This application is related to U.S. patent application Ser. No. 14/825,978, filed on Aug. 13, 2015, entitled ATTRIBUTING IN-STORE VISITS TO MEDIA CONSUMPTION BASED ON DATA COLLECTED FROM USER DEVICES, which is hereby incorporated by reference in its entirety.
Advertisers utilize various media channels to advertise their products and services to consumers. For example, advertisers use emails and online advertisements (“ads”) on websites and mobile applications, or place content within the physical world (e.g., via billboards, signs on buildings or vehicles, and Out of Home (OOH) locations). However, the consumption of content often occurs at one location or via one medium, and the engagement in the desired behavior occurs at another online or real-world location (e.g., a customer visits a store after seeing a billboard advertising a sale at the store, or downloads a mobile application after learning about the application via a sign in a stadium). Advertisers and other content providers generally do not have an effective way of knowing whether the ad had any impact on the consumer.
Systems and methods are described herein for determining user exposures to content, such as content presented by physical objects (e.g., advertisements on billboards). The systems and methods may determine a probability (an “exposure probability”) that a user has viewed or consumed content, information, or other visual media presented by a physical object, such as a billboard, vehicle, sign, or other structure, and provide the determined probability to various attribution systems, such as systems that attribute user engagements (e.g., store visits, app downloads, website visits, product purchases, and so on) to earlier content exposures.
In some embodiments, the systems and methods receive device location information associated with a target mobile device positioned at a certain geographic location, and receive object placement information associated with content presented by a physical object at the certain geographic location. The systems and methods determine an exposure probability that is based on a comparison of the received device location information to the received object placement information, and, in some cases, provide the determined exposure probability to an attribution system.
For example, the systems and methods may determine a mobile device associated with a user is located within a viewshed of content presented by a physical object, and determine the mobile device associated with the user moved toward a facing direction of the physical object, where the facing direction of the physical object is a direction that presents the content.
The systems and methods may generate an exposure probability for an exposure of content presented by the physical object to the user, where the exposure probability is generated based on locations of the mobile device within the viewshed of the content presented by the physical object and based on an angle between a direction of movement of the mobile device and a facing direction of the physical object. The systems and methods may then attribute the exposure of the content presented by the physical object of the user to a conversion or engagement event associated with the user based at least in part on the generated probability.
In some embodiments, the systems and methods may include at least one server computer coupled to a network, and at least one memory storing instructions for execution by the computer. The server computer receives device location information associated with each of multiple mobile phones positioned at certain geographic locations, where each mobile phone provides, directly or indirectly, a series of location coordinates to the server computer via the network. The server computer then accesses object placement information associated with visually-perceptible content presented by physical objects at the certain geographic locations, where the object placement information for each physical object includes viewshed characteristics for the physical object. The server computer then computes exposure probabilities based on a comparison of each received device location information to the accessed object placement information, where each computed exposure probability represents a probability that a user of one of the multiple mobile phones visually perceived content presented by one of the physical objects.
Thus, in some embodiments, the systems and methods may facilitate the attribution of customer engagements to previous exposures of Out of Home advertisements and other real or physical world content displays, among other benefits.
Various embodiments and implementations of the attribution system will now be described. The following description provides specific details for a thorough understanding and an enabling description of these embodiments and implementations. One skilled in the art will understand, however, that the embodiments and implementations may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments and implementations. The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments and implementations of the attribution system.
Examples of a Suitable Computing Environment
A content exposure system 150 communicates with the mobile device 110 over a network 130, such as the Internet. The content exposure system 150 may include various components, modules, and/or algorithms configure to perform the various processes described herein, such as processes for determining whether a user associated with the mobile device 110 is exposed to content presented by the physical object 125 within the location 120.
The content exposure system 150 may receive information, over the network 130, from a variety of sources, and utilize the received information when determining whether users are exposed to OOH advertising and other visual content within the real world. For example, the content exposure system 150 may access or receive information from various sensors of the mobile device 110 (e.g., GPS sensors, triangulation components, and so on) that indicate a location, orientation, heading, direction, velocity, speed, or other information indicative of a previous, current, or predicted location of the mobile device 110 and/or an orientation of the mobile device with three-dimensional space.
The content exposure system 150 may also access or receive information associated with the physical object 125, such as placement information for the physical object 125 from a placement information system 140 or other database or system that stores and maintains information associated with objects presenting content in the real world. In some cases, the content exposure system 150 may store or maintain placement information. Example placement information may include various characteristics associated with the placement of the physical object 125 within the location 120, such as Latitude and Longitude (lat long) information, information identifying a cardinal direction (e.g., north, east, west, south) for the content presented by the physical object 125, the date or time range for the content, weekly impression and reach estimates, placement type information (e.g., the type of object, such as a bulletin, a poster, a billboard, a vehicle, a transit shelter, and so on).
In some embodiments, the content exposure system 150 sends information to an attribution system 160, such as information representing estimated or determined probabilities or likelihoods of user exposures to content presented by physical objects. Further details regarding the attribution system 160 will now be discussed.
The Attribution System
The attribution system 160 disclosed herein ties content, such as advertisements (“ads”) and other information or content impressions to visits to target places, to provide content providers or advertisers one or more metrics characterizing the effectiveness of the ad impressions. Based on impression data associated with an ad campaign (e.g., exposure probabilities) and geolocation data collected directly from a panel of mobile device users (“panelists”), the attribution system 160 attributes real-world, physical visits and other conversion events to exposures of Out of Home (OOH) advertisements and content. In many instances, the attribution is a function of time elapsed between the exposure and the conversion event, such as a visit to a physical place associated with the advertisement. A place, as used herein, includes any physical establishment, for example, a restaurant, a park, a store, a gas station, and so on.
The attribution system 160, in some embodiments, leverages a data collection system to obtain user information, including location data, collected directly from the panelists. The data collection system obtains and validates location data from the panelists. The user information collected by the data collection system includes, for example, latitude, longitude, altitude determinations, sensor data (e.g., compass/bearing data, accelerometer or gyroscope measurements), and other information that can be used to identify a panelist's location and activity. Additional details on the data collection system can be found in U.S. patent application Ser. No. 13/405,182, which is hereby incorporated by reference in its entirety.
In some embodiments, the data collection system may receive, obtain, or access information from third party sources in order to enhance or modify attribution metrics for ad impressions. For example, a third party source of data, such as a payment processor or social network, may provide data confirming a purchase or use of a product or service associated with an ad impression. Such purchase or use information may, therefore, augment the data associated with an ad campaign and the geolocation data collected directly from the panel of mobile electronic device users.
In some embodiments, the attribution system 160 may receive, obtain, or access information from third party sources in order to measure purchase data from a larger population of users, such as any users associated with a third party source. For example, the attribution system may utilize purchase or use data directly from the third party sources (e.g., data indicating a user or group of users made a purchase of a product or service at a certain location, via a certain retailer, and so on) as attribution for ad impressions.
The attribution system 160, in various embodiments, also leverages an inference pipeline that recognizes, based on location readings, whether a user visited a target place, and if so, determines the probability of the user at the target place and how much time the user spent at the target place. Additional details on the inference pipeline can be found in U.S. Pat. No. 8,768,876, which is hereby incorporated by reference in its entirety.
In some embodiments, the process of attributing a visit to a target place starts with an advertiser (e.g., a mobile advertiser HMC) delivering ads (e.g., mobile ads, desktop ads, television ads) through an ad-network to a group of users on their devices (e.g., mobile devices, desktop computers, television, voice telephony, tablets, mobile gaming devices, smart phones) as part of an ad campaign. In other embodiments, ads may be delivered to, or accessed by, the group of users via other media types, such as via print, billboards, radio, and others described herein.
Users who receive the ad impressions form a campaign population. The advertiser or the ad-network provides impression data and details of the ad campaign to the attribution system. The impression data can include, for example, device identifiers, impression timestamps, targeting identifiers, and other metadata associated with the campaign or the target of the impression. For example, the metadata may include user agent strings and segment identifiers. The attribution system then uses the device identifier, IP address, device model, operating system version and/or any other metadata to match the campaign population against the panelists of the attribution system to identify panelists who were exposed to the ad impressions (“impression population”). In some embodiments, impression data can be collected by the attribution system.
