Determining appliance insurance coverage/products using informatic sensor data

Information

  • Patent Grant
  • 11966939
  • Patent Number
    11,966,939
  • Date Filed
    Friday, September 3, 2021
    2 years ago
  • Date Issued
    Tuesday, April 23, 2024
    12 days ago
Abstract
A computer device and method for processing risk related data to determine one or more insurance products for appliances and other systems located in or on an insured property. Informatic data is received from one or more informatic sensor devices relating to one or more appliances located in or on an insured property. Analysis is performed on the received informatic data to determine one or more insurance products to be recommended for at least one appliance located in or on the insured property. Notification is provided regarding determination of the one or more insurance products for the at least one appliance located in or on the insured property.
Description
FIELD OF THE INVENTION

The disclosed embodiments generally relate to a method and computerized system for managing insurance and related products and services, and more particularly, to using data captured from an insured property for determining appliance insurance products.


BACKGROUND OF THE INVENTION

Smart house functionality is a maturing space, but the opportunity for insurance companies remains largely untapped. Thus, the terms of insurance policies, such as homeowner insurance policies, may not be reflective of the true nature of the risks being insured.


Accordingly, there is an unmet need for measuring information relating to an insured risk, such as a residence or structures located on the residence premises, and utilizing that information to make appropriate modifications to insurance policy terms, such as the deductible amount.


SUMMARY OF THE INVENTION

The purpose and advantages of the below described illustrated embodiments will be set forth in and apparent from the description that follows. Additional advantages of the illustrated embodiments will be realized and attained by the devices, systems and methods particularly pointed out in the written description and claims hereof, as well as from the appended drawings. To achieve these and other advantages and in accordance with the purpose of the illustrated embodiments, in one aspect, described is a computer device and method for processing risk related data to determine one or more insurance products for appliances and other systems located in an insured property. Informatic data is received from one or more informatic sensor devices relating to one or more appliances and/or systems located in an insured property. Analysis is performed on the received informatic data to determine one or more insurance products to be recommended for at least one appliance and/or system located in the insured property. Notification is provided regarding determination of the one or more insurance products for the at least one appliance and/or system located in the insured property.


In another aspect, an insurance policy is received that is associated with the insured property, which is the analyzed to determine if the one or more appliances and/or system located in the insured property are covered by the insurance policy. Analysis is then performed on the received informatic data to determine one or more insurance products providing insurance coverage for one or more appliances and/or systems located in the insured property, which insurance coverage is determined not to be provided by the analyzed insurance policy.


This summary section is provided to introduce a selection of concepts in a simplified form that are further described subsequently in the detailed description section. This summary section is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying appendices and/or drawings illustrate various non-limiting, example, inventive aspects in accordance with the present disclosure:



FIG. 1 illustrates an example communication network in accordance with an illustrated embodiment;



FIG. 2 illustrates a network computer device/node in accordance with an illustrated embodiment;



FIG. 3 is a block diagram of a plurality of appliances located inside or in the vicinity of an insured property from which sensor data is captured for subsequent analysis in accordance with an illustrated embodiment; and



FIG. 4 is a flow diagram of operational steps of the appliance analyzer module of FIG. 3 in accordance with an illustrated embodiment.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

The illustrated embodiments are now described more fully with reference to the accompanying drawings wherein like reference numerals identify similar structural/functional features. The illustrated embodiments are not limited in any way to what is illustrated as the illustrated embodiments described below are merely exemplary, which can be embodied in various forms, as appreciated by one skilled in the art. Therefore, it is to be understood that any structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representation for teaching one skilled in the art to variously employ the discussed embodiments. Furthermore, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of the illustrated embodiments.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the illustrated embodiments, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a stimulus” includes a plurality of such stimuli and reference to “the signal” includes reference to one or more signals and equivalents thereof known to those skilled in the art, and so forth.


It is to be appreciated the illustrated embodiments discussed below are preferably a software algorithm, program or code residing on computer useable medium having control logic for enabling execution on a machine having a computer processor. The machine typically includes memory storage configured to provide output from execution of the computer algorithm or program.


As used herein, the term “software” is meant to be synonymous with any code or program that can be in a processor of a host computer, regardless of whether the implementation is in hardware, firmware or as a software computer product available on a disc, a memory storage device, or for download from a remote machine. The embodiments described herein include such software to implement the equations, relationships and algorithms described above. One skilled in the art will appreciate further features and advantages of the illustrated embodiments based on the above-described embodiments. Accordingly, the illustrated embodiments are not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety. For instance, commonly assigned U.S. Pat. Nos. 8,289,160 and 8,400,299 are related to certain embodiments described here and are each incorporated herein by reference in their entirety.


As used herein, the term “insurance policy” refers to a contract between an insurer, also known as an insurance company, and an insured, also known as a policyholder, in which the insurer agrees to indemnify the insured for specified losses, costs, or damage on specified terms and conditions in exchange of a certain premium amount paid by the insured. In a typical situation, when the insured suffers some loss for which he/she may have insurance the insured makes an insurance claim to request payment for the loss. It is to be appreciated for the purpose of the embodiments illustrated herein, the insurance policy is not to be understood to be limited to a residential or homeowners insurance policy, but can be for a commercial, umbrella, and other insurance policies known by those skilled in the art.


As also used herein, “insured” may refer to an applicant for a new insurance policy and/or may refer to an insured under an existing insurance policy.


As used herein, the term “insurance policy” or “insurance product” may encompass a warranty or other contract for the repair, service, or maintenance of insured property.


As used herein, “insured property” means a dwelling, other buildings or structures, personal property, or business property, as well as the premises on which these are located, some or all which may be covered by an insurance policy.


Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, FIG. 1 depicts an exemplary communications network 100 in which below illustrated embodiments may be implemented.


It is to be understood a communication network 100 is a geographically distributed collection of nodes interconnected by communication links and segments for transporting data between end nodes, such as personal computers, work stations, smart phone devices, tablets, televisions, sensors and or other devices such as automobiles, etc. Many types of networks are available, with the types ranging from local area networks (LANs) to wide area networks (WANs). LANs typically connect the nodes over dedicated private communications links located in the same general physical location, such as a insured property 300 or campus. WANs, on the other hand, typically connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical lightpaths, synchronous optical networks (SONET), synchronous digital hierarchy (SDH) links, or Powerline Communications (PLC), and others.



FIG. 1 is a schematic block diagram of an example communication network 100 illustratively comprising nodes/devices 101-108 (e.g., sensors 102, client computing devices 103, smart phone devices 105, servers 106, routers 107, switches 108 and the like) interconnected by various methods of communication. For instance, the links 109 may be wired links or may comprise a wireless communication medium, where certain nodes are in communication with other nodes, e.g., based on distance, signal strength, current operational status, location, etc. Moreover, each of the devices can communicate data packets (or frames) 142 with other devices using predefined network communication protocols as will be appreciated by those skilled in the art, such as various wired protocols and wireless protocols etc., where appropriate. In this context, a protocol consists of a set of rules defining how the nodes interact with each other. Those skilled in the art will understand that any number of nodes, devices, links, etc. may be used in the computer network, and that the view shown herein is for simplicity. Also, while the embodiments are shown herein with reference to a general network cloud, the description herein is not so limited, and may be applied to networks that are hardwired.


As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.


Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, cloud server, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.


A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.


Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.


Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).


Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.



FIG. 2 is a schematic block diagram of an example network computing device 200 (e.g., one of network devices 101-108) that may be used (or components thereof) with one or more embodiments described herein, e.g., as one of the nodes shown in the network 100. As explained above, in different embodiments these various devices be configured to communicate with each other in any suitable way, such as, for example, via communication network 100.


Device 200 is only one example of a suitable system and is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the invention described herein. Regardless, computing device 200 is capable of being implemented and/or performing any of the functionality set forth herein.


Computing device 200 is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with computing device 200 include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed data processing environments that include any of the above systems or devices, and the like.


Computing device 200 may be described in the general context of computer system-executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. Computing device 200 may be practiced in distributed data processing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed data processing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.


