as defined in claim 1. The dependent claims define preferred embodiments of the invention.
For the purposes of the method proposed by the invention, a change in load within load progression data is determined at a transition point of the load curve gradient. Furthermore, the load curve is broken down into discrete-time observation intervals at the transition points. In other words, this invention discloses a method of breaking down load curves. The observation intervals created in this manner enable data-reduced information to be generated, from which any load curves can be subsequently reconstructed on a continuous time basis because they are not based on detecting the action of picking up and setting down a load.
Specifically using the load curve gradient makes it possible to obtain an optimised breakdown and hence evaluation using a piece of information intrinsic to the load curve, in other words one which does not have to be determined separately.
The process of determination based on the method proposed by the invention may be applied using stored load curve data but also using real-time load curve data. In particular, the load curve is plotted, i.e. stored, and a memory impulse created or inserted at transition points as a load change indicator or load change event.
In one embodiment of the invention, observation intervals which are negligible, and are obviously so or are so based on an exclusion criterion, are not taken into account or are suppressed. This being the case, the exclusion criterion may be a time-based criterion in particular (e.g. a short interval) or a criterion which makes allowance for external influences on the load curve (external events, control data).
The transition point may be determined or may be inserted in the load curve as a load curve transition if the load curve gradient changes sign or changes to zero. Furthermore, a transition point can be determined or inserted if the gradient changes consecutively more than once with the same sign, in other words when the load curve continues to rise or fall but the steepness of the curve changes at the same time.
Based on a somewhat broader aspect, the invention also relates to a method of reconstructing load situations on lifting gear and the method used to determine changes in load is based on the different embodiments described above. In particular, allowance can also be made for other changes in load when reconstructing the load situation, either originating from operating data of the lifting gear or determined during specific operating situations.
The invention will be explained in more detail below with reference to embodiments and with the aid of the appended graphs. All the described features may be used individually and in any practical combination. The appended graphs illustrate the following
a a load curve plotting a breakdown of events based on the prior art; and
b a load curve with a breakdown based on this invention.
In terms of one particular embodiment, this invention can also be described as disclosing a method of analysing changes in load on lifting gear with a view to evaluating and reconstructing load situations, which is not primarily or not exclusively based on detecting the start of lifting and end of lifting. An evaluation unit breaks down the curve plotting the load into discrete-time observation intervals and every load change can be applied as a means of breaking down an evaluation interval. The breakdown (load change event) is performed on the basis of changes in gradient in the load curve and specifically, load changes offset from one another in time but with the same gradient sign can be used to this end as a means of breaking down the evaluation interval.
The method proposed by the invention therefore enables load changes to be reconstructed continuously over time, basically without having to detect the picking up of a load or setting down of a load, and therefore also enables loads which change during a lifting operation to be reconstructed.
Naturally, however, it would also be possible to process other information known to the system in addition to the information obtained as proposed by the invention in order to obtain the best optimised results possible. For example, events intended to be considered separately at a later stage (e.g. operating a safety device) may generate an additional memory impulse or eliminate another one. In
However,
Number | Date | Country | Kind |
---|---|---|---|
10 2008 024 215 | May 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4953053 | Pratt | Aug 1990 | A |
5219420 | Kiiski et al. | Jun 1993 | A |
6644485 | Uchida et al. | Nov 2003 | B2 |
20020144968 | Ruddy | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2001046 | Apr 1990 | CA |
20318718 | Apr 2004 | DE |
0749934 | Dec 1996 | EP |
0638876 | Nov 1998 | EP |
0737851 | Nov 2001 | EP |
0611211 | May 2003 | EP |
1103511 | Apr 2005 | EP |
1818308 | Aug 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20090287381 A1 | Nov 2009 | US |