After identifying the impression population based on the match, a baseline population is constructed in one of two ways. First, the advertiser may provide an indicator within the impression population that codes for membership in a control group (e.g., those impressions associated with no advertisement or the presentation of an unrelated advertisement). When no control group is specified, the attribution system identifies the panelists who did not match and includes them into a baseline or control group. The attribution system then performs experimental analysis to assess whether the ad impression had any impact on changing the impression users' physical store visitation behavior. In some embodiments, the attribution system can perform other analyses. For example, the attribution system can determine metrics such as costs per store visit, frequency of store visits, likelihood of store visits for different geography and demographics, or the like. These and other metrics from the analyses enable advertisers to make adjustments to their ad campaigns to improve performance (e.g., increase store visits, target certain demographics). The metrics generated by the attribution system 160 also describe or characterize the nature of the ad campaign run by advertisers.
Thus, in some embodiments, the attribution system 160 performs various processes for attributing real world (e.g., store visits, purchases) or online-based (e.g., website visits, app downloads) conversion events and actions to OOH exposures determined by the content exposure system 150. Further details regarding the attribution system 160 may be found in U.S. patent application Ser. No. 14/825,978, filed on Aug. 13, 2015, entitled ATTRIBUTING IN-STORE VISITS TO MEDIA CONSUMPTION BASED ON DATA COLLECTED FROM USER DEVICES, which is hereby incorporated by reference in its entirety.
Examples of Determining User Exposures to Out of Home Presented Content
As described herein, the systems and methods may utilize device characteristics and placement characteristics when determining probabilities of user exposures to content presented by physical objects.
In some embodiments, the device location module 210 is configured and/or programmed to receive device location information associated with a target mobile device positioned at a certain geographic location. For example, the device location module 210 may receive a series of lat long (latitude and longitude) coordinates for the mobile device 110 within the location 120, and determine location sensor trace information using the coordinates.
For example, the device location module 210 may determine a moving average of the differences in latitudes and longitudes of the positions 310 to obtain a smoothed estimate for the device heading. As another example, the device location module 210 may utilize Kalman filtering or other techniques when determining heading estimates for the mobile device 110.
Referring back to
The placement information module 220, in some embodiments, may utilize placement information received from the placement information system 140, and determine or modify the information to reflect certain geographical features surrounding the physical object 125 within the location 120. For example, when the physical object 125 is a billboard positioned in a city where streets and billboards face at roughly 45 degree angles to the cardinal directions, the placement information module 220 may analyze the direction of proximate roads, in order to determine an accurate and facing direction for the physical object 125.
Following the example,
In addition, the placement information module 220 generates or determines a viewshed for the physical object 125, based on a density of structures and other features within the surrounding geography of the location 120. For example, if an observer is within a viewable distance of a billboard on I-90 in Montana, the billboard is likely to be viewable from roughly 90 degrees to the left or right of the facing direction of the billboard. However, a billboard in Manhattan may be only viewable from a narrow corridor along the street running parallel to the facing direction of the billboard. Thus, the angle of the viewshed for an interstate highway billboard may be larger than the angle of the viewshed for a billboard in a dense urban area.
In order to account for variations in surrounding geographies, the placement information module 220 may determine, generate, or estimate a viewshed for a physical object using a variety of different estimation techniques or processes. For example, the placement information module 220 may perform the following operations to estimate a viewshed for a billboard.
First, the placement information module 220 defines the viewshed to be a “cone” of visibility emanating at a specific angle from a facing direction of a billboard, such as an arbitrary partition of geographic space. Next, the placement information module 220 generates panel impressions by assuming a 90 degree viewshed for the billboard (e.g., panel impressions as discussed herein with respect to the attribution system 160 or based on received ground truth data for the billboard).
The placement information module 220 regresses weekly estimates of impressions (e.g., via 3rd party source or proprietary survey-based data) to the panel impressions, and regresses residuals against a variable set of data that includes information about nearby road segments, nearby structures, and the number and nature of nearby businesses that surround the billboard.
Then, the placement information module 220 determine the viewshed angle by transforming the predicted residual. For example, a positive (or, negative) residual suggests that the panel impression data over- (or, under-) estimates the ground truth impression estimates, and that the viewshed angle should be made smaller (or, larger) than the initial set value of 90 degrees. Next, to estimate the viewshed for a specific or given placement of the billboard, placement information module 220 intersects a geofence (e.g., derived from 3rd party sources, such as a mapping application) associated with a type of placement along with the estimated viewshed angle.
For example,
Thus, the placement information module 220 may receive information associated with placement of the content presented by the physical object 125 and/or may generate or modify placement characteristics (e.g., facing angle, estimated viewshed) for the physical object 125.
Referring back to
In some embodiments, the exposure determination module 230 may determine an exposure probability (e.g., from 0 percent probability of exposure to 100 probability of exposure) as a function of the received device location information and the received object placement information, using the following formula:
L_exposure=F(EXPOSURE|Pu,Bi);
where L_exposure is the exposure probability, EXPOSURE is a state of exposure (e.g., based on collected ground truth data of asking panelists if they remember seeing specific content at a specific time via mobile surveys sent to their devices), Pu is a set of location trace characteristics for the target mobile device, and Bi is a set of placement characteristics of the content presented by the physical object.
In some embodiments, the view duration module 240 is configured and/or programmed to receive view duration information associated with a time duration within which the target mobile device is positioned within the certain geographic location. For example, the view duration module 240 may receive information identifying a time period within which the mobile device 110 was positioned within the location 120.
Thus, in some embodiments, the exposure determination module 230 may utilize location data for the mobile device 110 within the location 120 to derive device-level measures of viewability, by taking a dynamic location trace (see
Device heading angle information, where an exposure is more likely when a subject device is moving toward the facing direction of a physical object (e.g., the direction towards which presented advertisements and other content faces);
Placement viewshed information, where a viewshed may be narrower in dense urban environments than near freeways with few occluding structures; and
Dwell or duration information, where an exposure is more likely when the mobile device 110 is located proximate to an advertisement (e.g., in a viewable state) for a certain time period; and so on.
Thus, using heading information associated with the mobile device 110, and viewshed information associated with the content presented by the physical object 125, the exposure determination module 230 may determine the mobile device is exposed (e.g., determine an exposure probability or likelihood of 90-100 percent) when the position of the device is within the viewshed of the physical object 125, and the angle of the heading of the mobile device 110 relative to the facing angle of the physical object 125 is within 90 degrees (or another suitable range).
As described herein, the content exposure system 150 performs various algorithmic processes when determining whether a device (or, associated user) is exposed to content presented by a physical object (e.g., a billboard advertisement), and providing the exposure information to systems that attribute exposures to conversion events and other associated user actions.
In operation 610, the content exposure system 150 receives device location information associated with a target mobile device positioned at a certain geographic location. For example, the device location module 210 may receive a series of lat long (latitude and longitude) coordinates for the mobile device 110 within the location 120, and determine heading information for the target mobile device using the coordinates.
In operation 612, the content exposure system 150 receives object placement information associated with content presented by a physical object at the certain geographic location. For example, the placement information module 220 may receive and/or generate a placement viewshed for the physical object based on a geography, location, or area that is viewable from the physical object.
Optionally, in operation 615, the content exposure system 150 receives view duration information associated with a time duration within which the target mobile device is positioned within the certain geographic location. For example, the view duration module 240 may receive information identifying a time period within which the mobile device 110 was positioned within the location 120.
In operation 620, the content exposure system 150 determines an exposure probability that is based on a comparison of the received device location information to the received object placement information. For example, the exposure determination module 230 may determine a positive or actual exposure of a user to content when a position of a target mobile device is within an estimated viewshed for content presented by a physical object, and when a directional heading of the target mobile device with respect to a presentation angle of the content presented by the physical object is within an angle of 90 degrees.
As described herein, the exposure determination module 230 may determine an exposure probability as a function of the received device location information and the received object placement information, as L_exposure=F(EXPOSURE|Pu, Bi); where L_exposure is the exposure probability, EXPOSURE is a state indicating that the object was viewed, Pu is a set of location trace characteristics for the target mobile device, and Bi is a set of placement characteristics of the content presented by the physical object. The determined exposure probability may be a binary value (e.g., exposure=yes or confirmed or exposure=no) and/or may be within a range of probabilities (0 percent to 100 percent), as described herein.
In operation 630, the content exposure system 150 provides the determined exposure probability to an attribution system. For example the content exposure system 150 may provide estimated probability values to the attribution system 160 or other entities configured to measure advertisement effectiveness for various different types of conversions and conversion events, such as website visits and/or purchases and application installs, physical stores visits and/or purchases, attitudinal survey responses for brand and/or product awareness, and so on.