Device 200 is shown in FIG. 2 in the form of a general-purpose computing device. The components of device 200 may include, but are not limited to, one or more processors or processing units 216, a system memory 228, and a bus 218 that couples various system components including system memory 228 to processor 216.


Bus 218 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus.


Computing device 200 typically includes a variety of computer system readable media. Such media may be any available media that is accessible by device 200, and it includes both volatile and non-volatile media, removable and non-removable media.


System memory 228 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) 230 and/or cache memory 232. Computing device 200 may further include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage system 234 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (not shown and typically called a “hard drive”). Although not shown, a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”), and an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In such instances, each can be connected to bus 218 by one or more data media interfaces. As will be further depicted and described below, memory 228 may include at least one program product having a set (e.g., at least one) of program modules that are configured to carry out the functions of embodiments of the invention.


Program/utility 240, having a set (at least one) of program modules 215, such as appliance analyzer module 308 described below, may be stored in memory 228 by way of example, and not limitation, as well as an operating system, one or more application programs, other program modules, and program data. Each of the operating system, one or more application programs, other program modules, and program data or some combination thereof, may include an implementation of a networking environment. Program modules 215 generally carry out the functions and/or methodologies of embodiments of the invention as described herein.


Device 200 may also communicate with one or more external devices 214 such as a keyboard, a pointing device, a display 224, etc.; one or more devices that enable a user to interact with computing device 200; and/or any devices (e.g., network card, modem, etc.) that enable computing device 200 to communicate with one or more other computing devices. Such communication can occur via Input/Output (I/O) interfaces 222. Still yet, device 200 can communicate with one or more networks such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 220. As depicted, network adapter 220 communicates with the other components of computing device 200 via bus 218. It should be understood that although not shown, other hardware and/or software components could be used in conjunction with device 200. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, cloud servers, etc.



FIGS. 1 and 2 are intended to provide a brief, general description of an illustrative and/or suitable exemplary environment in which embodiments of the below described present invention may be implemented. FIGS. 1 and 2 are exemplary of a suitable environment and are not intended to suggest any limitation as to the structure, scope of use, or functionality of an embodiment of the present invention. A particular environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in an exemplary operating environment. For example, in certain instances, one or more elements of an environment may be deemed not necessary and omitted. In other instances, one or more other elements may be deemed necessary and added.


With the exemplary communication network 100 (FIG. 1) and computing device 200 (FIG. 2) being generally shown and discussed above, description of certain illustrated embodiments of the present invention will now be provided. With reference now to FIG. 3, an example of an insured property 300 is shown which is to be understood to be any type of insured property structure (e.g., residential, commercial, retail, municipal, etc.) in which the capture and analysis of sensor data is useful for the reasons at least described below.


Insured property 300 may contain one or more appliances located therein or in its vicinity. FIG. 3 is a block diagram illustrating such exemplary appliances from which sensor data is captured for subsequent analysis, in accordance with an illustrated embodiment. Insured property 300 preferably includes a computing device 103 (or centralized virtual private server) for capturing data from a plurality of sensors 340. It is to be understood computing device 103 may be located in any location, and its position is not limited to the example shown. Examples of appliances depicted in FIG. 3 include (but are not limited to) all kitchen appliances (e.g., refrigerator 330, freezer, stove, cooktop, oven, grill, dishwasher, etc.); HVAC components 332 (air conditioner, heating system, air handlers, humidifiers/de-humidifiers, etc.), water purification system 334, media entertainment system 336 (e.g., televisions), networking components 338 (routers, switches, extenders, etc.), electrical generator system, and the like. In many of the embodiments, appliances 330-338 have a computer based architecture or a controller that enables communication of data concerning the electronic appliance. It is to be understood insured property appliances 330-338 may be located in any location inside or outside of insured property 300, and their positions are not limited to the example depicted in FIG. 3. In addition, a plurality of appliance sensors 340 may be attached to and/or operatively connected to controllers or centralized hub (and/or other components and/or portions) of appliances 330-338.


Each of the appliance sensors 340 may be configured and operational to preferably detect various operating parameters relating to appliances 330-338 within or outside the insured property 300. An appliance sensor may comprise detection hardware, or may employ one or more remote probes, which may be located inside and/or outside the insured property 300, functional to detect certain operating parameters of appliances 330-338. Operating parameters detected by an appliance sensor 340 may include (but are not limited to): the operating efficiency of an appliance (energy usage, output performance); the time an appliance operates, the age of an appliance. Such appliance readings from one or more appliances 330-338 could thus be recorded by device 103 and used by an appliance analyzer 308 in various ways. It is additionally to be understood and appreciated that appliance sensors 340 can also be networked into a central computer hub (e.g., device 103) in an insured property or elsewhere to aggregate collected sensor data packets. Computing device 103 may communicate its data to server 106.


Computing device 103 is preferably configured and operational to receive (capture) data from various appliance sensors 340 regarding certain aspects (including functional and operational) of appliances 330-338 and transmit that captured data to a remote server 106, via network 100. It is noted device 103 may perform analytics regarding the captured sensor data regarding insured property 330-338 and/or the remote server 106, preferably located or controlled by an insurance company/carrier, may perform such analytics, as also further described below. It is also to be understood in other embodiments, data from appliance sensors 340 may be transmitted directly to remote server 106, via network 100, thus either obviating the need for computing device 103 or mitigating its functionality to capture all data from appliance sensors 340.


In the illustrated embodiment of FIG. 3, computing device 103 may be coupled to various below described sensor types operative to sense one or more ambient conditions relevant to the functionality of the plurality of appliances 330-338. It is to be understood and appreciated, in accordance with the embodiments herein, appliance sensors are preferably installed, and its data is collected, maintained, accessed and otherwise utilized pursuant to the permission of the insured(s) and subject to appropriate security and privacy protections.


Although various sensor types are described below, the sensor types described herein are not intended to be exhaustive as embodiments of the present invention may encompass any type of known or unknown sensor type which facilitates the purposes and objectives of the certain illustrated embodiments described herein. Exemplary sensor types include (but are not limited to):

    • Temperature sensor—configured and operational to preferably detect the temperature present at the insured property 300. For example, the temperature may rise and fall with the change of seasons and/or the time of day. Moreover, in the event of a fire, the temperature present at the insured property 300 may rise quickly—possibly to a level of extreme high heat. The temperature sensor may make use of probes placed at various locations in and around the insured property 300, in order to collect a representative profile of the temperature present at the insured property 300. These probes may be connected to device 103 by wire, or by a wireless technology. For example, if device 103 is positioned in the attic of the insured property 300, the temperature may be higher than the general temperature present in the insured property. Thus, probes placed at various locations (e.g., in the basement, on the various levels of a multi-level insured property 300, in different rooms that receive different amounts of sun, etc.), in order to obtain an accurate picture of the temperature present at the insured property. Moreover, device 103 may record both the indoor and outdoor temperature present at the insured property 300. For example, data about the indoor temperature, the outdoor temperature, and/or the differential between indoor and outdoor temperatures, may be used as part of some analysis model, and thus all of the different values could be stored. Device 103 may store an abstract representation of temperature (e.g., the average indoor temperature, as collected at all of the probes), or may store each temperature reading individually so that the individual readings may be provided as input to an analysis model.
    • Humidity sensor—configured and operational to preferably detect the humidity present at the insured property 300. Humidity sensor may comprise the humidity-detection hardware, or may employ one or more remote probes, which may be located inside and/or outside the insured property 300. Humidity readings from one or more locations inside and/or outside the insured property could thus be recorded by device 103.
    • Water pressure sensor—configured and operational to preferably monitor water pressure in the plumbing system in the insured property 300. Water pressure sensor may have one or more probes attached to various locations of the insured property's 300 plumbing, and thus device 103 may record the pressure present in the plumbing, and/or any changes in that pressure. For example, plumbing systems may be designed to withstand a certain amount of pressure, and if the pressure rises above that amount, the plumbing system may be at risk for leaking, bursting, or other failure. Thus, device 103 may record the water pressure that is present in the plumbing system at various points in time.
    • Water flow sensor—configured and operational to preferably monitor water flow rate in the plumbing system in the insured property 300. Water flow sensor may have one or more probes attached to various locations of the insured property's 300 plumbing, such as faucets, showerheads and appliances, and thus water flow sensor 103 may measure and/or record the amount of water flowing through the insured property's 300 water supply system. Thus, device 103 may record the water flow that is present in the plumbing system at various points in time.
    • Electrical system sensor/analyzer configured and operational to assess the condition of the insured property's 300 electrical system. For example, potentiometers may be connected to various points in the insured property's 300 electrical system to measure voltage. Readings from the potentiometers could be used to determine if the voltage is persistently too high, or too low, or if the voltage frequently drops and/or spikes. Such conditions may suggest that the insured property 300 is at risk for fire. Other types of electrical measurements could be taken, such as readings of current flowing through the electrical system. Still other types of electrical measurements could be determined include how energy is used and at what times of day it is used, etc. Any type of data about the insured property's 300 electrical system could be captured by device 103. An analysis model could use the information about electrical energy in various ways.


With exemplary sensors identified and briefly described above, and as will be further discussed below, it is to be generally understood sensors, including appliance sensors 340, preferably record certain data parameters relating to products and services provided by an insurance carrier, such as USAA, to identify and recommend appliance insurance products and other value added services such as those described below. It is to be understood and appreciated the aforementioned appliance sensors 340 may be configured as wired and wireless types integrated in a networked environment (e.g., WAN, LAN, WiFi, 802.11X, 3G, LTE, etc.), which may also have an associated IP address. It is to be further appreciated the appliance sensors 340 may consist of internal sensors located within the structure of insured property 300; external sensors located external of the structure of insured property 300; sound sensors for detecting ambient noise (e.g., for detecting termite and rodent activity, glass breakage, intruders, etc.); camera sensors such as those consisting of camera standalone devices, or by integrating into existing camera devices in an insured property 300. It is additionally to be understood and appreciated that appliance sensors 340 can be networked into a central computer hub (e.g., device 103) in an insured property or elsewhere to aggregate collected sensor data packets. Aggregated data packets can be analyzed in either a computer system (e.g., device 103) or via an external computer environment (e.g., server 106). Additionally, it is to be understood data packets collected from appliance sensors 340 can be aggregated in computing device 103 and sent as an aggregated packet to server 106 for subsequent analysis whereby data packets may be transmitted at prescribed time intervals (e.g., a benefit is to reduce cellular charges in that some insured properties 300 may not have Internet access or cellular service is backup when Internet service is nonfunctioning).


In accordance with an illustrated embodiment, in addition to the aforementioned, the appliance sensors 340 being utilized relative to insured property 300, computing device 103 may additionally be coupled to a Clock 320 which may keep track of time for device 103, thereby allowing a given item of data to be associated with the time at which the data was captured. For example, device 103 may recurrently capture readings of temperature, humidity, appliance operating times, etc., and may timestamp each reading. The time at which the readings are taken may be used to reconstruct events or for other analytic purposes, such as those described below.


A storage component 322 may further be provided and utilized to store data readings and/or timestamps in device 103. For example, storage component 322 may comprise, or may otherwise make use of, magnetic or optical disks, volatile random-access memory, non-volatile random-access memory, cloud servers, or any other type of storage device. There may be sufficient data storage capacity to store several hours or several days worth of readings.


A communication component 324 may further be provided and utilized to communicate recorded information from computing device 103 to an external location, such as computer server 106, which may be associated with an insurance carrier such as USAA. Communication component 324 may be, or may comprise, a network communication card such as an Ethernet card, a WiFi card, or any other communication mechanism. However, communication component 324 could take any form and is not limited to these examples. Communication component 324 might encrypt data that it communicates, in order to protect the security and/or privacy of the data. Communication component 324 may communicate data recorded by device 103 (e.g., data stored in storage component 322) to an external location, such as server 106. For example, server 106 may be operated by an insurance company, and may collect data from computing device 103 to learn about operating conditions, risks, maintenance and repair needs and other analytics relative to appliances 330-338 located in insured property 300. Communication component 324 may initiate communication sessions with server 106. Or, as another example, server 106 may contact device 103, through communication component 324, in order to receive data that has been stored by device 103. Additionally, data from appliance sensors 340, clock 320 and/or storage component 322 may be communicated directly to server 106, via network 100, thus obviating or mitigating the need for computing device 103.


In the example of FIG. 3, communication component 324 (which is shown, in FIG. 3, as being part of, or used by, computing device 103) communicates data to server 106. Server 106 may comprise, or otherwise may cooperate with, a data analysis module 304, which may analyze data in some manner. Data analysis module 304 may comprise various types of sub-modules, such as appliance analyzer 308. In general, appliance analyzer 308 may perform an analysis of collected data regarding various appliances located in or around insured property 300, such as their age, operating parameters, maintenance/repair issues, and the like.



FIG. 4 shows, in the form of a flow chart, exemplary operational steps of the appliance analyzer 308. Before turning to description of FIG. 4, it is noted that the flow diagram shown therein is described, by way of example, with reference to components shown in FIGS. 1-3, although these operational steps may be carried out in any system and are not limited to the scenario shown in the aforementioned figures. Additionally, the flow diagram in FIG. 4 shows an example in which operational steps are carried out in a particular order, as indicated by the lines connecting the blocks, but the various steps shown in this diagram can be performed in any order, or in any combination or sub-combination.


At 402, appliance analyzer 308 preferably collects data from a plurality of appliance sensors 340 (shown in FIG. 3). Contact between the computing device 103 and appliance analyzer 308 may be initiated by either the appliance analyzer 308 or computing device 103. Following the initial contact, appliance analyzer 308 may receive data from the computing device 103. It is to be understood data packets collected from appliance sensors 340 can be aggregated in computing device 103 and sent as an aggregated packet to appliance analyzer 308 for subsequent analysis.


At 404, appliance analyzer 308 preferably processes the received data. For example, appliance analyzer 308 may include a parser configured to parse the aggregated packet and classify the received data based on, for example, type of appliance corresponding to a particular subset of the received data. Appliance analyzer 308 may create a data structure for each classification. This step may further involve identifying a policy holder associated with insured property 300 in which the analyzed appliances are located.


At 406, appliance analyzer 308 preferably determines the age of the appliances 330-338 or parts thereof and/or length of service of the appliances 330-338 based on data captured from sensors 340. At 408, appliance analyzer 308 preferably analyzes operating parameters with respect to appliances 330-338. This step may further involve analyzing environmental conditions in which appliances 330-338 operate. For example, appliance analyzer 308 may use environmental data measured with a plurality of sensors situated at or near the analyzed appliances 330-338. The environmental data may be indicative of temperature, humidity, pressure, averages of the foregoing measurements over a time period, etc. More specifically, appliance analyzer 308 may be configured to identify maintenance/repair issues based upon environmental conditions in conjunction with operating parameters.


At 410, appliance analyzer 308 preferably identifies one or more maintenance/repair issues with respect to appliances 330-338. As nonlimiting examples, the maintenance/repair issue can be any one or more of the following: a need for replacement of the appliance 330-338 or a component thereof, a need for repair of the appliance 330-338 or a component thereof, a need for battery recharging, lifespan expired, lifespan below a predefined threshold, power inadequacy, appliance inoperability for intended purpose, inoperability of one or more functions (electrical and/or mechanical), network connectivity failure, and the like. For instance, appliance analyzer 308 may detect performance degradation of an appliance (e.g., refrigerator 330) upon either it's past operating performance efficiency and/or its operating performance falling outside of threshold values prescribed for it by a manufacturer. As another nonlimiting example, appliance analyzer 308 may detect a dirty filter in another appliance (e.g., HVAC component 332) and/or may detect degradation in HVAC component 332 performance likely contributable to a dirty filter element.