As described herein, the content exposure system 150 may determine exposures of mobile devices 110 to various types of OOH advertising, such as in motion objects and indoor environments. Example OOH types include:
Takeover advertising in indoor environments, such as in a subway tunnel, mall, airport, arena, stadium, and so on. In such environments, the content exposure system 150 may determine when an indoor environment is entered, and predict a high exposure probability;
Cinema advertising, where advertisements are often shown in theaters before the start of a movie. The content exposure system 150 may utilize a combination of visitation estimation and surveys to define exposure for cinema advertising, and determine a device is exposed when the visit is made to a target theater location and a panelist arrived 10 minutes before the movie start time, as measured by a visit estimation system or a survey;
Transit Wraps and Transit-Side advertising, where a bus wrapped in a graphical advertisement and/or posters shown on the back and side of transit vehicles. The content exposure system 150 may determine viewability or exposure intersecting a device's location trace with static or real-time bus schedules. For example,
Inside Transit Card advertising, where advertisements appear above the windows inside the passenger compartment of buses and trains. The content exposure system 150 may utilize location data, and static or real-time bus schedules, to determine viewability or exposures by detecting when the mobile device 110 is traveling on a bus or train that has a known advertisement The content exposure system 150 may perform a location match to correlate in space and time the user location with the location of the bus or train; and/or may perform a sensor match to correlate a pattern of activity across the various device sensors (e.g., accelerometer, gyroscope, compass, and so on) with signatures known to be evident when a device is traveling on a bus or train; and so on.
Thus, in some embodiments, the content exposure system 150 may determine a user was exposed to content presented by a physical object. The content exposure system 150 determines a mobile device associated with the user is located within a viewshed of the content presented by the physical object, and determines the mobile device associated with the user moved toward a facing direction of the physical object, where the facing direction of the physical object is a direction that presents the content.
Suitable Computing Devices
In the example of
The processor 905 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. One of skill in the relevant art will recognize that the terms “machine-readable (storage) medium” or “computer-readable (storage) medium” include any type of device that is accessible by the processor.
The memory 910 is coupled to the processor by, for example, a bus 925. The memory can include, by way of example but not limitation, random access memory (RAM), such as dynamic RAM (DRAM) and static RAM (SRAM). The memory can be local, remote, or distributed.
The bus 925 also couples the processor to the non-volatile memory 915 and drive unit 945. The non-volatile memory 915 is often a magnetic floppy or hard disk, a magnetic-optical disk, an optical disk, a read-only memory (ROM), such as a CD-ROM, EPROM, or EEPROM, a magnetic or optical card, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory during execution of software in the computer 900. The non-volatile storage can be local, remote, or distributed. The non-volatile memory is optional because systems can be created with all applicable data available in memory. A typical computer system will usually include at least a processor, memory, and a device (e.g., a bus) coupling the memory to the processor.
Software is typically stored in the non-volatile memory and/or the drive unit. Indeed, for large programs, it may not even be possible to store the entire program in the memory. Nevertheless, it should be understood that for software to run, if necessary, it is moved to a computer readable location appropriate for processing, and for illustrative purposes, that location is referred to as the memory in this paper. Even when software is moved to the memory for execution, the processor will typically make use of hardware registers to store values associated with the software, and local cache. Ideally, this serves to speed up execution. As used herein, a software program is assumed to be stored at any known or convenient location (from non-volatile storage to hardware registers) when the software program is referred to as “implemented in a computer-readable medium 950.” A processor is considered to be “configured to execute a program” when at least one value associated with the program is stored in a register readable by the processor.
The bus 925 also couples the processor to the network interface device 920. The interface can include one or more of a modem or network interface. It will be appreciated that a modem or network interface can be considered to be part of the computer system. The interface can include an analog modem, isdn modem, cable modem, token ring interface, satellite transmission interface (e.g., “direct PC”), or other interfaces for coupling a computer system to other computer systems. The interface can include one or more input 935 and/or output devices. The I/O devices can include, by way of example but not limitation, a keyboard, a mouse or other pointing device 940, disk drives, printers, a scanner, and other input and/or output devices, including a display device 930. The display device can include, by way of example but not limitation, a cathode ray tube (CRT), liquid crystal display (LCD), or some other applicable known or convenient display device. For simplicity, it is assumed that controllers of any devices not depicted in the example of
In operation, the computer system 900 can be controlled by operating system software that includes a file management system, such as a disk operating system. One example of operating system software with associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile memory and/or drive unit and causes the processor to execute the various acts required by the operating system to input and output data and to store data in the memory, including storing files on the non-volatile memory and/or drive unit.