At 412, appliance analyzer 308 preferably determines whether accidental damage protection is needed with respect to appliances 330-338. For example, if appliance analyzer 308 determines that one or more of the appliances 330-338 is in need of replacement or repair due to accidental damage, appliance analyzer 308 may recommend a corresponding accidental damage protection insurance product. In a particular embodiment of the invention, the accidental damage coverage may cover accidental damage to the appliance 330-338 (such as damage caused by accidentally dropping appliance 330-338), and/or other loss of the appliance 330-338 (e.g., loss of the appliance 330-338 through theft, fire, storm, burglary, natural disasters, or other peril). As another example, accidental damage protection may cover accidental discharge, leakage or overflow of water or steam from within a plumbing, heating or HVAC system 332, sudden and accidental tearing apart, cracking, burning or bulging of a steam or hot water heating system or of appliances for heating water, sudden and accidental damage from artificially generated currents to electrical appliances, devices, fixtures and wiring. Accordingly, if analysis of the appliance informatics data detects, for example, leakage or overflow of water, appliance analyzer 308 may recommend accidental damage protection for one or more of the appliances 330-338 that may be damaged by such leakage or overflow.


At 414, appliance analyzer 308 preferably determines whether extended warranty coverage is needed with respect to appliances 330-338. In an embodiment of the present invention, an extended warranty may be an insurance product that can be purchased to cover the repair costs of product support or repair services beyond the warranty provider's original warranty period. An extended warranty may allow the policyholder to receive support and product repair services above and beyond what is provided by a base warranty associated with appliances 330-338. An extended warranty may take the form of a flexible duration extended warranty or a fixed duration extended warranty.


When offering flexible or fixed duration extended warranty coverage, appliance analyzer 308 may seek to charge a premium that both appeals to policyholders and results in profit. For example, the appliance analyzer 308 may offer a flexible extended warranty with a premium that is attractive to the policyholder because it can reduce expected support costs over the life of one or more appliances 330-338 covered by the warranty. In an embodiment of the present invention, appliance analyzer 308 may place restrictions on an extended warranty product. For example, a flexible duration extended warranty can come with a restriction such that if a policyholder purchases coverage, the coverage must be started before the product reaches a pre-specified age. A flexible duration extended warranty can also come with a restriction such that the flexible extended warranty cannot be resumed once it is discontinued. In some instances, appliance analyzer 308 may require that extended coverage begins at the end of a warranty originally provided with the appliances 330-338 (e.g., a base warranty).


Thus, at 414, appliance analyzer 308 may determine expected base warranty expiration dates for the plurality of appliances 330-338, for example, based on the age of the appliances 330-338, as determined in step 406 mentioned above. In response to determining that the current date is later than the expected warranty expiration date for a particular appliance 330-338, appliance analyzer 308 may recommend corresponding extended warranty coverage for that appliance 330-338.


At 416, appliance analyzer 308 preferably analyzes operating parameters of refrigerator 330 to determine whether a policyholder might be interested in purchasing food spoilage protection insurance plan. For instance, appliance analyzer 308 may detect performance degradation of refrigerator 330 upon either it's past operating performance efficiency and/or its operating performance falling outside of threshold values prescribed for it by a manufacturer. In response, appliance analyzer 308 may recommend a food spoilage protection plan in addition to recommended repairs. A food spoilage protection product may take the form of a flexible duration. For instance, such plan may reimburse up to $300 per claim on three-year plan and/or up to $500 per claim on five-year plans for incurred spoilage losses. In an alternative embodiment, appliance analyzer 308 may recommend food spoilage protection plan in response to detecting frequently occurring power outages.


At 418, policy analyzer 308 preferably automatically generates a comprehensive set of appliance insurance product recommendations based on the analysis performed at steps 404-416. In an embodiment of the present invention, policy analyzer 308 may be configured to determine a multiple product discount value, which can apply to combinations of multiple insurance products and/or combinations of multiple appliances.


It is to be appreciated policy analyzer 308 may be further configured and operational to electronically receive an insurance policy that is associated with the insured property 300. Policy analyzer 308 then analyzes the received insurance policy for the insured property 300 to determine if one or more appliances and/or systems located in the insured property 300 are covered by the insurance policy. Analysis is then performed on the received informatic data to determine one or more insurance products providing insurance coverage for one or more appliances and/or systems located in the insured property 300, which insurance coverage is determined not to be provided by the analyzed insurance policy for the insured property 300.


At 420, policy analyzer 308 preferably provides a notification indicating suggested appliance insurance product recommendations. It is to be appreciated that policy analyzer 308 may be configured to electronically deliver all notifications regarding recommended insurance products or services. The notification can be anything that advises a policyholder, device, or computer system of the suggested changes, including but not limited to, a display of text on a local display screen, a message in an email sent to a local or remote computer, a text message, a communication to a remote computer system. It is to be also understood and appreciated that policy analyzer 308 may be configured and operational to integrate with policy holder's communicative computing devices (e.g., smart phones (via an app), computers, tablets, smart TV's, vehicle communication systems, kitchen communication systems, etc.) for sending such notifications regarding insurance product recommendations. In an embodiment of the present invention, each notification may include, but not limited to, a recommendation to perform insurance related repairs based on the determined repair needs, a recommendation of one or more vendors to perform insurance related repairs based on the determined repair needs, additional insurance products and services, and the like. Additionally, policy analyzer 308 may save the aforementioned recommendations in the insurance server's 106 storage component. These recommendations may then be automatically communicated to the policyholder and/or reflected in the policyholder's next insurance billing statement.


With certain illustrated embodiments described above, it is to be appreciated that various non-limiting embodiments described herein may be used separately, combined or selectively combined for specific applications. Further, some of the various features of the above non-limiting embodiments may be used without the corresponding use of other described features. For example, although the techniques are described above in the context of providing coverage for various items (such as personal property items), similar techniques may be used in the context of other types of property coverage or other types of insurance-related coverage. The foregoing description should therefore be considered as merely illustrative of the principles, teachings and exemplary embodiments of this invention, and not in limitation thereof.


It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the illustrated embodiments. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the scope of the illustrated embodiments, and the appended claims are intended to cover such modifications and arrangements.

Claims
  • 1. A system comprising: one or more sensors associated with a refrigerator of an insured property; anda processor configured to: receive data from the one or more sensors;determine one or more operating parameters associated with the refrigerator based on the data, wherein the one or more operating parameters comprise a first age of the refrigerator, one or more second ages of one or more parts associated with the refrigerator, or a length of service of the refrigerator;determine whether a performance degradation of at least one of the one or more operating parameters associated with the refrigerator is within a threshold range based on the first age of the refrigerator, the one or more second ages of the one or more parts associated with the refrigerator, or the length of service of the refrigerator;determine a repair or a replacement need of the refrigerator in response to the performance degradation being outside the threshold range;receive an insurance policy associated with the insured property;determine one or more food spoilage coverage insurance products associated with the repair or the replacement need based on the insurance policy being indicative of a lack of coverage for the repair or the replacement need; andtransmit an indication of at least one of the one or more food spoilage coverage insurance products to an electronic device associated with a policy holder that corresponds to the insurance policy.
  • 2. The system of claim 1, comprising at least one additional sensor associated with at least one additional appliance, wherein the processor is configured to: receive the data and additional data from the additional sensor as an aggregated packet;parse the aggregated packet to classify one or more subsets of the data and the additional data based on a type of appliance;identify a first subset of the one or more subsets of the data and the additional data associated with the refrigerator; anddetermine the at least one of the one or more operating parameters associated with the refrigerator based on the first subset.
  • 3. The system of claim 2, wherein the processor is configured to identify the policy holder associated with the insured property based on the first subset.
  • 4. The system of claim 1, wherein the one or more operating parameters comprise an electrical power consumption, a temperature, a humidity, a pressure, or any combination thereof.
  • 5. The system of claim 1, wherein the processor is configured to determine an average of the one or more operating parameters over a time period, wherein the performance degradation is based on determining whether the average is outside the threshold range.
  • 6. The system of claim 1, wherein the threshold range is prescribed by a manufacturer of the refrigerator.
  • 7. The system of claim 1, wherein the processor is configured to determine one or more additional insurance products comprising an accidental damage coverage, an extended warranty coverage, or both.
  • 8. The system of claim 1, wherein the one or more food spoilage coverage insurance products are associated with reimbursing up to one or more threshold amounts for incurred spoilage losses in a time duration.
  • 9. The system of claim 4, wherein the processor is configured to determine the performance degradation based on receiving the data indicative of the electrical power consumption, the temperature, the humidity, the pressure, or the combination thereof.
  • 10. A system comprising: one or more sensors associated with a refrigerator of an insured property; anda processor configured to: receive data from the one or more sensors;determine one or more operating parameters associated with the refrigerator based on the data, wherein the one or more operating parameters comprise a first age of the refrigerator, one or more second ages of one or more parts associated with the refrigerator, or a length of service of the refrigerator;determine whether a performance degradation of at least one of the one or more operating parameters associated with the refrigerator is within a threshold range based on the first age of the refrigerator, the one or more second ages of the one or more parts associated with the refrigerator, or the length of service of the refrigerator;determine one or more food spoilage coverage insurance products for the refrigerator in response to the performance degradation being outside the threshold range; andtransmit an indication of the one or more food spoilage coverage insurance products to a policy holder of the insured property.
  • 11. The system of claim 10, wherein the processor is configured to determine a repair or a replacement need of the refrigerator in response to the performance degradation being outside the threshold range for determining the one or more food spoilage coverage insurance products.
  • 12. The system of claim 10, wherein the data comprises an electricity usage of the refrigerator.
  • 13. The system of claim 10, comprising one or more additional sensors associated with one or more additional appliances of the insured property, wherein the one or more additional appliances comprise one or more kitchen appliances, one or more HVAC components, a water purification system, a media entertainment system, one or more networking components, an electrical generator system, or any combination thereof, wherein the processor is configured to: receive additional data from the one or more additional sensors;determine one or more additional operating parameters associated with the one or more additional appliances based on the additional data;determine whether an additional performance degradation of at least one of the one or more additional appliances is within a respective threshold range;determine one or more available insurance products for the at least one of the one or more additional appliances in response to the additional performance degradation being outside the threshold range; andtransmit an indication of the one or more available insurance products to the policy holder.
  • 14. The system of claim 10, wherein the processor is configured to determine at least one immediate repair or replacement need, preventive repair or replacement need, or both, based on determining that the performance degradation of the one or more operating parameters is outside the threshold range.
  • 15. The system of claim 10, wherein the processor is configured to: receive the data and additional data as an aggregated packet;parse the aggregated packet to classify one or more subsets of the data and the additional data based on a type of appliance;identify a first subset of the one or more subsets of the data and the additional data associated with the refrigerator; anddetermine the at least one of the one or more operating parameters associated with the refrigerator based on the first subset.
  • 16. A method, comprising: receiving, by a processor, data from one or more sensors associated with a refrigerator of an insured property;determining, by the processor, one or more operating parameters associated with the refrigerator based on the data, wherein the one or more operating parameters comprise a first age of the refrigerator, one or more second ages of one or more parts associated with the refrigerator, or a length of service of the refrigerator;determining, by the processor, that a performance degradation of at least one of the one or more operating parameters associated with the refrigerator is outside a threshold range based on the first age of the refrigerator, the one or more second ages of the one or more parts associated with the refrigerator, or the length of service of the refrigerator;determining, by the processor, a repair or a replacement need of the refrigerator based at least in part on determining that the performance degradation of at least one of the one or more operating parameters associated with the refrigerator is outside the threshold range;receiving, by the processor, an insurance policy associated with the insured property;determining, by the processor, one or more food spoilage coverage insurance products associated with the repair or the replacement need based on the insurance policy being indicative of a lack of coverage for the repair or the replacement need; andtransmitting, by the processor, an indication of at least one of the one or more food spoilage coverage insurance products to a policy holder that corresponds to the insurance policy.
  • 17. The method of claim 16, wherein the one or more operating parameters comprise humidity, pressure, or any combination thereof, internal parameters comprising a battery charge state, a length of service, an electric power consumption, an operational state, a performance efficiency, a network connectivity state, or a combination thereof.
  • 18. The method of claim 16, wherein the processor is configured to determine one or more additional insurance products comprising an insurance product related to an age of the refrigerator or related to an appliance maintenance condition associated with the refrigerator.
  • 19. The method of claim 16, comprising determining, by the processor, an accidental damage coverage, an extended warranty coverage, or both based on the insurance policy being indicative of a lack of coverage for the repair or the replacement need.
  • 20. The method of claim 16, comprising: receiving, by the processor, the data and additional data as an aggregated packet;parsing, by the processor, the aggregated packet to classify one or more subsets of the data and the additional data based on a type of appliance;identifying, by the processor, a first subset of the one or more subsets of the data and the additional data associated with the refrigerator; anddetermining, by the processor, the at least one of the one or more operating parameters associated with the refrigerator based on the first subset.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 15/868,923, filed on Jan. 11, 2018, which claims priority to U.S. patent application Ser. No. 14/324,759, filed on Jul. 7, 2014, which in turn claims priority to U.S. Patent Application Ser. No. 61/926,093 filed Jan. 10, 2014; 61/926,091 filed Jan. 10, 2014; 61/926,095 filed Jan. 10, 2014; 61/926,098 filed Jan. 10, 2014; 61/926,103 filed Jan. 10, 2014; 61/926,108 filed Jan. 10, 2014; 61/926,111 filed Jan. 10, 2014; 61/926,114 filed Jan. 10, 2014; 61/926,118 filed Jan. 10, 2014; 61/926,119 filed Jan. 10, 2014; 61/926,121 filed Jan. 10, 2014; 61/926,123 filed Jan. 10, 2014; 61/926,536 filed Jan. 13, 2014; 61/926,541 filed Jan. 13, 2014; 61/926,534 filed Jan. 13, 2014; 61/926,532 filed Jan. 13, 2014; 61/943,897 filed Feb. 24, 2014; 61/943,901 filed Feb. 24, 2014; 61/943,906 filed Feb. 24, 2014; and 61/948,192 filed Mar. 5, 2014 which are each incorporated herein by reference in its entirety.