Some portions of the detailed description may be presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the methods of some embodiments. The required structure for a variety of these systems will appear from the description below. In addition, the techniques are not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.
In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
The machine may be a server computer, a client computer, a personal computer (PC), a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.
In general, the routines executed to implement the embodiments of the disclosure, may be implemented as part of an operating system or a specific application, component, program, object, module, or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.
Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.
Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include but are not limited to recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.
Conclusion
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.
These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.
From the foregoing, it will be appreciated that specific embodiments of the attribution system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the embodiments. Accordingly, the embodiments are not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
666223 | Shedlock | Jan 1901 | A |
4581634 | Williams | Apr 1986 | A |
4975690 | Torres | Dec 1990 | A |
5072412 | Henderson, Jr. et al. | Dec 1991 | A |
5493692 | Theimer et al. | Feb 1996 | A |
5713073 | Warsta | Jan 1998 | A |
5754939 | Herz et al. | May 1998 | A |
5855008 | Goldhaber et al. | Dec 1998 | A |
5883639 | Walton et al. | Mar 1999 | A |
5999932 | Paul | Dec 1999 | A |
6012098 | Bayeh et al. | Jan 2000 | A |
6014090 | Rosen et al. | Jan 2000 | A |
6029141 | Bezos et al. | Feb 2000 | A |
6038295 | Mattes | Mar 2000 | A |
6049711 | Yehezkel et al. | Apr 2000 | A |
6154764 | Nitta et al. | Nov 2000 | A |
6167435 | Druckenmiller et al. | Dec 2000 | A |
6204840 | Petelycky et al. | Mar 2001 | B1 |
6205432 | Gabbard et al. | Mar 2001 | B1 |
6216141 | Straub et al. | Apr 2001 | B1 |
6285381 | Sawano et al. | Sep 2001 | B1 |
6285987 | Roth et al. | Sep 2001 | B1 |
6310694 | Okimoto et al. | Oct 2001 | B1 |
6317789 | Rakavy et al. | Nov 2001 | B1 |
6334149 | Davis, Jr. et al. | Dec 2001 | B1 |
6349203 | Asaoka et al. | Feb 2002 | B1 |
6353170 | Eyzaguirre et al. | Mar 2002 | B1 |
6446004 | Cao et al. | Sep 2002 | B1 |
6449485 | Anzil | Sep 2002 | B1 |
6449657 | Stanbach et al. | Sep 2002 | B2 |
6456852 | Bar et al. | Sep 2002 | B2 |
6484196 | Maurille | Nov 2002 | B1 |
6487601 | Hubacher et al. | Nov 2002 | B1 |
6523008 | Avrunin | Feb 2003 | B1 |
6542749 | Tanaka et al. | Apr 2003 | B2 |
6549768 | Fraccaroli | Apr 2003 | B1 |
6618593 | Drutman et al. | Sep 2003 | B1 |
6622174 | Ukita et al. | Sep 2003 | B1 |
6631463 | Floyd et al. | Oct 2003 | B1 |
6636247 | Hamzy et al. | Oct 2003 | B1 |
6636855 | Holloway et al. | Oct 2003 | B2 |
6643684 | Malkin et al. | Nov 2003 | B1 |
6658095 | Yoakum et al. | Dec 2003 | B1 |
6665531 | Soderbacka et al. | Dec 2003 | B1 |
6668173 | Greene | Dec 2003 | B2 |
6684238 | Dutta | Jan 2004 | B1 |
6684257 | Camut et al. | Jan 2004 | B1 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6700506 | Winkler | Mar 2004 | B1 |
6720860 | Narayanaswami | Apr 2004 | B1 |
6724403 | Santoro et al. | Apr 2004 | B1 |
6757713 | Ogilvie et al. | Jun 2004 | B1 |
6832222 | Zimowski | Dec 2004 | B1 |
6834195 | Brandenberg et al. | Dec 2004 | B2 |
6836792 | Chen | Dec 2004 | B1 |
6898626 | Ohashi | May 2005 | B2 |
6959324 | Kubik et al. | Oct 2005 | B1 |
6970088 | Kovach | Nov 2005 | B2 |
6970907 | Ullmann et al. | Nov 2005 | B1 |
6980909 | Root et al. | Dec 2005 | B2 |
6981040 | Konig et al. | Dec 2005 | B1 |
7020494 | Spriestersbach et al. | Mar 2006 | B2 |
7027124 | Foote et al. | Apr 2006 | B2 |
7072963 | Anderson et al. | Jul 2006 | B2 |
7085571 | Kalhan et al. | Aug 2006 | B2 |
7110744 | Freeny, Jr. | Sep 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7149893 | Leonard et al. | Dec 2006 | B1 |
7173651 | Knowles | Feb 2007 | B1 |
7188143 | Szeto | Mar 2007 | B2 |
7203380 | Chiu et al. | Apr 2007 | B2 |
7206568 | Sudit | Apr 2007 | B2 |
7227937 | Yoakum et al. | Jun 2007 | B1 |
7237002 | Estrada et al. | Jun 2007 | B1 |
7240089 | Boudreau | Jul 2007 | B2 |
7269426 | Kokkonen et al. | Sep 2007 | B2 |
7280658 | Amini et al. | Oct 2007 | B2 |
7315823 | Brondrup | Jan 2008 | B2 |
7349768 | Bruce et al. | Mar 2008 | B2 |
7356564 | Hartselle et al. | Apr 2008 | B2 |
7394345 | Ehlinger et al. | Jul 2008 | B1 |
7411493 | Smith | Aug 2008 | B2 |
7423580 | Markhovsky et al. | Sep 2008 | B2 |
7454442 | Cobleigh et al. | Nov 2008 | B2 |
7508419 | Toyama et al. | Mar 2009 | B2 |
7512649 | Faybishenko et al. | Mar 2009 | B2 |
7519670 | Hagale et al. | Apr 2009 | B2 |
7535890 | Rojas | May 2009 | B2 |
7546554 | Chiu et al. | Jun 2009 | B2 |
7607096 | Oreizy et al. | Oct 2009 | B2 |
7639943 | Kalajan | Dec 2009 | B1 |
7650231 | Gadler | Jan 2010 | B2 |
7668537 | DeVries | Feb 2010 | B2 |
7770137 | Forbes et al. | Aug 2010 | B2 |
7778973 | Choi | Aug 2010 | B2 |
7779444 | Glad | Aug 2010 | B2 |
7787886 | Markhovsky et al. | Aug 2010 | B2 |
7796946 | Eisenbach | Sep 2010 | B2 |
7801954 | Cadiz et al. | Sep 2010 | B2 |
7856360 | Kramer et al. | Dec 2010 | B2 |
7966658 | Singh et al. | Jun 2011 | B2 |
8001204 | Burtner et al. | Aug 2011 | B2 |
8010685 | Singh et al. | Aug 2011 | B2 |
8032586 | Challenger et al. | Oct 2011 | B2 |
8082255 | Carlson, Jr. et al. | Dec 2011 | B1 |
8090351 | Klein | Jan 2012 | B2 |
8098904 | Ioffe et al. | Jan 2012 | B2 |
8099109 | Altman et al. | Jan 2012 | B2 |
8112716 | Kobayashi | Feb 2012 | B2 |
8131597 | Hudetz et al. | Mar 2012 | B2 |
8135166 | Rhoads | Mar 2012 | B2 |
8136028 | Loeb et al. | Mar 2012 | B1 |
8146001 | Reese | Mar 2012 | B1 |
8161115 | Yamamoto | Apr 2012 | B2 |
8161417 | Lee | Apr 2012 | B1 |
8195203 | Tseng | Jun 2012 | B1 |
8199747 | Rojas et al. | Jun 2012 | B2 |
8200247 | Starenky et al. | Jun 2012 | B1 |
8208943 | Petersen | Jun 2012 | B2 |
8214443 | Hamburg | Jul 2012 | B2 |
8220034 | Hahn et al. | Jul 2012 | B2 |
8229458 | Busch | Jul 2012 | B2 |
8234350 | Gu et al. | Jul 2012 | B1 |
8276092 | Narayanan et al. | Sep 2012 | B1 |
8279319 | Date | Oct 2012 | B2 |
8280406 | Ziskind et al. | Oct 2012 | B2 |
8285199 | Hsu et al. | Oct 2012 | B2 |
8287380 | Nguyen et al. | Oct 2012 | B2 |
8296842 | Singh et al. | Oct 2012 | B2 |
8301159 | Hamynen et al. | Oct 2012 | B2 |
8306922 | Kunal et al. | Nov 2012 | B1 |
8312086 | Velusamy et al. | Nov 2012 | B2 |
8312097 | Siegel et al. | Nov 2012 | B1 |