US Referenced Citations (395)
Number Name Date Kind
4090371 Keane May 1978 A
5182705 Barr et al. Jan 1993 A
5235507 Sackler et al. Aug 1993 A
5325291 Garrett et al. Jun 1994 A
5526609 Lee et al. Jun 1996 A
5621662 Humphries et al. Apr 1997 A
5724261 Denny et al. Mar 1998 A
5950169 Borghesi et al. Sep 1999 A
5960338 Foti Sep 1999 A
5991733 Aleia et al. Nov 1999 A
6029141 Bezos et al. Feb 2000 A
6049773 McCormack et al. Apr 2000 A
6141686 Jackowski et al. Oct 2000 A
6330546 Gopinathan Dec 2001 B1
6404871 Springer Jun 2002 B1
6526807 Doumit et al. Mar 2003 B1
6686838 Rezvani et al. Feb 2004 B1
6766322 Bell Jul 2004 B1
6826607 Gelvin et al. Nov 2004 B1
6892317 Sampath May 2005 B1
6983368 Wheeler Jan 2006 B2
6985907 Zambo et al. Jan 2006 B2
7015789 Helgeson Mar 2006 B1
7138914 Culpepper et al. Nov 2006 B2
7139731 Alvin Nov 2006 B1
7142099 Ross et al. Nov 2006 B2
7148808 Pfahlert Dec 2006 B1
7170418 Rose-Pehrsson et al. Jan 2007 B2
7203654 Menendez Apr 2007 B2
7263506 Lee Aug 2007 B2
7333923 Yamanishi Feb 2008 B1
7376618 Anderson May 2008 B1
7398218 Bernaski et al. Jul 2008 B1
7403922 Lewis Jul 2008 B1
7406436 Reisman Jul 2008 B1
7602196 Vokey Oct 2009 B2
7610210 Helitzer et al. Oct 2009 B2
7624031 Simpson et al. Nov 2009 B2
7624069 Padgette Nov 2009 B2
7711584 Helitzer et al. May 2010 B2
7716076 Block et al. May 2010 B1
7739133 Hail et al. Jun 2010 B1
7760862 Marchand Jul 2010 B2
7809587 Dorai et al. Oct 2010 B2
7869944 Deaton et al. Jan 2011 B2
7885831 Burton et al. Feb 2011 B2
7899560 Eck Mar 2011 B2
7937437 Fujii May 2011 B2
7945497 Kenefick et al. May 2011 B2
7945524 Anderson et al. May 2011 B2
7949548 Mathai et al. May 2011 B2
7958184 Barsness et al. Jun 2011 B2
7969296 Stell Jun 2011 B1
7970701 Lewis Jun 2011 B2
7980161 Sussmeier Jul 2011 B2
8004404 Izumi et al. Aug 2011 B2
8032448 Anderson Oct 2011 B2
8041636 Hunter Oct 2011 B1
8046243 Winkler Oct 2011 B2
8069068 Billman Nov 2011 B1
8069181 Krishnan et al. Nov 2011 B1
8081795 Brown Dec 2011 B2
8082349 Bhargava Dec 2011 B1
8086523 Palmer Dec 2011 B1
8090598 Bauer et al. Jan 2012 B2
8095394 Nowak et al. Jan 2012 B2
8103527 Lasalle et al. Jan 2012 B1
8106769 Maroney et al. Jan 2012 B1
8229767 Birchall Jul 2012 B2
8229771 Billman Jul 2012 B1
8249968 Oldham et al. Aug 2012 B1
8265963 Hanson et al. Sep 2012 B1
8271303 Helitzer et al. Sep 2012 B2
8271308 Winkler Sep 2012 B2
8271321 Kestenbaum Sep 2012 B1
8289160 Billman Oct 2012 B1
8290753 Tryon, III Oct 2012 B2
8294567 Stell Oct 2012 B1
8306258 Brown Nov 2012 B2
8323189 Tran Dec 2012 B2
8332242 Medina, III Dec 2012 B1
8332348 Avery Dec 2012 B1
8384538 Breed Feb 2013 B2
8400299 Maroney et al. Mar 2013 B1
8428972 Noles et al. Apr 2013 B1
8452678 Feldman et al. May 2013 B2
8510196 Brandmaier et al. Aug 2013 B1
8515788 Tracy et al. Aug 2013 B2
8521542 Stotts Aug 2013 B1
8527306 Reeser et al. Sep 2013 B1
8600104 Brown Dec 2013 B2
8635091 Amigo et al. Jan 2014 B2
8638228 Amigo et al. Jan 2014 B2
8650048 Hopkins, III et al. Feb 2014 B1
8676612 Helitzer et al. Mar 2014 B2
8719061 Birchall May 2014 B2
8731975 English May 2014 B2
8760285 Billman et al. Jun 2014 B2
8774525 Pershing Jul 2014 B2
8782395 Ly Jul 2014 B1
8788299 Medina, III Jul 2014 B1
8788301 Marlow et al. Jul 2014 B1
8799034 Brandmaier et al. Aug 2014 B1
8812414 Arthur et al. Aug 2014 B2
8813065 Zygmuntowicz et al. Aug 2014 B2
8850263 Yourtee et al. Sep 2014 B1
8868541 Lin et al. Oct 2014 B2
8872818 Freeman et al. Oct 2014 B2
8910298 Gettings Dec 2014 B2
8924241 Grosso Dec 2014 B2
8930581 Anton et al. Jan 2015 B2
8947230 Gettings Feb 2015 B1
9015238 Anton et al. Apr 2015 B1
9049168 Jacob et al. Jun 2015 B2
9053516 Stempora Jun 2015 B2
9082015 Christopulos et al. Jul 2015 B2
9141995 Brinkmann et al. Sep 2015 B1
9158869 Labrie et al. Oct 2015 B2
9165084 Isberg et al. Oct 2015 B2
9183560 Abelow Nov 2015 B2
9252980 Raman Feb 2016 B2
9311676 Helitzer et al. Apr 2016 B2
9330550 Zribi et al. May 2016 B2
9363322 Anton et al. Jun 2016 B1
9454907 Hafeez et al. Sep 2016 B2
9460471 Bernard et al. Oct 2016 B2
9481459 Staskevich et al. Nov 2016 B2
9519393 Grossele et al. Dec 2016 B2
9611038 Dahlstrom Apr 2017 B2
9613523 Davidson et al. Apr 2017 B2
9652805 Clawson, II et al. May 2017 B1
9665074 Lentzitzky May 2017 B2
9710858 Devereaux et al. Jul 2017 B1
9721086 Shear Aug 2017 B2
9747571 Ballew et al. Aug 2017 B2
9754325 Konrardy et al. Sep 2017 B1
9792656 Konrardy et al. Oct 2017 B1
9811862 Allen et al. Nov 2017 B1
9818158 Devereaux et al. Nov 2017 B1
9842310 Lekas Dec 2017 B2
9886723 Devereaux et al. Feb 2018 B1
9892463 Hakimi-Boushehri et al. Feb 2018 B1
9913003 Lloyd et al. Mar 2018 B2
9934675 Coyne et al. Apr 2018 B2
9947051 Allen et al. Apr 2018 B1
9959581 Pershing May 2018 B2
9984417 Allen et al. May 2018 B1
10032224 Helitzer et al. Jul 2018 B2
10055793 Call et al. Aug 2018 B1
10055794 Konrardy et al. Aug 2018 B1
10121207 Devereaux et al. Nov 2018 B1
10163162 Devereaux et al. Dec 2018 B1
10181159 Allen et al. Jan 2019 B1
10212495 Lloyd et al. Feb 2019 B2
10387961 Burgess Aug 2019 B1
20020007289 Malin et al. Jan 2002 A1
20020021465 Moore, Jr. Feb 2002 A1
20020032586 Joao Mar 2002 A1
20020035528 Simpson et al. Mar 2002 A1
20020049618 McClure et al. Apr 2002 A1
20020055861 King et al. May 2002 A1
20020087364 Lemer et al. Jul 2002 A1
20020103622 Burge Aug 2002 A1
20020111835 Hele et al. Aug 2002 A1
20020116254 Stein et al. Aug 2002 A1
20020129001 Levkoff et al. Sep 2002 A1
20020178033 Yoshioka et al. Nov 2002 A1
20020183866 Dean et al. Dec 2002 A1
20030040934 Skidmore et al. Feb 2003 A1
20030078816 Filep Apr 2003 A1
20030097335 Moskowitz et al. May 2003 A1
20030156034 Longobardi Aug 2003 A1
20030182441 Andrew et al. Sep 2003 A1
20040019507 Yaruss et al. Jan 2004 A1
20040034657 Zambo et al. Feb 2004 A1
20040039586 Garvey et al. Feb 2004 A1
20040046033 Kolodziej et al. Mar 2004 A1
20040064345 Ajamian et al. Apr 2004 A1
20040122560 Hart Jun 2004 A1
20040172304 Joao Sep 2004 A1
20040181621 Mathur et al. Sep 2004 A1
20040260406 Ljunggren et al. Dec 2004 A1
20050033694 Perrin Feb 2005 A1
20050050017 Ross et al. Mar 2005 A1
20050055248 Helitzer et al. Mar 2005 A1
20050055249 Helitzer et al. Mar 2005 A1
20050057365 Qualey Mar 2005 A1
20050128074 Culpepper et al. Jun 2005 A1
20050197847 Smith Sep 2005 A1
20050226273 Qian Oct 2005 A1
20050251427 Dorai et al. Nov 2005 A1
20050278082 Weekes Dec 2005 A1
20060017558 Albert et al. Jan 2006 A1
20060026044 Smith Feb 2006 A1