8326315 | Phillips et al. | Dec 2012 | B2 |
8326327 | Hymel et al. | Dec 2012 | B2 |
8332475 | Rosen et al. | Dec 2012 | B2 |
8352546 | Dollard | Jan 2013 | B1 |
8379130 | Forutanpour et al. | Feb 2013 | B2 |
8385950 | Wagner et al. | Feb 2013 | B1 |
8402097 | Szeto | Mar 2013 | B2 |
8405773 | Hayashi et al. | Mar 2013 | B2 |
8418067 | Cheng et al. | Apr 2013 | B2 |
8423409 | Rao | Apr 2013 | B2 |
8471914 | Sakiyama et al. | Jun 2013 | B2 |
8472935 | Fujisaki | Jun 2013 | B1 |
8509761 | Krinsky et al. | Aug 2013 | B2 |
8510383 | Hurley et al. | Aug 2013 | B2 |
8527345 | Rothschild et al. | Sep 2013 | B2 |
8554627 | Svendsen et al. | Oct 2013 | B2 |
8560612 | Kilmer et al. | Oct 2013 | B2 |
8588942 | Agrawal | Nov 2013 | B2 |
8594680 | Ledlie et al. | Nov 2013 | B2 |
8613088 | Varghese et al. | Dec 2013 | B2 |
8613089 | Holloway et al. | Dec 2013 | B1 |
8660358 | Bergboer et al. | Feb 2014 | B1 |
8660369 | Llano et al. | Feb 2014 | B2 |
8660793 | Ngo et al. | Feb 2014 | B2 |
8682350 | Altman et al. | Mar 2014 | B2 |
8718333 | Wolf et al. | May 2014 | B2 |
8724622 | Rojas | May 2014 | B2 |
8732168 | Johnson | May 2014 | B2 |
8744523 | Fan et al. | Jun 2014 | B2 |
8745132 | Obradovich | Jun 2014 | B2 |
8761800 | Kuwahara | Jun 2014 | B2 |
8768876 | Shim et al. | Jul 2014 | B2 |
8775972 | Spiegel | Jul 2014 | B2 |
8788680 | Naik | Jul 2014 | B1 |
8790187 | Walker et al. | Jul 2014 | B2 |
8797415 | Arnold | Aug 2014 | B2 |
8798646 | Wang et al. | Aug 2014 | B1 |
8856349 | Jain et al. | Oct 2014 | B2 |
8874677 | Rosen et al. | Oct 2014 | B2 |
8886227 | Schmidt et al. | Nov 2014 | B2 |
8909679 | Roote et al. | Dec 2014 | B2 |
8909725 | Sehn | Dec 2014 | B1 |
8942953 | Yuen et al. | Jan 2015 | B2 |
8972357 | Shim et al. | Mar 2015 | B2 |
8995433 | Rojas | Mar 2015 | B2 |
9015285 | Ebsen et al. | Apr 2015 | B1 |
9020745 | Johnston et al. | Apr 2015 | B2 |
9040574 | Wang et al. | May 2015 | B2 |
9055416 | Rosen et al. | Jun 2015 | B2 |
9094137 | Sehn et al. | Jul 2015 | B1 |
9100806 | Rosen et al. | Aug 2015 | B2 |
9100807 | Rosen et al. | Aug 2015 | B2 |
9113301 | Spiegel et al. | Aug 2015 | B1 |
9119027 | Sharon et al. | Aug 2015 | B2 |
9123074 | Jacobs | Sep 2015 | B2 |
9143382 | Bhogal et al. | Sep 2015 | B2 |
9143681 | Ebsen et al. | Sep 2015 | B1 |
9152477 | Campbell et al. | Oct 2015 | B1 |
9161084 | Sharma | Oct 2015 | B1 |
9191776 | Root et al. | Nov 2015 | B2 |
9204252 | Root | Dec 2015 | B2 |
9225897 | Sehn et al. | Dec 2015 | B1 |
9256832 | Shim et al. | Feb 2016 | B2 |
9258459 | Hartley | Feb 2016 | B2 |
9344606 | Hartley et al. | May 2016 | B2 |
9385983 | Sehn | Jul 2016 | B1 |
9396354 | Murphy et al. | Jul 2016 | B1 |
9407712 | Sehn | Aug 2016 | B1 |
9407816 | Sehn | Aug 2016 | B1 |
9430783 | Sehn | Aug 2016 | B1 |
9439041 | Parvizi et al. | Sep 2016 | B2 |
9443227 | Evans et al. | Sep 2016 | B2 |
9450907 | Pridmore et al. | Sep 2016 | B2 |
9459778 | Hogeg et al. | Oct 2016 | B2 |
9489661 | Evans et al. | Nov 2016 | B2 |
9491134 | Rosen et al. | Nov 2016 | B2 |
9532171 | Allen et al. | Dec 2016 | B2 |
9537811 | Allen et al. | Jan 2017 | B2 |
9628950 | Noeth et al. | Apr 2017 | B1 |
9710821 | Heath | Jul 2017 | B2 |
9854219 | Sehn | Dec 2017 | B2 |
20020047868 | Miyazawa | Apr 2002 | A1 |
20020078456 | Hudson et al. | Jun 2002 | A1 |
20020087631 | Sharma | Jul 2002 | A1 |
20020097257 | Miller et al. | Jul 2002 | A1 |
20020122659 | Mcgrath et al. | Sep 2002 | A1 |
20020128047 | Gates | Sep 2002 | A1 |
20020144154 | Tomkow | Oct 2002 | A1 |
20030001846 | Davis et al. | Jan 2003 | A1 |
20030016247 | Lai et al. | Jan 2003 | A1 |
20030017823 | Mager et al. | Jan 2003 | A1 |
20030020623 | Cao et al. | Jan 2003 | A1 |
20030023874 | Prokupets et al. | Jan 2003 | A1 |
20030037124 | Yamaura et al. | Feb 2003 | A1 |
20030052925 | Daimon et al. | Mar 2003 | A1 |
20030101230 | Benschoter et al. | May 2003 | A1 |
20030110503 | Perkes | Jun 2003 | A1 |
20030126215 | Udell | Jul 2003 | A1 |
20030148773 | Spriestersbach et al. | Aug 2003 | A1 |
20030164856 | Prager et al. | Sep 2003 | A1 |
20030229607 | Zellweger et al. | Dec 2003 | A1 |
20040027371 | Jaeger | Feb 2004 | A1 |
20040064429 | Hirstius et al. | Apr 2004 | A1 |
20040078367 | Anderson et al. | Apr 2004 | A1 |
20040111467 | Willis | Jun 2004 | A1 |
20040158739 | Wakai et al. | Aug 2004 | A1 |
20040189465 | Capobianco et al. | Sep 2004 | A1 |
20040203959 | Coombes | Oct 2004 | A1 |
20040215625 | Svendsen et al. | Oct 2004 | A1 |
20040243531 | Dean | Dec 2004 | A1 |
20040243688 | Wugofski | Dec 2004 | A1 |
20050021444 | Bauer et al. | Jan 2005 | A1 |
20050022211 | Veselov et al. | Jan 2005 | A1 |
20050048989 | Jung | Mar 2005 | A1 |
20050078804 | Yomoda | Apr 2005 | A1 |
20050097176 | Schatz et al. | May 2005 | A1 |
20050102381 | Jiang et al. | May 2005 | A1 |
20050104976 | Currans | May 2005 | A1 |
20050114783 | Szeto | May 2005 | A1 |
20050119936 | Buchanan et al. | Jun 2005 | A1 |
20050122405 | Voss et al. | Jun 2005 | A1 |
20050193340 | Amburgey et al. | Sep 2005 | A1 |
20050193345 | Klassen et al. | Sep 2005 | A1 |
20050198128 | Anderson | Sep 2005 | A1 |
20050223066 | Buchheit et al. | Oct 2005 | A1 |
20050288954 | McCarthy et al. | Dec 2005 | A1 |
20060026067 | Nicholas et al. | Feb 2006 | A1 |
20060107297 | Toyama et al. | May 2006 | A1 |
20060114338 | Rothschild | Jun 2006 | A1 |
20060119882 | Harris et al. | Jun 2006 | A1 |
20060242239 | Morishima et al. | Oct 2006 | A1 |
20060252438 | Ansamaa et al. | Nov 2006 | A1 |
20060265417 | Amato et al. | Nov 2006 | A1 |
20060270419 | Crowley et al. | Nov 2006 | A1 |
20060287878 | Wadhwa et al. | Dec 2006 | A1 |
20070004426 | Pfleging et al. | Jan 2007 | A1 |
20070038715 | Collins et al. | Feb 2007 | A1 |
20070040931 | Nishizawa | Feb 2007 | A1 |
20070073517 | Panje | Mar 2007 | A1 |
20070073823 | Cohen et al. | Mar 2007 | A1 |
20070075898 | Markhovsky et al. | Apr 2007 | A1 |
20070082707 | Flynt et al. | Apr 2007 | A1 |
20070136228 | Petersen | Jun 2007 | A1 |
20070192128 | Celestini | Aug 2007 | A1 |
20070198340 | Lucovsky et al. | Aug 2007 | A1 |
20070198495 | Buron et al. | Aug 2007 | A1 |
20070208751 | Cowan et al. | Sep 2007 | A1 |
20070210936 | Nicholson | Sep 2007 | A1 |
20070214180 | Crawford | Sep 2007 | A1 |
20070214216 | Carrer et al. | Sep 2007 | A1 |
20070233556 | Koningstein | Oct 2007 | A1 |
20070233801 | Eren et al. | Oct 2007 | A1 |
20070233859 | Zhao et al. | Oct 2007 | A1 |
20070243887 | Bandhole et al. | Oct 2007 | A1 |
20070244633 | Phillips et al. | Oct 2007 | A1 |
20070244750 | Grannan et al. | Oct 2007 | A1 |
20070255456 | Funayama | Nov 2007 | A1 |
20070281690 | Altman et al. | Dec 2007 | A1 |
20080022329 | Glad | Jan 2008 | A1 |
20080025701 | Ikeda | Jan 2008 | A1 |
20080032703 | Krumm et al. | Feb 2008 | A1 |
20080033930 | Warren | Feb 2008 | A1 |
20080043041 | Hedenstroem et al. | Feb 2008 | A2 |
20080049704 | Witteman et al. | Feb 2008 | A1 |
20080062141 | Chandhri | Mar 2008 | A1 |
20080076505 | Ngyen et al. | Mar 2008 | A1 |
20080092233 | Tian et al. | Apr 2008 | A1 |
20080094387 | Chen | Apr 2008 | A1 |
20080104503 | Beall et al. | May 2008 | A1 |
20080109844 | Baldeschweiler et al. | May 2008 | A1 |
20080120409 | Sun et al. | May 2008 | A1 |
20080140479 | Mello | Jun 2008 | A1 |
20080147730 | Lee et al. | Jun 2008 | A1 |
20080148150 | Mall | Jun 2008 | A1 |
20080158230 | Sharma et al. | Jul 2008 | A1 |
20080168033 | Ott et al. | Jul 2008 | A1 |
20080168489 | Schraga | Jul 2008 | A1 |
20080189177 | Anderton et al. | Aug 2008 | A1 |
20080207176 | Brackbill et al. | Aug 2008 | A1 |
20080208692 | Garaventi et al. | Aug 2008 | A1 |
20080214210 | Rasanen et al. | Sep 2008 | A1 |
20080222545 | Lemay | Sep 2008 | A1 |
20080248815 | Busch | Oct 2008 | A1 |
20080255976 | Altberg et al. | Oct 2008 | A1 |
20080256446 | Yamamoto | Oct 2008 | A1 |
20080256577 | Funaki et al. | Oct 2008 | A1 |
20080266421 | Takahata et al. | Oct 2008 | A1 |
20080270938 | Carlson | Oct 2008 | A1 |
20080288338 | Wiseman et al. | Nov 2008 | A1 |
20080306826 | Kramer et al. | Dec 2008 | A1 |
20080312946 | Valentine | Dec 2008 | A1 |
20080313329 | Wang et al. | Dec 2008 | A1 |
20080313346 | Kujawa et al. | Dec 2008 | A1 |
20080318616 | Chipalkatti et al. | Dec 2008 | A1 |
20090006191 | Arankalle et al. | Jan 2009 | A1 |
20090006565 | Velusamy et al. | Jan 2009 | A1 |
20090015703 | Kim et al. | Jan 2009 | A1 |
20090024956 | Kobayashi | Jan 2009 | A1 |
20090030774 | Rothschild et al. | Jan 2009 | A1 |
20090030999 | Gatzke et al. | Jan 2009 | A1 |
20090040324 | Nonaka | Feb 2009 | A1 |
20090042588 | Lottin et al. | Feb 2009 | A1 |
20090058822 | Chaudhri | Mar 2009 | A1 |
20090079846 | Chou | Mar 2009 | A1 |
20090089558 | Bradford et al. | Apr 2009 | A1 |
20090089678 | Sacco et al. | Apr 2009 | A1 |
20090089710 | Wood et al. | Apr 2009 | A1 |
20090093261 | Ziskind | Apr 2009 | A1 |
20090132341 | Klinger | May 2009 | A1 |
20090132453 | Hangartner et al. | May 2009 | A1 |
20090132665 | Thomsen et al. | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090153492 | Popp | Jun 2009 | A1 |
20090157450 | Athsani et al. | Jun 2009 | A1 |
20090157752 | Gonzalez | Jun 2009 | A1 |
20090160970 | Fredlund et al. | Jun 2009 | A1 |
20090163182 | Gatti et al. | Jun 2009 | A1 |
20090177299 | Van De Sluis | Jul 2009 | A1 |
20090192900 | Collison | Jul 2009 | A1 |
20090199242 | Johnson et al. | Aug 2009 | A1 |
20090204354 | Davis et al. | Aug 2009 | A1 |
20090215469 | Fisher et al. | Aug 2009 | A1 |
20090232354 | Camp, Jr. et al. | Sep 2009 | A1 |
20090234815 | Boerries et al. | Sep 2009 | A1 |
20090239552 | Churchill et al. | Sep 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090259436 | Doe | Oct 2009 | A1 |
20090265215 | Lindstrom | Oct 2009 | A1 |
20090265647 | Martin et al. | Oct 2009 | A1 |
20090276235 | Benezra et al. | Nov 2009 | A1 |
20090278738 | Gopinath | Nov 2009 | A1 |
20090288022 | Almstrand et al. | Nov 2009 | A1 |
20090291672 | Treves et al. | Nov 2009 | A1 |
20090292608 | Polachek | Nov 2009 | A1 |
20090319607 | Belz et al. | Dec 2009 | A1 |
20090327073 | Li | Dec 2009 | A1 |
20100041378 | Aceves et al. | Feb 2010 | A1 |
20100062794 | Han | Mar 2010 | A1 |
20100082427 | Burgener et al. | Apr 2010 | A1 |
20100082693 | Hugg et al. | Apr 2010 | A1 |
20100100568 | Papin et al. | Apr 2010 | A1 |
20100113065 | Narayan et al. | May 2010 | A1 |
20100130233 | Parker | May 2010 | A1 |
20100131880 | Lee et al. | May 2010 | A1 |
20100131895 | Wohlert | May 2010 | A1 |
20100153144 | Miller et al. | Jun 2010 | A1 |
20100159944 | Pascal et al. | Jun 2010 | A1 |
20100161658 | Hamynen et al. | Jun 2010 | A1 |
20100161720 | Colligan et al. | Jun 2010 | A1 |
20100161831 | Haas et al. | Jun 2010 | A1 |
20100162149 | Sheleheda et al. | Jun 2010 | A1 |
20100183280 | Beauregard et al. | Jul 2010 | A1 |
20100185552 | Deluca et al. | Jul 2010 | A1 |
20100185665 | Horn et al. | Jul 2010 | A1 |
20100191631 | Weidmann | Jul 2010 | A1 |
20100197318 | Petersen et al. | Aug 2010 | A1 |
20100197319 | Petersen et al. | Aug 2010 | A1 |
20100198683 | Aarabi | Aug 2010 | A1 |
20100198694 | Muthukrishnan | Aug 2010 | A1 |
20100198826 | Petersen | Aug 2010 | A1 |
20100198828 | Petersen et al. | Aug 2010 | A1 |
20100198862 | Jennings et al. | Aug 2010 | A1 |
20100198870 | Petersen et al. | Aug 2010 | A1 |
20100198917 | Petersen et al. | Aug 2010 | A1 |
20100201482 | Robertson et al. | Aug 2010 | A1 |
20100201536 | Robertson et al. | Aug 2010 | A1 |
20100211425 | Govindarajan | Aug 2010 | A1 |
20100214436 | Kim et al. | Aug 2010 | A1 |
20100223128 | Dukellis et al. | Sep 2010 | A1 |
20100223343 | Bosan et al. | Sep 2010 | A1 |
20100223346 | Dragt | Sep 2010 | A1 |
20100250109 | Johnston et al. | Sep 2010 | A1 |
20100257036 | Khojastepour et al. | Oct 2010 | A1 |
20100257196 | Waters et al. | Oct 2010 | A1 |
20100259386 | Holley et al. | Oct 2010 | A1 |
20100273509 | Sweeney et al. | Oct 2010 | A1 |
20100281045 | Dean | Nov 2010 | A1 |
20100306669 | Della Pasqua | Dec 2010 | A1 |
20110004071 | Faiola et al. | Jan 2011 | A1 |
20110010205 | Richards | Jan 2011 | A1 |
20110029512 | Folgner et al. | Feb 2011 | A1 |
20110040783 | Uemichi et al. | Feb 2011 | A1 |
20110040804 | Peirce et al. | Feb 2011 | A1 |
20110050909 | Ellenby et al. | Mar 2011 | A1 |
20110050915 | Wang et al. | Mar 2011 | A1 |
20110064388 | Brown et al. | Mar 2011 | A1 |
20110066743 | Hurley et al. | Mar 2011 | A1 |
20110076653 | Culligan et al. | Mar 2011 | A1 |
20110083101 | Sharon et al. | Apr 2011 | A1 |
20110099046 | Weiss et al. | Apr 2011 | A1 |
20110099047 | Weiss et al. | Apr 2011 | A1 |
20110099048 | Weiss et al. | Apr 2011 | A1 |
20110102630 | Rukes | May 2011 | A1 |
20110119133 | Igelman et al. | May 2011 | A1 |
20110137881 | Cheng et al. | Jun 2011 | A1 |
20110145564 | Moshir et al. | Jun 2011 | A1 |
20110159890 | Fortescue et al. | Jun 2011 | A1 |
20110161163 | Carlson | Jun 2011 | A1 |
20110164163 | Bilbrey et al. | Jul 2011 | A1 |
20110197194 | D'Angelo et al. | Aug 2011 | A1 |
20110202598 | Evans et al. | Aug 2011 | A1 |
20110202968 | Nurmi | Aug 2011 | A1 |
20110211534 | Schmidt et al. | Sep 2011 | A1 |