20060052905 Pfingsten et al. Mar 2006 A1
20060101508 Taylor May 2006 A1
20060111874 Curtis et al. May 2006 A1
20060200008 Moore-Ede Sep 2006 A1
20060218018 Schmitt Sep 2006 A1
20060219705 Beier et al. Oct 2006 A1
20060229923 Adi et al. Oct 2006 A1
20060235611 Deaton et al. Oct 2006 A1
20060287902 Helsper Dec 2006 A1
20070005400 Eggenberger et al. Jan 2007 A1
20070005404 Raz et al. Jan 2007 A1
20070043803 Whitehouse et al. Feb 2007 A1
20070088507 Haberlen et al. Apr 2007 A1
20070088579 Richards Apr 2007 A1
20070100669 Wargin et al. May 2007 A1
20070118399 Avinash et al. May 2007 A1
20070136078 Plante Jun 2007 A1
20070150319 Menendez Jun 2007 A1
20070156463 Burton et al. Jul 2007 A1
20070161940 Blanchard et al. Jul 2007 A1
20070174467 Ballou et al. Jul 2007 A1
20070214023 Mathai et al. Sep 2007 A1
20070282639 Leszuk et al. Dec 2007 A1
20070299677 Maertz Dec 2007 A1
20080015827 Tryon, III Jan 2008 A1
20080033847 McIntosh Feb 2008 A1
20080046334 Lee Feb 2008 A1
20080052134 Nowak et al. Feb 2008 A1
20080065427 Helitzer et al. Mar 2008 A1
20080077451 Anthony et al. Mar 2008 A1
20080086320 Ballew et al. Apr 2008 A1
20080087147 Sussmeier Apr 2008 A1
20080098466 Yoshida Apr 2008 A1
20080105134 Elston III May 2008 A1
20080114655 Skidmore May 2008 A1
20080140576 Lewis Jun 2008 A1
20080140857 Conner et al. Jun 2008 A1
20080154651 Kenefick et al. Jun 2008 A1
20080154686 Vicino Jun 2008 A1
20080154851 Jean Jun 2008 A1
20080154886 Podowski et al. Jun 2008 A1
20080164769 Eck Jul 2008 A1
20080243558 Gupte Oct 2008 A1
20080244329 Shinbo et al. Oct 2008 A1
20080282817 Breed Nov 2008 A1
20080287121 Ebrom Nov 2008 A1
20080306799 Sopko et al. Dec 2008 A1
20080307104 Amini et al. Dec 2008 A1
20080319787 Stivoric et al. Dec 2008 A1
20090006175 Maertz Jan 2009 A1
20090024420 Winkler Jan 2009 A1
20090031175 Aggarwal et al. Jan 2009 A1
20090045803 Schoettle Feb 2009 A1
20090109037 Farmer Apr 2009 A1
20090119132 Bolano et al. May 2009 A1
20090135009 Little et al. May 2009 A1
20090177500 Swahn Jul 2009 A1
20090188202 Vokey Jul 2009 A1
20090205054 Blotenberg et al. Aug 2009 A1
20090216349 Kwon et al. Aug 2009 A1
20090240531 Hilborn Sep 2009 A1
20090240550 McCarty Sep 2009 A1
20090265193 Collins et al. Oct 2009 A1
20090265207 Johnson Oct 2009 A1
20090266565 Char Oct 2009 A1
20090279734 Brown Nov 2009 A1
20090287509 Basak et al. Nov 2009 A1
20100030586 Taylor et al. Feb 2010 A1
20100049552 Fini et al. Feb 2010 A1
20100131300 Collopy et al. May 2010 A1
20100131307 Collopy et al. May 2010 A1
20100174566 Helitzer et al. Jul 2010 A1
20100228580 Zoldi Sep 2010 A1
20100229225 Sarmah Sep 2010 A1
20100241464 Amigo et al. Sep 2010 A1
20100274366 Fata et al. Oct 2010 A1
20100274590 Compangano et al. Oct 2010 A1
20100274859 Bucuk Oct 2010 A1
20100286937 Hedley et al. Nov 2010 A1
20100299161 Burdick et al. Nov 2010 A1
20100299162 Kwan Nov 2010 A1
20110043958 Nakamura et al. Feb 2011 A1
20110061697 Behrenbruch et al. Mar 2011 A1
20110112848 Beraja et al. May 2011 A1
20110137684 Peak et al. Jun 2011 A1
20110137685 Tracy et al. Jun 2011 A1
20110137885 Isberg et al. Jun 2011 A1
20110161117 Busque et al. Jun 2011 A1
20110161119 Collins Jun 2011 A1
20110295624 Chapin et al. Dec 2011 A1
20110320226 Graziano et al. Dec 2011 A1
20120004935 Winkler Jan 2012 A1
20120016695 Bernard et al. Jan 2012 A1
20120022897 Shafer Jan 2012 A1
20120025994 Morris Feb 2012 A1
20120028635 Borg et al. Feb 2012 A1
20120028835 Wild et al. Feb 2012 A1
20120046975 Stolze Feb 2012 A1
20120072240 Grosso et al. Mar 2012 A1
20120096149 Sunkara et al. Apr 2012 A1
20120101855 Collins et al. Apr 2012 A1
20120116820 English et al. May 2012 A1
20120130751 McHugh et al. May 2012 A1
20120143634 Beyda et al. Jun 2012 A1
20120158436 Bauer et al. Jun 2012 A1
20120176237 Tabe Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120215568 Vahidi et al. Aug 2012 A1
20120290333 Birchall Nov 2012 A1
20120311053 Labrie et al. Dec 2012 A1
20120311614 DeAnna et al. Dec 2012 A1
20120323609 Fini Dec 2012 A1
20130006608 Dehors et al. Jan 2013 A1
20130018936 DAmico et al. Jan 2013 A1
20130040636 Borg et al. Feb 2013 A1
20130040836 Himmler et al. Feb 2013 A1
20130055060 Folsom et al. Feb 2013 A1
20130060583 Collins et al. Mar 2013 A1
20130073303 Hsu Mar 2013 A1
20130144658 Schnabolk Jun 2013 A1
20130144858 Lin et al. Jun 2013 A1
20130182002 Macciola et al. Jul 2013 A1
20130185716 Yin et al. Jul 2013 A1
20130197945 Anderson Aug 2013 A1
20130201018 Horstemeyer et al. Aug 2013 A1
20130226623 Diana et al. Aug 2013 A1
20130226624 Blessman et al. Aug 2013 A1
20130245796 Lentzitzky et al. Sep 2013 A1
20130253961 Feldman et al. Sep 2013 A1
20130268358 Haas Oct 2013 A1
20130282408 Snyder et al. Oct 2013 A1
20130317732 Borg et al. Nov 2013 A1
20140018969 Forbes, Jr. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140046701 Steinberg et al. Feb 2014 A1
20140050147 Beale Feb 2014 A1
20140058761 Freiberger et al. Feb 2014 A1
20140067137 Amelio et al. Mar 2014 A1
20140081675 Ives et al. Mar 2014 A1
20140089156 Williams et al. Mar 2014 A1
20140089209 Akcamete et al. Mar 2014 A1
20140089990 van Deventer et al. Mar 2014 A1
20140108275 Heptonstall Apr 2014 A1
20140114693 Helitzer et al. Apr 2014 A1
20140114893 Arthur et al. Apr 2014 A1
20140123292 Schmidt et al. May 2014 A1
20140123309 Jung et al. May 2014 A1
20140132409 Billman et al. May 2014 A1
20140136242 Weekes et al. May 2014 A1
20140142989 Grosso May 2014 A1
20140149485 Sharma et al. May 2014 A1
20140180723 Cote et al. Jun 2014 A1
20140192646 Mir et al. Jul 2014 A1
20140195272 Sadiq et al. Jul 2014 A1
20140201072 Reeser et al. Jul 2014 A1
20140201315 Jacob et al. Jul 2014 A1
20140214458 Vahidi et al. Jul 2014 A1
20140249876 Wu et al. Sep 2014 A1
20140257862 Billman et al. Sep 2014 A1
20140257863 Maastricht et al. Sep 2014 A1
20140266287 Reeder, III Sep 2014 A1
20140266669 Fadell et al. Sep 2014 A1
20140266671 Huynh et al. Sep 2014 A1
20140270492 Christopulos et al. Sep 2014 A1
20140278573 Cook Sep 2014 A1
20140279593 Pershing Sep 2014 A1
20140280457 Anton et al. Sep 2014 A1
20140304007 Kimball et al. Oct 2014 A1
20140316614 Newman Oct 2014 A1
20140316743 Drees et al. Oct 2014 A1
20140322676 Raman Oct 2014 A1
20140327995 Panjwani et al. Nov 2014 A1
20140334492 Mack-Crane Nov 2014 A1
20140358592 Wedig et al. Dec 2014 A1
20140371941 Keller et al. Dec 2014 A1
20140375440 Rezvani et al. Dec 2014 A1
20140380264 Misra et al. Dec 2014 A1
20150006206 Mdeway Jan 2015 A1
20150019266 Stempora Jan 2015 A1