20110213845 | Logan et al. | Sep 2011 | A1 |
20110215903 | Yang et al. | Sep 2011 | A1 |
20110215966 | Kim et al. | Sep 2011 | A1 |
20110225048 | Nair | Sep 2011 | A1 |
20110238763 | Shin et al. | Sep 2011 | A1 |
20110255736 | Thompson et al. | Oct 2011 | A1 |
20110273575 | Lee | Nov 2011 | A1 |
20110282799 | Huston | Nov 2011 | A1 |
20110283188 | Farrenkopf | Nov 2011 | A1 |
20110314419 | Dunn et al. | Dec 2011 | A1 |
20110320373 | Lee et al. | Dec 2011 | A1 |
20120150978 | Monaco | Jan 2012 | A1 |
20120028659 | Whitney et al. | Feb 2012 | A1 |
20120033718 | Kauffman et al. | Feb 2012 | A1 |
20120036015 | Sheikh | Feb 2012 | A1 |
20120036443 | Ohmori et al. | Feb 2012 | A1 |
20120054797 | Skog et al. | Mar 2012 | A1 |
20120059722 | Rao | Mar 2012 | A1 |
20120062805 | Candelore | Mar 2012 | A1 |
20120084731 | Filman et al. | Apr 2012 | A1 |
20120084835 | Thomas et al. | Apr 2012 | A1 |
20120099800 | Llano et al. | Apr 2012 | A1 |
20120108293 | Law et al. | May 2012 | A1 |
20120110096 | Smarr et al. | May 2012 | A1 |
20120113143 | Adhikari et al. | May 2012 | A1 |
20120113272 | Hata | May 2012 | A1 |
20120123830 | Svendsen et al. | May 2012 | A1 |
20120123871 | Svendsen et al. | May 2012 | A1 |
20120123875 | Svendsen et al. | May 2012 | A1 |
20120124126 | Alcazar et al. | May 2012 | A1 |
20120124176 | Curtis et al. | May 2012 | A1 |
20120124458 | Cruzada | May 2012 | A1 |
20120131507 | Sparandara et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120143760 | Abulafia et al. | Jun 2012 | A1 |
20120165100 | Lalancette et al. | Jun 2012 | A1 |
20120166971 | Sachson et al. | Jun 2012 | A1 |
20120169855 | Oh | Jul 2012 | A1 |
20120172062 | Altman et al. | Jul 2012 | A1 |
20120173991 | Roberts et al. | Jul 2012 | A1 |
20120176401 | Hayward et al. | Jul 2012 | A1 |
20120184248 | Speede | Jul 2012 | A1 |
20120197724 | Kendall | Aug 2012 | A1 |
20120200743 | Blanchflower et al. | Aug 2012 | A1 |
20120209924 | Evans et al. | Aug 2012 | A1 |
20120210244 | De Francisco Lopez et al. | Aug 2012 | A1 |
20120212632 | Mate et al. | Aug 2012 | A1 |
20120220264 | Kawabata | Aug 2012 | A1 |
20120226748 | Bosworth et al. | Sep 2012 | A1 |
20120233000 | Fisher et al. | Sep 2012 | A1 |
20120236162 | Imamura | Sep 2012 | A1 |
20120239761 | Linner et al. | Sep 2012 | A1 |
20120246004 | Book et al. | Sep 2012 | A1 |
20120250951 | Chen | Oct 2012 | A1 |
20120252418 | Kandekar et al. | Oct 2012 | A1 |
20120254325 | Majeti et al. | Oct 2012 | A1 |
20120264446 | Xie et al. | Oct 2012 | A1 |
20120278387 | Garcia et al. | Nov 2012 | A1 |
20120278692 | Shi | Nov 2012 | A1 |
20120290637 | Perantatos et al. | Nov 2012 | A1 |
20120299954 | Wada et al. | Nov 2012 | A1 |
20120304052 | Tanaka et al. | Nov 2012 | A1 |
20120304080 | Wormald et al. | Nov 2012 | A1 |
20120307096 | Bray et al. | Dec 2012 | A1 |
20120307112 | Kunishige et al. | Dec 2012 | A1 |
20120319904 | Lee et al. | Dec 2012 | A1 |
20120323933 | He et al. | Dec 2012 | A1 |
20120324018 | Metcalf et al. | Dec 2012 | A1 |
20130006759 | Srivastava et al. | Jan 2013 | A1 |
20130024757 | Doll et al. | Jan 2013 | A1 |
20130036364 | Johnson | Feb 2013 | A1 |
20130045753 | Obermeyer et al. | Feb 2013 | A1 |
20130050260 | Reitan | Feb 2013 | A1 |
20130055083 | Fino | Feb 2013 | A1 |
20130057587 | Leonard et al. | Mar 2013 | A1 |
20130059607 | Herz et al. | Mar 2013 | A1 |
20130060690 | Oskolkov et al. | Mar 2013 | A1 |
20130063369 | Malhotra et al. | Mar 2013 | A1 |
20130067027 | Song et al. | Mar 2013 | A1 |
20130071093 | Hanks et al. | Mar 2013 | A1 |
20130080254 | Thramann | Mar 2013 | A1 |
20130085790 | Palmer et al. | Apr 2013 | A1 |
20130086072 | Peng et al. | Apr 2013 | A1 |
20130090171 | Holton et al. | Apr 2013 | A1 |
20130095857 | Garcia et al. | Apr 2013 | A1 |
20130104053 | Thornton et al. | Apr 2013 | A1 |
20130110885 | Brundrett, III | May 2013 | A1 |
20130111514 | Slavin et al. | May 2013 | A1 |
20130128059 | Kristensson | May 2013 | A1 |
20130129252 | Lauper | May 2013 | A1 |
20130132477 | Bosworth et al. | May 2013 | A1 |
20130145286 | Feng et al. | Jun 2013 | A1 |
20130159110 | Rajaram et al. | Jun 2013 | A1 |
20130159919 | Leydon | Jun 2013 | A1 |
20130169822 | Zhu et al. | Jul 2013 | A1 |
20130173729 | Starenky et al. | Jul 2013 | A1 |
20130182133 | Tanabe | Jul 2013 | A1 |
20130185131 | Sinha et al. | Jul 2013 | A1 |
20130191198 | Carlson et al. | Jul 2013 | A1 |
20130194301 | Robbins et al. | Aug 2013 | A1 |
20130198176 | Kim | Aug 2013 | A1 |
20130218965 | Abrol et al. | Aug 2013 | A1 |
20130218968 | Mcevilly et al. | Aug 2013 | A1 |
20130222323 | Mckenzie | Aug 2013 | A1 |
20130225202 | Shim et al. | Aug 2013 | A1 |
20130226857 | Shim et al. | Aug 2013 | A1 |
20130227476 | Frey | Aug 2013 | A1 |
20130232194 | Knapp et al. | Sep 2013 | A1 |
20130254227 | Shim et al. | Sep 2013 | A1 |
20130263031 | Oshiro et al. | Oct 2013 | A1 |
20130265450 | Barnes, Jr. | Oct 2013 | A1 |
20130267253 | Case et al. | Oct 2013 | A1 |
20130275505 | Gauglitz et al. | Oct 2013 | A1 |
20130290443 | Collins et al. | Oct 2013 | A1 |
20130304646 | De Geer | Nov 2013 | A1 |
20130311255 | Cummins et al. | Nov 2013 | A1 |
20130325964 | Berberat | Dec 2013 | A1 |
20130339140 | Pokorny | Dec 2013 | A1 |
20130344896 | Kirmse et al. | Dec 2013 | A1 |
20130346869 | Asver et al. | Dec 2013 | A1 |
20130346877 | Borovoy et al. | Dec 2013 | A1 |
20140006129 | Heath | Jan 2014 | A1 |
20140011538 | Mulcahy et al. | Jan 2014 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140032682 | Prado et al. | Jan 2014 | A1 |
20140043204 | Basnayake et al. | Feb 2014 | A1 |
20140045530 | Gordon et al. | Feb 2014 | A1 |
20140047016 | Rao | Feb 2014 | A1 |
20140047045 | Baldwin et al. | Feb 2014 | A1 |
20140047335 | Lewis et al. | Feb 2014 | A1 |
20140049652 | Moon et al. | Feb 2014 | A1 |
20140052485 | Shidfar | Feb 2014 | A1 |
20140052633 | Gandhi | Feb 2014 | A1 |
20140057660 | Wager | Feb 2014 | A1 |
20140082651 | Sharifi | Mar 2014 | A1 |
20140092130 | Anderson et al. | Apr 2014 | A1 |
20140096029 | Schultz | Apr 2014 | A1 |
20140114565 | Aziz et al. | Apr 2014 | A1 |
20140122658 | Haeger et al. | May 2014 | A1 |
20140122787 | Shalvi et al. | May 2014 | A1 |
20140129953 | Spiegel | May 2014 | A1 |
20140143143 | Fasoli et al. | May 2014 | A1 |
20140149519 | Redfern et al. | May 2014 | A1 |
20140155102 | Cooper et al. | Jun 2014 | A1 |
20140172541 | Bruich | Jun 2014 | A1 |
20140173424 | Hogeg et al. | Jun 2014 | A1 |
20140173457 | Wang et al. | Jun 2014 | A1 |
20140189592 | Benchenaa et al. | Jul 2014 | A1 |
20140207679 | Cho | Jul 2014 | A1 |
20140214471 | Schreiner, III | Jul 2014 | A1 |
20140222564 | Kranendonk et al. | Aug 2014 | A1 |
20140249886 | Levinsohn | Sep 2014 | A1 |
20140258405 | Perkin | Sep 2014 | A1 |
20140265359 | Cheng et al. | Sep 2014 | A1 |
20140266703 | Dalley, Jr. et al. | Sep 2014 | A1 |
20140279061 | Elimeliah et al. | Sep 2014 | A1 |
20140279436 | Dorsey et al. | Sep 2014 | A1 |
20140279540 | Jackson | Sep 2014 | A1 |
20140280537 | Pridmore et al. | Sep 2014 | A1 |
20140282096 | Rubinstein et al. | Sep 2014 | A1 |
20140287779 | O'keefe et al. | Sep 2014 | A1 |
20140289833 | Briceno | Sep 2014 | A1 |
20140304212 | Shim et al. | Oct 2014 | A1 |
20140306986 | Gottesman et al. | Oct 2014 | A1 |
20140317302 | Naik | Oct 2014 | A1 |
20140324627 | Haver et al. | Oct 2014 | A1 |
20140324629 | Jacobs | Oct 2014 | A1 |
20140325383 | Brown et al. | Oct 2014 | A1 |
20140379477 | Sheinfeld | Dec 2014 | A1 |
20150006278 | Di Censo | Jan 2015 | A1 |
20150020086 | Chen et al. | Jan 2015 | A1 |
20150029176 | Baxter | Jan 2015 | A1 |
20150046278 | Pei et al. | Feb 2015 | A1 |
20150071619 | Brough | Mar 2015 | A1 |
20150087263 | Branscomb et al. | Mar 2015 | A1 |
20150088622 | Ganschow et al. | Mar 2015 | A1 |
20150095020 | Leydon | Apr 2015 | A1 |
20150096042 | Mizrachi | Apr 2015 | A1 |
20150116529 | Wu et al. | Apr 2015 | A1 |
20150169827 | Laborde | Jun 2015 | A1 |
20150172534 | Miyakawa et al. | Jun 2015 | A1 |
20150178260 | Brunson | Jun 2015 | A1 |
20150222814 | Li et al. | Aug 2015 | A1 |
20150261917 | Smith | Sep 2015 | A1 |
20150312184 | Langholz et al. | Oct 2015 | A1 |
20150350136 | Flynn, III et al. | Dec 2015 | A1 |
20150365795 | Allen et al. | Dec 2015 | A1 |
20150378502 | Hu et al. | Dec 2015 | A1 |
20160006927 | Sehn | Jan 2016 | A1 |
20160014063 | Hogeg et al. | Jan 2016 | A1 |
20160048869 | Shim et al. | Feb 2016 | A1 |
20160063559 | Hargrove | Mar 2016 | A1 |
20160078485 | Shim et al. | Mar 2016 | A1 |
20160085773 | Chang et al. | Mar 2016 | A1 |
20160085863 | Allen et al. | Mar 2016 | A1 |
20160099901 | Allen et al. | Apr 2016 | A1 |
20160157062 | Shim et al. | Jun 2016 | A1 |
20160180887 | Sehn | Jun 2016 | A1 |
20160182422 | Sehn et al. | Jun 2016 | A1 |
20160182875 | Sehn | Jun 2016 | A1 |
20160239248 | Sehn | Aug 2016 | A1 |
20160277419 | Allen et al. | Sep 2016 | A1 |
20160321708 | Sehn | Nov 2016 | A1 |
20170006094 | Abou Mahmoud et al. | Jan 2017 | A1 |
20170038213 | Han | Feb 2017 | A1 |
20170061308 | Chen et al. | Mar 2017 | A1 |
20170287006 | Azmoodeh et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2887596 | Jul 2015 | CA |
2051480 | Apr 2009 | EP |
2151797 | Feb 2010 | EP |
2399928 | Sep 2004 | GB |
19990073076 | Oct 1999 | KR |
20010078417 | Aug 2001 | KR |
WO-1996024213 | Aug 1996 | WO |
WO-1999063453 | Dec 1999 | WO |
WO-2000058882 | Oct 2000 | WO |
WO-2001029642 | Apr 2001 | WO |
WO-2001050703 | Jul 2001 | WO |
WO-2006118755 | Nov 2006 | WO |
WO 2007092668 | Aug 2007 | WO |
WO-2009043020 | Apr 2009 | WO |
WO-2011040821 | Apr 2011 | WO |
WO-2011119407 | Sep 2011 | WO |
WO 2013008238 | Jan 2013 | WO |
WO-2013008238 | Jan 2013 | WO |
WO-2013045753 | Apr 2013 | WO |
WO 2014006129 | Jan 2014 | WO |
WO-2014068573 | May 2014 | WO |
WO-2014115136 | Jul 2014 | WO |
WO-2014194262 | Dec 2014 | WO |
WO-2015192026 | Dec 2015 | WO |
WO-2016044424 | Mar 2016 | WO |
WO-2016054562 | Apr 2016 | WO |
WO-2016065131 | Apr 2016 | WO |
WO-2016100318 | Jun 2016 | WO |
WO-2016100318 | Jun 2016 | WO |
WO-2016100342 | Jun 2016 | WO |
WO-2016149594 | Sep 2016 | WO |
WO-2016179166 | Nov 2016 | WO |
Entry |
---|
Rouse, Margaret, WhatIs.com Probability Definition, 2017 (Year: 2017). |
Gregorich et al., “Verification of AIRS Boresight Accuracy Using Coastline Detection” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, Issue 2, (2003) pp. 298-302. |
Hsu-Yang Kun et al., “Using RFID Technology and SOA with 4D Escape Route” Wireless Communications, Networking and Mobile Computing (2008) pp. 1-4. |
Ning Xia et al., “GeoEcho: Inferring User Interests from Geotag Reports in Network Traffic” IEEE/WIC/ACM International Joint Conferences, vol. 2 (2014) pp. 1-8. |
“A Whole New Story”, URL: https://www.snap.com/en-US/new/, (2017), 13 pgs. |
“Adding a watermark to your photos”, eBay, URL: http://pages.ebay.com/help/sell/pictures.html, (accessed May 24, 2017), 4 pgs. |
“BlogStomp”, URL: http://stompsoftware.com/blogstomp, (accessed May 24, 2017), 12 pgs. |
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, URL: http://www.blastradius.com/work/cup-magic, (2016), 7 pgs. |
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, URL: http://techpp.com/2013/02/15/instaplace-app-review, (2013), 13 pgs. |
“InstaPlace Photo App Tell the Whole Story”, URL: https://youtu.be/uF_gFkg1hBM, (Nov. 8, 2013), 113 pgs. |
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs. |
“Introducing Snapchat Stories”, URL: https://www.youtube.com/watch?v=88Cu3yN-LlM, (Oct. 3, 2013), 92 pgs. |
“Macy's Believe-o-Magic”, URL: https://www.youtube.com/watch?v=xvzRXy3J0Z0, (Nov. 7, 2011), 102 pgs. |
“Macys Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country, (Nov. 2, 2011), 6 pgs. |
“Starbucks Cup Magic”, URL: https://www.youtube.com/watch?v=RWwQXi9RG0w, (Nov. 8, 2011), 87 pgs. |
“Starbucks Cup Magic for Valentine's Day”, URL: https://www.youtube.com/watch?v=8nvqOzjq10w, (Feb. 6, 2012), 88 pgs. |
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return, (Nov. 15, 2011), 5 pgs. |
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, URL: https://techcrunch.com/2011/09/08/mobli-filters, (Sep. 8, 2011), 10 pgs. |
Janthong, Isaranu, “Android App Review Thailand”, URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html, (Jan. 23, 2013), 9 pgs. |
Macleod, Duncan, “Macys Believe-o-Magic App”, URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app, (Nov. 14, 2011), 10 pgs. |
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic, (Nov. 12, 2011), 8 pgs. |
Notopoulos, Katie, “A Guide to the New Snapchat Filters and Big Fonts”, URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV, (Dec. 22, 2013), 13 pgs. |
Panzarino, Matthew, “Snapchat Adds Filters, a Replay Function and for Whatever Reason, Time, Temperature and Speed Overlays”, URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays!, (Dec. 20, 2013), 12 pgs. |
Tripathi, Rohit, “Watermark Images in PHP and Save File on Server”, URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server, (Dec. 28, 2012), 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20170213240 A1 | Jul 2017 | US |