20150025915 Lekas Jan 2015 A1
20150025917 Stempora Jan 2015 A1
20150026074 Cotten Jan 2015 A1
20150112504 Binion et al. Apr 2015 A1
20150154709 Cook Jun 2015 A1
20150154712 Cook Jun 2015 A1
20150161738 Stempora Jun 2015 A1
20150221051 Settino Aug 2015 A1
20150332407 Wilson et al. Nov 2015 A1
20150339911 Coyne et al. Nov 2015 A1
20150370272 Reddy et al. Dec 2015 A1
20150372832 Kortz et al. Dec 2015 A1
20160005130 Devereaux et al. Jan 2016 A1
20160039921 Luo et al. Feb 2016 A1
20160055594 Emison Feb 2016 A1
20160067547 Anthony et al. Mar 2016 A1
20160104250 Allen et al. Apr 2016 A1
20160125170 Abramowitz May 2016 A1
20160163186 Davidson Jun 2016 A1
20160225098 Helitzer et al. Aug 2016 A1
20170178424 Wright Jun 2017 A1
20170365008 Schreier et al. Dec 2017 A1
Foreign Referenced Citations (25)
Number Date Country
503861 Jun 2008 AT
2478911 Sep 2003 CA
2518482 Mar 2007 CA
2805226 Aug 2013 CA
2882086 Feb 2014 CA
103203054 Jul 2013 CN
102005015028 Oct 2006 DE
102008008317 Aug 2009 DE
0722145 Jul 1996 EP
1790057 May 2012 EP
2795757 Oct 2014 EP
2276135 Apr 2015 EP
3255613 Dec 2017 EP
2449510 Nov 2008 GB
3282937 May 2002 JP
2002358425 Dec 2002 JP
2008250594 Oct 2008 JP
20090090461 Aug 2009 KR
337513 Aug 2009 MX
2015109725 Oct 2016 RU
2004034232 Apr 2004 WO
2006074682 Jul 2006 WO
2010136163 Dec 2010 WO
2012075442 Jun 2012 WO
2013036677 Mar 2013 WO
Non-Patent Literature Citations (34)
Entry
Prognostics-based product warranties IEEE 2013 (Year: 2013).
Beyond mobile: research topics for upcoming technologies in the insurance industry IEEE 2003 (Year: 2003).
“Food Spoilage Claims Demystified: Rotten Stuff” Gordon Atlantic Insurance 2011 (Year: 2011).
“The intelligent container as a part of the Internet of Things” IEEE (Year: 2012).
“RFID enabled pricing approach in perishable food supply chains” IEEE (Year: 2010).
“After an Auto Accident: Understanding the Claims Process,” Financial Services Commission on Ontario, 2011, 10 pgs.
“Truck Crash Event Data Recorder Downloading,” Crash Forensic; 2012, pp. 1-25.
Aiyagari, Sanjay et al., “AMQP Message Queuing Protocol Specification,” Version Dec. 9, 2006. https://www.rabbitmq.com/resources/specs/amqp0-9.
Amanda Love, “How Recoverable Depreciation Works”, Aug. 6, 2012, http://www.stateroofingtexas.com/recoverable-depreciation-works/.
AMQP is the Internet Protocol for Business Messaging Website. Jul. 4, 2011. https://web.archive.org/web/20110704212632/http://www.amqp.org/about/what.
Cloudera.com, “Migrating from MapReduce 1 (MRv1) to Map Reduce 2 (MRv2, YARN)”, https://www.cloudera.com/documentation/enterprise/5-9-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html, page generated Feb. 6, 2018.
Corbett et al., “Spanner: Google's Globally-Distributed Database,” Google, Inc., pp. 1-14, 2012.
Das, Sudipto et al., “Ricardo: Integrating R and Hadoop,” IBM Almaden Research Center, SIGMOD'10, Jun. 6-11, 2010.
Dean et al., “A New Age of Data Mining in the High-Performance World,” SAS Institute Inc., 2012.
Deerwester et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, 1990.41 (6), pp. 391-407.
Farmers Next Generation Homeowners Policy, Missouri, by Farmers insurance Exchange; 2008; 50 pages.
Fong et al., “Toward a scale-out data-management middleware for low-latency enterprise computing,” IBM J. Res & Dev. vol. 57, No. 3/4 Paper, 6 May/Jul. 2013.
Glennon, Jr., John C.; “Motor Vehicle Crash Investigation and Reconstruction,” BSAT, 2001, 4 pgs.
Gonzalez Ribeiro, Ana, “Surprising things your home insurance covers,” Jan. 12, 2012 in Insurance; 4 pages.
Hopkins, Brian, “Big Opportunities in Big Data Positioning Your Firm to Capitalize in a Sea of Information,” Enterprise Architecture Professionals, Forrester Research, Inc., pp. 1-9, May 2011.
Iwasaki, Yoji; Yamazaki, Fumimo, Publication Info: 32nd Asian Conference on Remote Sensing 2011, ACRS 2011 1: 550-555. Asian Association on Remote Sensing. (Dec. 1, 2011) (Year: 2011).
Kopp et al., “Full-scale testing of low-rise, residential buildings with realistic wind loads”, 2012, 15 pages.
McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” pp. 1-6, Mar. 14, 2008.
Melnik, Sergey et al., “Dremel: Interactive Analysis of Web-Scale Datasets,” 36th International Conference on Very Large Data Bases, Sep. 13-17, 2010, Singapore, Proceedings of the VLDB Endowment, vol. No. 1.
NYSE Technologies Website and Fact Sheet for Data Fabric 6.0 Aug. 2011, https://web.archive.org/web/20110823124532/http://nysetechnologies.nyx.com/data-technology/data-fabric-6-0.
Richardson, Alexis, “Introduction to RabbitMQ, An Open Source Message Broker That Just Works,” Rabbit MQ, Open Source Enterprise Messaging, pp. 1-36, May 13, 2009.
Stefan Theußl, “Applied High Performance Computing Using R,” Diploma Thesis, Univ. Prof, Dipl, Ing. Dr. Kurt Hornik, pp. 1-126, Sep. 27, 2007.
STIC search dated Jan. 4, 2019 (Year 2019).
Telematics Set the Stage the Improved Auto Claims Management by Sam Friedman (Oct. 10, 2012); 3 pages.
Wang, Guohul et al., “Programming Your Network at Run-time for Big Data Applications,” IBM T.J. Watson Research Center, Rice University, HotSDN'12, Aug. 13, 2012, Helsinki, Finland.
Wang, Jianwu et al., “Kepler + Hadoop: A General Architecture Facilitating Data-Intensive Applications in Scientific Workflow Systems,” WORKS 09, Nov. 15, 2009, Portland, Oregon, USA.
Webb, Kevin C. et al., “Topology Switching for Data Center Networks,” Published in: Proceeding Hot-ICE'11 Proceedings of the 11th USENIX conference on Hot topics in management of Internet, cloud, and enterprise networks and services, Mar. 29, 2011.
Xi et al., “Enabling Flow-Based Routing Control in Data Center Networks using Probe and ECMP,” Polytechnic Institute of New York University, IEE INFOCOM 2011, pp. 614-619.
Zevnik, Richard. The Complete Book of Insurance. Sphinx. 2004. pp. 76-78.
Provisional Applications (20)
Number Date Country
61948192 Mar 2014 US
61943906 Feb 2014 US
61943897 Feb 2014 US
61943901 Feb 2014 US
61926541 Jan 2014 US
61926534 Jan 2014 US
61926532 Jan 2014 US
61926536 Jan 2014 US
61926091 Jan 2014 US
61926123 Jan 2014 US
61926108 Jan 2014 US
61926098 Jan 2014 US
61926114 Jan 2014 US
61926119 Jan 2014 US
61926111 Jan 2014 US
61926118 Jan 2014 US
61926093 Jan 2014 US
61926121 Jan 2014 US
61926095 Jan 2014 US
61926103 Jan 2014 US
Continuations (2)
Number Date Country
Parent 15868923 Jan 2018 US
Child 17466685 US
Parent 14324759 Jul 2014 US
Child 15868923 US